Search results for: root mean square error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4089

Search results for: root mean square error

3519 Noise Removal Techniques in Medical Images

Authors: Amhimmid Mohammed Saffour, Abdelkader Salama

Abstract:

Filtering is a part of image enhancement techniques, it is used to enhance certain details such as edges in the image that are relevant to the application. Additionally, filtering can even be used to eliminate unwanted components of noise. Medical images typically contain salt and pepper noise and Poisson noise. This noise appears to the presence of minute grey scale variations within the image. In this paper, different filters techniques namely (Median, Wiener, Rank order3, Rank order5, and Average) were applied on CT medical images (Brain and chest). We using all these filters to remove salt and pepper noise from these images. This type of noise consists of random pixels being set to black or white. Peak Signal to Noise Ratio (PSNR), Mean Square Error r(MSE) and Histogram were used to evaluated the quality of filtered images. The results, which we have achieved shows that, these filters, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients with no difficulty.

Keywords: CT imaging, median filter, adaptive filter and average filter, MATLAB

Procedia PDF Downloads 313
3518 Effect of Scaling and Root Planing on Improvement of Glycemic Control in Periodontitis Patients with Type-2 Diabetes Mellitus

Authors: Shivalal Sharma, Sanjib K. Sharma, Madhab Lamsal

Abstract:

Background: The aim of this study was to evaluate the clinical and laboratory changes three months after full-mouth scaling and root planing (SRP) in periodontitis patients with type 2 diabetes mellitus (DM). Methods: Forty-seven type 2 DM subjects with moderate to severe periodontitis were randomly divided into two groups. Treatment group (TG), 25 subjects, received full-mouth scaling and root planning; control group (CG), 22 subjects, received no treatment. At baseline and at the end of three months, glycated hemoglobin (HbA1c) values, fasting glucose, and clinical parameters like plaque index (PI), gingival index (GI), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded in all the patients. Following SRP, the patients were enrolled in a monthly interval maintenance program for 3 months. Results: A statistically significant effect could be demonstrated for PI, GI, PPD, and CAL for the treatment group. HbA1c levels in the treatment group decreased significantly whereas the control group showed a slight but insignificant increase for these parameters. Conclusions: The results of this study showed that non-surgical periodontal treatment (SRP) is associated with improved glycemic control in type 2 DM patients and could be undertaken along with the standard measures for the diabetic patient care.

Keywords: periodontitis, type 2 diabetes mellitus, non-surgical periodontal therapy, SRP

Procedia PDF Downloads 300
3517 Analytical Study of Flexural Strength of Concrete-Filled Steel Tube Beams

Authors: Maru R., Singh V. P.

Abstract:

In this research, analytical study of the flexural strength of Concrete Filled Steel Tube (CFST) beams is carried out based on wide-range finite element models to obtain the better perspective for flexural strength achievement with the use of ABAQUS finite element program. This work adopts concrete damaged plasticity model to get the actual simulation of CFST under bending. To get the decent interaction between concrete and steel, normal and tangential surface interaction provided by ABAQUS is used with hard contact for normal surface interaction and for 0.65 friction coefficient for tangential surface interactions. In this study, rectangular and square CFST beam model cross-sections are adopted with its limits pertained to Eurocode specifications. To get the visualization for flexural strength of CFST beams, total of 74 rectangular CFST beams and 86 square CFST beams are used with four-point bending test setup and the length of the beam model as 1000mm. The grades of concrete and grades of steel are used as 30 MPa & 35MPa and 235 MPa and 275MPa respectively for both sections to get the confinement factor 0.583 to 2.833, steel ratio of 0.069 to 0.236 and length to depth ratio of 4.167 to 16.667. It was found based on this study that flexural strength of CFST beams falls around strain of 0.012. Eurocode provides the results harmonically with finite elemental results. It was also noted for square sections that reduction of steel ratio is not useful as compared to rectangular section although it increases moment capacity up to certain limits because for square sectional area similar to that of rectangular, it possesses lesser depth than rectangular sections. Also It can be said that effect of increment of grade of concrete can be achieved when thicker steel tube is present. It is observed that there is less increment in moment capacity initially but after D/b ratio 1.2, moment capacity of CFST beam rapidly.

Keywords: ABAQUS, CFST beams, flexural strength, four-point bending, rectangular and square sections

Procedia PDF Downloads 164
3516 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan

Authors: Li Li, Kai-Hsuan Chu

Abstract:

It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.

