Search results for: real-time cardiac monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2844

Search results for: real-time cardiac monitoring

2274 Quantitative Comparisons of Different Approaches for Rotor Identification

Authors: Elizabeth M. Annoni, Elena G. Tolkacheva

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.

Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors

Procedia PDF Downloads 310
2273 Evaluation of the Efficacy of Basic Life Support Teaching in Second and Third Year Medical Students

Authors: Bianca W. O. Silva, Adriana C. M. Andrade, Gustavo C. M. Lucena, Virna M. S. Lima

Abstract:

Introduction: Basic life support (BLS) involves the immediate recognition of cardiopulmonary arrest. Each year, 359.400 and 275.000 individuals with cardiac arrest are attended in emergency departments in USA and Europe. Brazilian data shows that 200.000 cardiac arrests occur every year, and half of them out of the hospital. Medical schools around the world teach BLS in the first years of the course, but studies show that there is a decline of the knowledge as the years go by, affecting the chain of survival. The objective was to analyze the knowledge of medical students about BLS and the retention of this learning throughout the course. Methods: This study included 150 students who were at the second and third year of a medical school in Salvador, Bahia, Brazil. The instrument of data collection was a structured questionnaire composed of 20 questions based on the 2015 American Heart Association guideline. The Pearson Chi-square test was used in order to study the association between previous training, sex and semester with the degree of knowledge of the students. The Kruskal-Wallis test was used to evaluate the different yields obtained between the various semesters. The number of correct answers was described by average and quartiles. Results: Regarding the degree of knowledge, 19.6% of the female students reached the optimal classification, a better outcome than the achieved by the male participants. Of those with previous training, 33.33% were classified as good and optimal, none of the students reached the optimal classification and only 2.2% of them were classified as bad (those who did not have 52.6% of correct answers). The analysis of the degree of knowledge related to each semester revealed that the 5th semester had the highest outcome: 30.5%. However, the acquaintance presented by the semesters was generally unsatisfactory, since 50% of the students, or more, demonstrated knowledge levels classified as bad or regular. When confronting the different semesters and the achieved scores, the value of p was 0.831. Conclusion: It is important to focus on the training of medical professionals that are capable of facing emergency situations, improving the systematization of care, and thereby increasing the victims' possibility of survival.

Keywords: basic life support, cardiopulmonary ressucitacion, education, medical students

Procedia PDF Downloads 165
2272 The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students

Authors: Dina L. DiSantis

Abstract:

Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented.

Keywords: place-based, student data collection, sustainability, water quality monitoring

Procedia PDF Downloads 134
2271 Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes

Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai

Abstract:

This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes.

Keywords: Escherichia coli SCC1, fermentation process, green fluorescent protein, red fluorescence

Procedia PDF Downloads 483
2270 Comparison of Dynamic Characteristics of Railway Bridge Spans to Know the Health of Elastomeric Bearings Using Tri Axial Accelerometer Sensors

Authors: Narayanakumar Somasundaram, Venkat Nihit Chirivella, Venkata Dilip Kumar Pasupuleti

Abstract:

Ajakool, India, has a multi-span bridge that is constructed for rail transport with a maximum operating speed of 100 km/hr. It is a standard RDSO design of a PSC box girder carrying a single railway track. The Structural Health Monitoring System (SHM) is designed and installed to compare and analyze the vibrations and displacements on the bridge due to different live loads from moving trains. The study is conducted for three different spans of the same bridge to understand the health of the elastomeric bearings. Also, to validate the same, a three-dimensional finite element model is developed, and modal analysis is carried out. The proposed methodology can help in detecting deteriorated elastomeric bearings using only wireless tri-accelerometer sensors. Detailed analysis and results are presented in terms of mode shapes, accelerations, displacements, and their importance to each other. This can be implemented with a lot of ease and can be more accurate.