Keywords: real estate price, least-square, grey correlation, macroeconomics

Procedia PDF Downloads 197
3515 Examining the Concept of Sustainability in the Scenery Architecture of Naqsh-e-Jahan Square

Authors: Mahmood Naghizadeh, Maryam Memarian, Hourshad Irvash

Abstract:

Following the rise in the world population and the upward growth of urbanization, the design, planning, and management of the site scenery for the purpose of presentation and expansion of sustainable site scenery has turned to be the greatest concern to experts. Since the fundamental principles of the site scenery change more and less haphazardly over time, sustainable site scenery can be viewed as an ideal goal because both sustainability and dynamism come into view in urban site scenery and it wouldn’t be designed according to a set of pre-determined principles. Sustainable site scenery, as the ongoing interaction between idealism and pragmatism with sustainability factors, is a dynamic phenomenon created by bringing cultural, historical, social and natural scenery together. Such an interaction is not to subdue other factors but to reinforce the aforementioned factors. The sustainable site scenery is a persistently occurring event not only has attenuated over time but has gained strength. The sustainability of a site scenery or an event over time depends on its site identity which grows out of its continuous association with the past. The sustainability of a site scene or an event in a time frame intertwined with the identity of the place from past to present. This past history supports the present and future of the scene. The result of such a supportive role is the sustainability of site scenery. Isfahan Naqsh-e-Jahan Square is one of the most outstanding squares in the world and the best embodiment of Iranian site scenery architecture. This square is an arena that brings people together and a dynamic city center comprising various urban and religious complexes, spaces and facilities and is considered as one of the most favorable traditional urban space of Iran. Such a place can illustrate many factors related to sustainable site scenery. One the other hand, there are still no specific principles concerning sustainability in the architecture of site scenery. Meanwhile, sustainability is recognized as a rather modern view in architecture. The purpose of this research is to identify factors involved in sustainability in general and to examine their effects on site scenery architecture in particular. Finally, these factors will be studied with taking Naqsh-e-Jahan Square into account. This research adopts an analytic-descriptive approach that has benefited from the review of literature available in library studies and the documents related to sustainability and site scenery architecture. The statistical population used for the purpose of this research includes square constructed during the Safavid dynasty and Naqsh-e-Jahan Square was picked out as the case study. The purpose of this paper is to come up with a rough definition of sustainable site scenery and demonstrate this concept by analyzing it and recognizing the social, economic and ecological aspects of this project.

Keywords: Naqsh-e-Jahan Square, site scenery architecture, sustainability, sustainable site scenery

Procedia PDF Downloads 311
3514 Dorsal Root Ganglion Neuromodulation as an Alternative to Opioids in the Evolving Healthcare Crisis

Authors: Adam J. Carinci

Abstract:

Background: The opioid epidemic is the most pressing healthcare crisis of our time. There is increasing recognition that opioids have limited long-term efficacy and are associated with hyperalgesia, addiction, and increased morbidity and mortality. Therefore, alternative strategies to combat chronic pain are paramount. We initiated a multicenter retrospective case series to review the efficacy of DRG stimulation in facilitating opioid tapering, opioid discontinuation and as a viable alternative to chronic opioid therapy. Purpose: The dorsal root ganglion (DRG) plays a key role in the development and maintenance of pain. Recent innovations in neuromodulation, specifically, dorsal root ganglion stimulation, offers an effective alternative to opioids in the treatment of chronic pain. This retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy. Procedure: This small multicenter retrospective case series provides preliminary evidence that DRG stimulation facilitates opioid weaning, opioid tapering and is a viable option to opioid therapy in the treatment of chronic pain. A retrospective analysis was completed. Visual analog scale pain scores and pain medication usage were collected at the baseline visit and after four weeks, 3 months and 6 months of treatment. Ten consecutive patients across two study centers were included. The pain was rated 7.38 at baseline and decreased to 1.50 at the 4-week follow-up, a reduction of 79.5%. All patients significantly decreased their opioid pain medication use with an average > 30% reduction in morphine equivalents and four were able to discontinue their medications entirely. Conclusion: This Retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy.

Keywords: dorsal root ganglion, neuromodulation, opioid sparing, stimulation

Procedia PDF Downloads 114
3513 Experimental Characterization of the Color Quality and Error Rate for an Red, Green, and Blue-Based Light Emission Diode-Fixture Used in Visible Light Communications

Authors: Juan F. Gutierrez, Jesus M. Quintero, Diego Sandoval

Abstract:

An important feature of LED technology is the fast on-off commutation, which allows data transmission. Visible Light Communication (VLC) is a wireless method to transmit data with visible light. Modulation formats such as On-Off Keying (OOK) and Color Shift Keying (CSK) are used in VLC. Since CSK is based on three color bands uses red, green, and blue monochromatic LED (RGB-LED) to define a pattern of chromaticities. This type of CSK provides poor color quality in the illuminated area. This work presents the design and implementation of a VLC system using RGB-based CSK with 16, 8, and 4 color points, mixing with a steady baseline of a phosphor white-LED, to improve the color quality of the LED-Fixture. The experimental system was assessed in terms of the Color Rendering Index (CRI) and the Symbol Error Rate (SER). Good color quality performance of the LED-Fixture was obtained with an acceptable SER. The laboratory setup used to characterize and calibrate an LED-Fixture is described.

Keywords: VLC, indoor lighting, color quality, symbol error rate, color shift keying

Procedia PDF Downloads 99
3512 Allelopathic Effects of Lambsquarters (Chenopodium album) Extract on the Germination and Early Growth of Wheat (Triticum aestivum L.)

Authors: Amir Halabianfar, Jamshid Razmjoo

Abstract:

In order to evaluate the competitive effects of Lambsqua on the germination and early growth of two wheat (Triticum aestivum L.) varieties, an experiment was conducted in laboratory conditions in researches of agronomy, College of agriculture, Isfahan University of Technology in 2015. A laboratory experiment was conducted on a factorial arrangement in a randomized complete design with four replications. Testing factors include two wheat cultivars (Flat and Atila -4) and three level of Lambsqua (Chenopodium album) extract (30, 60 and 90 percent) plus control with no extract. Twenty-five seeds of each wheat varieties were placed in petri dish, then the root extract of lambsqua, which was prepared previously at three levels, was poured on the seeds in each petri dish. The result showed that allelopathic effect of Lambsquarter on germination, root, and shoot dry weight of two varieties was highly significant. Among varieties, the Atila–4 showed minimum germination at 60% while the Flat showed minimum germination at 90% concentration. In case of root dry weight, Atila–4 was more suppressed as compared to Flat at 60% concentration but at 90% concentration, the both wheat varieties were reduced non-significantly. Shoot dry weight of Flat were decreased non-significantly concentrations except Atila -4 that was more reduced at 60 % than 90% concentration.

Keywords: allelopathy, Chenopodium album, extract, germination, wheat, early growth

Procedia PDF Downloads 182
3511 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
3510 An Analysis of the Results of Trial Blasting of Site Development Project in the Volcanic Island

Authors: Dong Wook Lee, Seung Hyun Kim

Abstract:

Trial blasting is conducted to identify the characteristics of the blasting of the applicable ground before production blasting and to investigate various problems posed by blasting. The methods and pattern of production blasting are determined based on an analysis of the results of trial blasting. The bedrock in Jeju Island, South Korea is formed through the volcanic activities unlike the inland areas, composed of porous basalt. Trial blasting showed that the blast vibration frequency of sedimentary and metamorphic rocks in the inland areas is in a high frequency band of about 80 Hz while the blast vibration frequency of Jeju Island is in a low frequency band of 10~25 Hz. The frequency band is analyzed to be low due to the large cycle of blasting pattern as blast vibration passes through the layered structured ground layer where the rock formation and clickers irregularly repeat. In addition, the blast vibration equation derived from trial blasting was R: 0.885, S.E: 0.216 when applying the square root scaled distance (SRSD) relatively suitable for long distance, estimated at the confidence level of 95%.

Keywords: attenuation index, basaltic ground, blast vibration constant, blast vibration equation, clinker layer

Procedia PDF Downloads 280
3509 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 255
3508 Anatomical Adaptations and Mineral Elements Allocation Associated with the Zn Phytostabilization Capability of Acanthus ilicifolius L.

Authors: Shackira Am, Jos T. Puthur

Abstract:

The phytostabilization potential of a halophyte Acanthus ilicifolius L. has been evaluated with special attention to the nutritional as well as anatomical adaptations developed by the plant. Distribution of essential elements influenced by the excess Zn²⁺ ions in the root tissue was studied by FEG-SEM EDX microanalysis. Significant variations were observed in the uptake and allocation of mineral elements like Mg, P, K, S, Na, Si and Al in the root of A. ilicifolius. The increase in S is in correlation with the increased synthesis of glutathione which might be involved in the biosynthesis of phytochelatins. This in turn might be aiding the plant to tolerate the adverse environmental conditions by stabilizing the excess Zn in the root tissue itself. Moreover it is revealed that most of the Zn were accumulated towards the central region near the vascular tissue. Treatment with ZnSO₄ in A. ilicifolius caused significant increase in the number of glandular trichomes on the adaxial leaf surface as compared to the leaves of control plants. In addition to this, A. ilicifolius when treated with ZnSO₄, exhibited a deeply stained layer of cells immediate to the endodermis, forming more or less a ring like structure around the xylem vessels. Phloem cells in these plants were crushed/reduced in numbers. There were no such deeply stained cells forming a ring around the xylem vessels in the control plants. These adaptive responses make the plant a suitable candidate for the phytostabilization of Zn. In addition the nutritional adjustment of the plant equips them for a better survival under increased concentration of Zn²⁺.

Keywords: Acanthus ilicifolius, mineral elements, phytostabilization, zinc

Procedia PDF Downloads 168
3507 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.

Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT

Procedia PDF Downloads 293
3506 A Posteriori Analysis of the Spectral Element Discretization of Heat Equation

Authors: Chor Nejmeddine, Ines Ben Omrane, Mohamed Abdelwahed

Abstract:

In this paper, we present a posteriori analysis of the discretization of the heat equation by spectral element method. We apply Euler's implicit scheme in time and spectral method in space. We propose two families of error indicators, both of which are built from the residual of the equation and we prove that they satisfy some optimal estimates. We present some numerical results which are coherent with the theoretical ones.

Keywords: heat equation, spectral elements discretization, error indicators, Euler

Procedia PDF Downloads 306
3505 Improved Pitch Detection Using Fourier Approximation Method

Authors: Balachandra Kumaraswamy, P. G. Poonacha

Abstract:

Automatic Music Information Retrieval has been one of the challenging topics of research for a few decades now with several interesting approaches reported in the literature. In this paper we have developed a pitch extraction method based on a finite Fourier series approximation to the given window of samples. We then estimate pitch as the fundamental period of the finite Fourier series approximation to the given window of samples. This method uses analysis of the strength of harmonics present in the signal to reduce octave as well as harmonic errors. The performance of our method is compared with three best known methods for pitch extraction, namely, Yin, Windowed Special Normalization of the Auto-Correlation Function and Harmonic Product Spectrum methods of pitch extraction. Our study with artificially created signals as well as music files show that Fourier Approximation method gives much better estimate of pitch with less octave and harmonic errors.

Keywords: pitch, fourier series, yin, normalization of the auto- correlation function, harmonic product, mean square error

Procedia PDF Downloads 412
3504 Boosting the Agrophysiological Performance of Chickpea Crop (Cicer Arietinum L.) Under Low-P Soil Conditions with the Co-application of Bacterial Consortium (Phosphate Solubilizing Bacteria and Rhizobium) and P-Fertilizers (RP and TSP Forms)

Authors: Rym Saidi, Pape Alioune Ndiaye, Ibnyasser Ammar, Zineb Rchiad, Khalid Daoui, Issam Kadmiri Meftahi, Adnane Bargaz

Abstract:

Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide and plays a significant role in humans’ dietary consumption. Alongside nitrogen (N), low phosphorus (P) availability within agricultural soils is one of the major factors limiting chickpea growth and productivity. The combined application of beneficial bacterial inoculants and Rock P-fertilizer could boost chickpea performance and productivity, increasing P-utilization efficiency and minimizing nutrient losses under P-deficiency conditions. A greenhouse experiment was conducted to evaluate the response of chickpeas to two P-fertilizer forms (RP and TSP) under N2-fixer and P-solubilizer consortium inoculation to improve biological N fixation and P nutrition under P-deficient conditions. Under inoculation, chickpea chlorophyll content and chlorophyll fluorescence (RP+I and TSP+I) were increased compared to uninoculated treatments. The RP+I treatment increased both shoot and root dry weights by 48,80% and 72,68%, respectively, compared to the uninoculated RP fertilized control. Indeed, the bacterial consortium contributed to enhancing root morphological traits (e.g., root volume, surface area, and diameter) of all inoculated treatments versus the uninoculated treatments. Furthermore, soil available P and root inorganic P were significantly improved in RP+I by 162,84% and 73,24%, respectively, compared to uninoculated RP control. Our research outcomes suggest that the co-inoculation of chickpeas with N2-fixing, and P-solubilizing bacteria improves biomass yield and nutrient uptake. Eventually, enhancing chickpea agrophysiological performance, especially in restricted P-availability conditions.