Keywords: dynamic effects, vibration analysis, accelerometer sensors, finite element analysis, structural health monitoring, elastomeric bearing

Procedia PDF Downloads 116
2269 A Review of Pharmacological Prevention of Peri-and Post-Procedural Myocardial Injury After Percutaneous Coronary Intervention

Authors: Syed Dawood Md. Taimur, Md. Hasanur Rahman, Syeda Fahmida Afrin, Farzana Islam

Abstract:

The concept of myocardial injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. In recent years, percutaneous coronary intervention (PCI) has become a well-established technique for the treatment of coronary artery disease. PCI improves symptoms in patients with coronary artery disease and it has been increasing the safety of procedures. However, peri- and post-procedural myocardial injury, including angiographical slow coronary flow, microvascular embolization, and elevated levels of cardiac enzyme, such as creatine kinase and troponin-T and -I, has also been reported even in elective cases. Furthermore, myocardial reperfusion injury at the beginning of myocardial reperfusion, which causes tissue damage and cardiac dysfunction, may occur in cases of the acute coronary syndrome. Because patients with myocardial injury is related to larger myocardial infarction and have a worse long-term prognosis than those without myocardial injury, it is important to prevent myocardial injury during and/or after PCI in patients with coronary artery disease. To date, many studies have demonstrated that adjunctive pharmacological treatment suppresses myocardial injury and increases coronary blood flow during PCI procedures. In this review, we highlight the usefulness of pharmacological treatment in combination with PCI in attenuating myocardial injury in patients with coronary artery disease.

Keywords: coronary artery disease, percutaneous coronary intervention, myocardial injury, pharmacology

Procedia PDF Downloads 432
2268 Gene Expressions in Left Ventricle Heart Tissue of Rat after 150 Mev Proton Irradiation

Authors: R. Fardid, R. Coppes

Abstract:

Introduction: In mediastinal radiotherapy and to a lesser extend also in total-body irradiation (TBI) radiation exposure may lead to development of cardiac diseases. Radiation-induced heart disease is dose-dependent and it is characterized by a loss of cardiac function, associated with progressive heart cells degeneration. We aimed to determine the in-vivo radiation effects on fibronectin, ColaA1, ColaA2, galectin and TGFb1 gene expression levels in left ventricle heart tissues of rats after irradiation. Material and method: Four non-treatment adult Wistar rats as control group (group A) were selected. In group B, 4 adult Wistar rats irradiated to 20 Gy single dose of 150 Mev proton beam locally in heart only. In heart plus lung irradiate group (group C) 4 adult rats was irradiated by 50% of lung laterally plus heart radiation that mentioned in before group. At 8 weeks after radiation animals sacrificed and left ventricle heart dropped in liquid nitrogen for RNA extraction by Absolutely RNA® Miniprep Kit (Stratagen, Cat no. 400800). cDNA was synthesized using M-MLV reverse transcriptase (Life Technologies, Cat no. 28025-013). We used Bio-Rad machine (Bio Rad iQ5 Real Time PCR) for QPCR testing by relative standard curve method. Results: We found that gene expression of fibronectin in group C significantly increased compared to control group, but it was not showed significant change in group B compared to group A. The levels of gene expressions of Cola1 and Cola2 in mRNA did not show any significant changes between normal and radiation groups. Changes of expression of galectin target significantly increased only in group C compared to group A. TGFb1 expressions in group C more than group B showed significant enhancement compared to group A. Conclusion: In summary we can say that 20 Gy of proton exposure of heart tissue may lead to detectable damages in heart cells and may distribute function of them as a component of heart tissue structure in molecular level.

Keywords: gene expression, heart damage, proton irradiation, radiotherapy

Procedia PDF Downloads 466
2267 Recovery from Detrimental pH Troughs in a Moorland River Using Monitored Calcium Carbonate Introductions

Authors: Lauren Dawson, Sean Comber, Richard Sandford, Alan Tappin, Bruce Stockley

Abstract:

The West Dart River is underperforming for Salmon (Salmo salar) survival rates due to acidified pH troughs under the European Water Framework Directive (2000/60/EC). These troughs have been identified as being caused by historic acid rain pollution which is being held in situ by peat bog presence at site and released during flushing events. Natural recovery has been deemed unlikely by the year 2020 using steady state water chemistry models and therefore a program of monitored calcium carbonate (CaCO3) introductions are being conducted to eliminate these troughs, which can drop to pH 2.93 (salmon survival – pH 5.5). The river should be naturally acidic (pH 5.5-6) due to the granite geology of Dartmoor and therefore the CaCO3 introductions are under new methodology (the encasing of the CaCO3 in permeable sacks) to ensure removal should the water pH rise above neutral levels. The water chemistry and ecology are undergoing comprehensive monitoring, including pH and turbidity levels, dissolved organic carbon and aluminum concentration and speciation, while the aquatic biota is being used to assess the potential water chemistry changes. While this project is ongoing, results from the preliminary field trial show only a temporary, localized increase in pH following CaCO3 introductions into the water column. However, changes to the water chemistry have only been identified in the West Dart after methodology adjustments to account for flow rates and spate-dissolution, though no long-term changes have so far been found in the ecology of the river. However, this is not necessarily a negative factor, as the aim of the study is to protect the current ecological communities and the natural pH of the river while remediating only the detrimental pH troughs.

Keywords: anthropogenic acidification recovery, calcium carbonate introductions, ecology monitoring, water chemistry monitoring

Procedia PDF Downloads 125
2266 Board of Directors of Small and Medium-Sized Enterprises to Go Public: Characteristics and Moderating Factors

Authors: María-José Palacin-Sanchez, Filippo Di Pietro, Reyes Samaniego-Medina

Abstract:

This article examines, in an institutional context such as Spanish one, the corporate board structure characteristics and determinants in entrepreneurial firms to go public. Specifically, it explores these issues through all the initial public offerings in the Spanish Alternative Equity Market (MAB), which is a market segment for smaller growing companies. The results show that: a) firm size, age of the company, and the reputation of the auditor and the nominated advisor and Corporate Governance Code favour a larger and more independent board structure that enhances its monitoring functions; and b) leverage, opportunities of growth, sector risk and ownership by executive directors all lead towards a smaller broad of directors where the role of entrepreneurship provided by executive directors remains crucial. This reflects the delicate balance of power between small-business entrepreneurs and financial equity market forces, which demand more transparency and monitoring in the companies.

Keywords: board composition, board size, corporate governance, IPO, SMEs

Procedia PDF Downloads 374
2265 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis

Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath

Abstract:

The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.

Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression

Procedia PDF Downloads 178
2264 A 3D Cell-Based Biosensor for Real-Time and Non-Invasive Monitoring of 3D Cell Viability and Drug Screening

Authors: Yuxiang Pan, Yong Qiu, Chenlei Gu, Ping Wang

Abstract:

In the past decade, three-dimensional (3D) tumor cell models have attracted increasing interest in the field of drug screening due to their great advantages in simulating more accurately the heterogeneous tumor behavior in vivo. Drug sensitivity testing based on 3D tumor cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve the real-time and label-free monitoring of the viability of 3D tumor cell models. In this study, micro-groove impedance sensor (MGIS) was specially developed for dynamic and non-invasive monitoring of 3D cell viability. 3D tumor cells were trapped in the micro-grooves with opposite gold electrodes for the in-situ impedance measurement. The change of live cell number would cause inversely proportional change to the impedance magnitude of the entire cell/matrigel to construct and reflect the proliferation and apoptosis of 3D cells. It was confirmed that 3D cell viability detected by the MGIS platform is highly consistent with the standard live/dead staining. Furthermore, the accuracy of MGIS platform was demonstrated quantitatively using 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of micro-groove impedance chip processing and measurement experiments were optimized in details. The results demonstrated that the MGIS and 3D cell-based biosensor and would be a promising platform to improve the efficiency and accuracy of cell-based anti-cancer drug screening in vitro.

Keywords: micro-groove impedance sensor, 3D cell-based biosensors, 3D cell viability, micro-electromechanical systems

Procedia PDF Downloads 113
2263 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 60
2262 A Study on Real-Time Fluorescence-Photoacoustic Imaging System for Mouse Thrombosis Monitoring

Authors: Sang Hun Park, Moung Young Lee, Su Min Yu, Hyun Sang Jo, Ji Hyeon Kim, Chul Gyu Song

Abstract:

A near-infrared light source used as a light source in the fluorescence imaging system is suitable for use in real-time during the operation since it has no interference in surgical vision. However, fluorescence images do not have depth information. In this paper, we configured the device with the research on molecular imaging systems for monitoring thrombus imaging using fluorescence and photoacoustic. Fluorescence imaging was performed using a phantom experiment in order to search the exact location, and the Photoacoustic image was in order to detect the depth. Fluorescence image obtained when evaluated through current phantom experiments when the concentration of the contrast agent is 25μg / ml, it was confirmed that it looked sharper. The phantom experiment is has shown the possibility with the fluorescence image and photoacoustic image using an indocyanine green contrast agent. For early diagnosis of cardiovascular diseases, more active research with the fusion of different molecular imaging devices is required.