Keywords: chickpea, consortium, beneficial bacterial inoculants, phosphorus deficiency, rock p-fertilizer, nutrient uptake

Procedia PDF Downloads 65
3503 Comparative Growth Rates of Treculia africana Decne: Embryo in Varied Strengths of Murashige and Skoog Basal Medium

Authors: Okafor C. Uche, Agbo P. Ejiofor, Okezie C. Eziuche

Abstract:

This study provides a regeneration protocol for Treculia africana Decne (an endangered plant) through embryo culture. Mature zygotic embryos of T. africana were excised from the seeds aseptically and cultured on varied strengths (full, half and quarter) of Murashige and Skoog (MS) basal medium supplemented. All treatments experienced 100±0.00 percent sprouting except for half and quarter strengths. Plantlets in MS full strength had the highest fresh weight, leaf area, and longest shoot length when compared to other treatments. All explants in full, half, quarter strengths and control had the same number of leaves and sprout rate. Between the treatments, there was a significant difference (P>0.05) in their effect on the length of shoot and root, number of adventitious root, leaf area, and fresh weight. Full strength had the highest mean value in all the above-mentioned parameters and differed significantly (P>0.05) from others except in shoot length, number of adventitious roots, and root length where it did not differ (P<0.05) from half strength. The result of this study indicates that full strength MS basal medium offers a better option for the optimum growth for Treculia africana regeneration in vitro.

Keywords: medium strengths, Murashige and Skoog, Treculia africana, zygotic embryos

Procedia PDF Downloads 253
3502 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise

Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang

Abstract:

Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.

Keywords: electromyographic feature extraction, muscle status, pedaling exercise, relaxation segment

Procedia PDF Downloads 302
3501 Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit

Authors: Yulong Wang, Yuan Yan Tang, Cuiming Zou, Lina Yang

Abstract:

This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach.

Keywords: correntropy induced metric, matching pursuit, pattern classification, sparse representation

Procedia PDF Downloads 355
3500 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links

Authors: Alaa Abdullah Altaee

Abstract:

This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.

Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication

Procedia PDF Downloads 120
3499 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.

Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, error pointing, M-ary pulse position modulation, symbol error rate

Procedia PDF Downloads 286
3498 Reliability of the Estimate of Earthwork Quantity Based on 3D-BIM

Authors: Jaechoul Shin, Juhwan Hwang

Abstract:

In case of applying the BIM method to the civil engineering in the area of free formed structure, we can expect comparatively high rate of construction productivity as it is in the building engineering area. In this research, we developed quantity calculation error applying it to earthwork and bridge construction (e.g. PSC-I type segmental girder bridge amd integrated bridge of steel I-girders and inverted-Tee bent cap), NATM (New Austrian Tunneling Method) tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D modeling quantity survey. we confirmed high reliability of the BIM-based method in structure work in which errors occurred in range between -6% ~ +5%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14% ~ +13% of earthwork quantity calculation. It is benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed.

Keywords: BIM, 3D modeling, 3D-BIM, quantity of earthwork

Procedia PDF Downloads 442
3497 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 316
3496 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: discrete wavelet transform, speech intelligibility, STOI, standard deviation

Procedia PDF Downloads 148
3495 Cochliobolus sativus: An Important Pathogen of Cereal Crops

Authors: Awet Araya

Abstract:

Cochliobolus sativus ((anamorphic stage: Bipolaris sorokiniana (synonyms: Helminthosporium sorokinianum, Drechslera sorokiniana, and Helminthosporium sativum)) is an important pathogen of cereal crops. Many other grass species are also hosts for this fungus. Yield losses have been reported from many regions, especially where barley and wheat are commercially cultivated. The fungus has a worldwide distribution. The pathogen causes root rot, seedling blight, spot blotch, head blight, and black point. Environmental conditions affect disease development. Most of the time, fungus survives as mycelia and conidia. Pseudothecium of the fungus is not commonly encountered and probably not important in the epidemiology of the disease. The fungus can be in seed, soil, or in plant parts. Crop rotation, proper fertilization, reducing other stress factors, fungicide treatments, and resistant cultivars may be used for the control of the disease.

Keywords: Cochliobolus sativus, barley, cultivars, root rot

Procedia PDF Downloads 228
3494 Least-Square Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: clusters of microcalcifications, ductal carcinoma in situ, least-square support vector machine, particle swarm optimization

Procedia PDF Downloads 353
3493 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 152
3492 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier

Procedia PDF Downloads 466
3491 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 148
3490 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 75