Keywords: fluorescence, photoacoustic, indocyanine green, carotid artery

Procedia PDF Downloads 577
2261 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 89
2260 Over the Air Programming Method for Learning Wireless Sensor Networks

Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha

Abstract:

Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.

Keywords: WSN, over the air programming, virtual lab, AT45DB

Procedia PDF Downloads 353
2259 The Effects of Physiological Stress on Global and Regional Repolarisation in the Human Heart in Vivo

Authors: May Khei Hu, Kevin Leong, Fu Siong Ng, Nicholas Peter

Abstract:

Introduction: Sympathetic stimulation has been recognised as a potent stimulus of arrhythmogenesis in various cardiac pathologies, possibly by augmenting dispersion of repolarisation. The effects of sympathetic stimulation in healthy subjects however remain unclear. It is, therefore, crucial to first establish the effects of physiological stress on dispersion of repolarisation in healthy subjects before understanding these effects in pathological cardiac conditions. We hypothesised that activation-recovery interval (ARI; which is a surrogate of action potential duration) and dispersion of repolarisation decrease on sympathetic stimulation. Methods: Eight patients aged 18-55 years with structurally normal hearts underwent head-up tilt test (HUTT) and exercise tolerance test (ETT) while wearing the electrocardiographic imaging (ECGi) vest. Patients later underwent CT scan and the epicardial potentials are reconstructed using the ECGi software. Activation and recovery times were determined from the acquired electrograms. ARI was calculated and later corrected using Bazett’s formula. Global and regional dispersion of repolarisation were determined from standard deviation of the corrected ARI (ARIc). One-way analysis of variance (ANOVA) and Wilcoxon test were used to evaluate statistical significance. Results: Global ARIc increased significantly [p<0.01] when patients were tilted upwards but decreased significantly after five minutes [p<0.01]. A subsequent post- hoc analysis revealed that the decrease in R-R was more substantial compared to the change in ARI, resulting in the observed increase in ARIc. Global ARIc decreased on peak exercise [p<0.01] but increased on recovery [p<0.01]. Global dispersion increased significantly on peak exercise [p<0.05] although there were no significant changes in regional dispersion. There were no significant changes in both global and regional dispersion during tilt. Conclusion: ARIc decreases upon sympathetic stimulation in healthy subjects. Global dispersion of repolarisation increases upon exercise although there were no changes in global or regional dispersion during orthostatic stress.

Keywords: dispersion of repolarisation, sympathetic stimulation, Head-up tilt test (HUTT), Exercise tolerance test (ETT), Electrocardiographic imaging (ECGi)

Procedia PDF Downloads 179
2258 Architectural Framework to Preserve Information of Cardiac Valve Control

Authors: Lucia Carrion Gordon, Jaime Santiago Sanchez Reinoso

Abstract:

According to the relation of Digital Preservation and the Health field as a case of study, the architectural model help us to explain that definitions. .The principal goal of Data Preservation is to keep information for a long term. Regarding of Mediacal information, in order to perform a heart transplant, physicians need to preserve this organ in an adequate way. This approach between the two perspectives, the medical and the technological allow checking the similarities about the concepts of preservation. Digital preservation and medical advances are related in the same level as knowledge improvement.

Keywords: medical management, digital, data, heritage, preservation

Procedia PDF Downloads 400
2257 Target-Triggered DNA Motors and their Applications to Biosensing

Authors: Hongquan Zhang

Abstract:

Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.

Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification

Procedia PDF Downloads 69
2256 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers

Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash

Abstract:

Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.

Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system

Procedia PDF Downloads 402
2255 RS Based SCADA System for Longer Distance Powered Devices

Authors: Harkishen Singh, Gavin Mangeni

Abstract:

This project aims at building an efficient and automatic power monitoring SCADA system, which is capable of monitoring the electrical parameters of high voltage powered devices in real time for example RMS voltage and current, frequency, energy consumed, power factor etc. The system uses RS-485 serial communication interface to transfer data over longer distances. Embedded C programming is the platform used to develop two hardware modules namely: RTU and Master Station modules, which both use the CC2540 BLE 4.0 microcontroller configured in slave / master mode. The Si8900 galvanic ally isolated microchip is used to perform ADC externally. The hardware communicates via UART port and sends data to the user PC using the USB port. Labview software is used to design a user interface to display current state of the power loads being monitored as well as logs data to excel spreadsheet file. An understanding of the Si8900’s auto baud rate process is key to successful implementation of this project.

Keywords: SCADA, RS485, CC2540, labview, Si8900

Procedia PDF Downloads 280
2254 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.

Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift

Procedia PDF Downloads 182
2253 A Damage Level Assessment Model for Extra High Voltage Transmission Towers

Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang

Abstract:

Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.

Keywords: damage level monitoring, drift ratio, fragility curve, smart grid, transmission tower

Procedia PDF Downloads 284
2252 The Key Role of a Bystander Improving the Effectiveness of Cardiopulmonary Resuscitation Performed in Extra-Urban Areas

Authors: Leszek Szpakowski, Daniel Celiński, Sławomir Pilip, Grzegorz Michalak

Abstract:

The aim of the study was to analyse the usefulness of the 'E-rescuer' pilot project planned to be implemented in a chosen area of Eastern Poland in the cases of suspected sudden cardiac arrests in the extra-urban areas. Inventing an application allowing to dispatch simultaneously both Medical Emergency Teams and the E-rescuer to the place of the accident is the crucial assumption of the mentioned pilot project. The E-rescuer is defined to be the trained person able to take effective basic life support and to use automated external defibrillator. Having logged in using a smartphone, the E-rescuer's readiness is reported online to provide cardiopulmonary resuscitation exactly at the given location. Due to the accurately defined location of the E-rescuer, his arrival time is possible to be precisely fixed, and the substantive support through the displayed algorithms is capable of being provided as well. Having analysed the medical records in the years 2015-2016, cardiopulmonary resuscitation was considered to be effective when an early indication of circulation was provided, and the patient was taken to hospital. In the mentioned term, there were 2.291 cases of a sudden cardiac arrest. Cardiopulmonary resuscitation was taken in 621 patients in total including 205 people in the urban area and 416 in the extra-urban areas. The effectiveness of cardiopulmonary resuscitation in the extra-urban areas was much lower (33,8%) than in the urban (50,7%). The average ambulance arrival time was respectively longer in the extra-urban areas, and it was 12,3 minutes while in the urban area 3,3 minutes. There was no significant difference in the average age of studied patients - 62,5 and 64,8 years old. However, the average ambulance arrival time was 7,6 minutes for effective resuscitations and 10,5 minutes for ineffective ones. Hence, the ambulance arrival time is a crucial factor influencing on the effectiveness of cardiopulmonary resuscitation, especially in the extra-urban areas where it is much longer than in the urban. The key role of trained E-rescuers being nearby taking basic life support before the ambulance arrival can effectively support Emergency Medical Services System in Poland.

Keywords: basic life support, bystander, effectiveness, resuscitation

Procedia PDF Downloads 179
2251 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 58
2250 Optimal Maintenance Policy for a Partially Observable Two-Unit System

Authors: Leila Jafari, Viliam Makis, G. B. Akram Khaleghei

Abstract:

In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1, which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM, has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed and illustrated by a numerical example.

Keywords: condition-based maintenance, semi-Markov decision process, multivariate Bayesian control chart, partially observable system, two-unit system

Procedia PDF Downloads 440
2249 Raising Antibodies against Epoxyscillirosidine, the Toxic Principle Contained in Moraea pallida Bak. in Rabbits

Authors: Hamza I. Isa, Gezina C. H. Ferreira, Jan E. Crafford, Christoffel J. Botha

Abstract:

Moraea pallida Bak. (yellow tulip) poisoning is the most important plant-induced cardiac glycoside toxicosis in South Africa. Cardiac glycoside poisonings collectively account for about 33 and 10 % mortalities due to plants, in large and small stock respectively, in South Africa. The toxic principle is 1α, 2α-epoxyscillirosidine, a bufadienolide. The aim of the study was to investigate the potential to develop a vaccine against epoxyscillirosidine. Epoxyscillirosidine and the related bufadienolides proscillaridin and bufalin, which are commercially available, were conjugated to the carrier proteins [Hen ovalbumin (OVA), bovine serum albumin (BSA) and keyhole limpet haemocyanin (KLH)], rendering them immunogenic. Adult male New Zealand White rabbits were immunized. In Trials 1 and 2, rabbits (n=6) were, each assigned to two groups. Experimental animals (n=3; n=4) were vaccinated with epoxyscillirosidine-OVA conjugate, while the control (n=3; n=2) were vaccinated with OVA, using Freund’s complete and incomplete and Montanide adjuvants, for Trials 1 and 2, respectively. In Trial 3, rabbits (n=15), randomly allocated to 5 equal groups (I, II, III, IV and V), were vaccinated with proscillaridin-BSA, bufalin-BSA, epoxyscillirosidine-KLH, epoxyscillirosidine-BSA conjugates, and BSA respectively, using Montanide as adjuvant. Vaccination was on Days 0, 21 and 42. Additional vaccinations were done on Day 56 and 63 for Trial 1. Vaccination was by intradermal injection of 0.4 ml of the immunogen (4 mg/ml [Trial 1] and 8 mg/ml for Trials 2 and Trial 3, respectively). Blood was collected pre-vaccination and at 3 week intervals following each vaccination. Antibody response was determined using an indirect ELISA. There was poor immune response associated with the dose (0.4 mg per rabbit) and adjuvant used in Trial 1. Antibodies were synthesized against the conjugate administered in Trial 2. For Trail 3, antibodies against the immunogens were successfully raised in rabbits with epoxyscillirosidine-KLH inducing the highest immune response. The antibodies raised against proscillaridin and bufalin cross-reacted with epoxyscillirosidine when used as antigen in the ELISA. The study successfully demonstrated the synthesis of antibodies against the bufadienolide conjugates administered. The cross-reactivity of proscillaridin and bufalin with epoxyscillirosidine could potentially be utilized as alternative to epoxyscillirosidine in future studies to prevent yellow tulp poisoning by vaccination.

Keywords: antibodies , bufadienolides, cross-reactivity, epoxyscillirosidine, Moraea pallida, poisoning

Procedia PDF Downloads 137
2248 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 88
2247 Performance Monitoring and Environmental Impact Analysis of a Photovoltaic Power Plant: A Numerical Modeling Approach

Authors: Zahzouh Zoubir

Abstract:

The widespread adoption of photovoltaic panel systems for global electricity generation is a prominent trend. Algeria, demonstrating steadfast commitment to strategic development and innovative projects for harnessing solar energy, emerges as a pioneering force in the field. Heat and radiation, being fundamental factors in any solar system, are currently subject to comprehensive studies aiming to discern their genuine impact on crucial elements within photovoltaic systems. This endeavor is particularly pertinent given that solar module performance is exclusively assessed under meticulously defined Standard Test Conditions (STC). Nevertheless, when deployed outdoors, solar modules exhibit efficiencies distinct from those observed under STC due to the influence of diverse environmental factors. This discrepancy introduces ambiguity in performance determination, especially when surpassing test conditions. This article centers on the performance monitoring of an Algerian photovoltaic project, specifically the Oued El Keberite power (OKP) plant boasting a 15 megawatt capacity, situated in the town of Souk Ahras in eastern Algeria. The study elucidates the behavior of a subfield within this facility throughout the year, encompassing various conditions beyond the STC framework. To ensure the optimal efficiency of solar panels, this study integrates crucial factors, drawing on an authentic technical sheet from the measurement station of the OKP photovoltaic plant. Numerical modeling and simulation of a sub-field of the photovoltaic station were conducted using MATLAB Simulink. The findings underscore how radiation intensity and temperature, whether low or high, impact the short-circuit current, open-circuit voltage; fill factor, and overall efficiency of the photovoltaic system.

Keywords: performance monitoring, photovoltaic system, numerical modeling, radiation intensity

Procedia PDF Downloads 47
2246 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener

Authors: Wenhao Li, Shijun Guo

Abstract:

Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.

Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring

Procedia PDF Downloads 145
2245 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 364