Search results for: parametric function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5630

Search results for: parametric function

5060 Effect of the Applied Bias on Mini-Band Structures in Dimer Fibonacci InAs/Ga1-XInXAs Superlattices

Authors: Z. Aziz, S. Terkhi, Y. Sefir, R. Djelti, S. Bentata

Abstract:

The effect of a uniform electric field across multi-barrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the mini-band structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the mini-band structure, which becomes increasingly important (Wannier-Stark Effect).

Keywords: dimer fibonacci height barrier superlattices, singular extended state, exact Airy function and transfer matrix formalism, bioinformatics

Procedia PDF Downloads 288
5059 Formation of Miniband Structure in Dimer Fibonacci GaAs/Ga1-XAlXAs Superlattices

Authors: Aziz Zoubir, Sefir Yamina, Djelti Redouan, Bentata Samir

Abstract:

The effect of a uniform electric field across multibarrier systems (GaAs/AlxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased Dimer Fibonacci Height Barrier superlattices (DFHBSL) structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark effect).

Keywords: Dimer Fibonacci Height Barrier superlattices, singular extended states, exact Airy function, transfer matrix formalism

Procedia PDF Downloads 509
5058 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation

Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes

Abstract:

The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.

Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization

Procedia PDF Downloads 315
5057 A Double-Blind, Randomized, Controlled Trial on N-Acetylcysteine for the Prevention of Acute Kidney Injury in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

Authors: Sara Ataei, Molouk Hadjibabaie, Amirhossein Moslehi, Maryam Taghizadeh-Ghehi, Asieh Ashouri, Elham Amini, Kheirollah Gholami, Alireza Hayatshahi, Mohammad Vaezi, Ardeshir Ghavamzadeh

Abstract:

Acute kidney injury (AKI) is one of the complications of hematopoietic stem cell transplantation and is associated with increased mortality. N-acetylcysteine (NAC) is a thiol compound with antioxidant and vasodilatory properties that has been investigated for the prevention of AKI in several clinical settings. In the present study, we evaluated the effects of intravenous NAC on the prevention of AKI in allogeneic hematopoietic stem cell transplantation patients. A double-blind randomized placebo-controlled trial was conducted, and 80 patients were recruited to receive 100 mg/kg/day NAC or placebo as intermittent intravenous infusion from day -6 to day +15. AKI was determined on the basis of the Risk-Injury-Failure-Loss-Endstage renal disease and AKI Network criteria as the primary outcome. We assessed urine neutrophil gelatinase-associated lipocalin (uNGAL) on days -6, -3, +3, +9, and +15 as the secondary outcome. Moreover, transplant-related outcomes and NAC adverse reactions were evaluated during the study period. Statistical analysis was performed using appropriate parametric and non-parametric methods including Kaplan–Meier for AKI and generalized estimating equation for uNGAL. At the end of the trial, data from 72 patients were analyzed (NAC: 33 patients and placebo: 39 patients). Participants of each group were not different considering baseline characteristics. AKI was observed in 18% of NAC recipients and 15% of placebo group patients, and the occurrence pattern was not significantly different (p = 0.73). Moreover, no significant difference was observed between groups for uNGAL measures (p = 0.10). Transplant-related outcomes were similar for both groups, and all patients had successful engraftment. Three patients did not tolerate NAC because of abdominal pain, shortness of breath and rash with pruritus and were dropped from the intervention group before transplantation. However, the frequency of adverse reactions was not significantly different between groups. In conclusion, our findings could not show any clinical benefits from high-dose NAC particularly for AKI prevention in allogeneic hematopoietic stem cell transplantation patients.

Keywords: acute kidney injury, N-acetylcysteine, hematopoietic stem cell transplantation, urine neutrophil gelatinase-associated lipocalin, randomized controlled trial

Procedia PDF Downloads 433
5056 The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field

Authors: Taha Zakaraia Abdel Wahid

Abstract:

The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed.

Keywords: dilute gas, radiation field, exact solutions, travelling wave method, unsteady BGK model, irreversible thermodynamics, unsteady non-equilibrium distribution functions

Procedia PDF Downloads 495
5055 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification

Procedia PDF Downloads 516
5054 Dynamic Modeling of an Unmanned Aerial Vehicle with Petro-Engine

Authors: Khaled A. Alsaif, Mosaad A. Foda

Abstract:

In the following article, we present the dynamic simulation of an unmanned aerial vehicle with main fuel engine in the middle to carry most of the weight. This configuration will increase the flight time of the vehicle for a given payload size as opposed to the traditional quad rotor, where only DC motors are used. A parametric study to investigate the effect of the propellers ratio (main rotor propeller diameter to secondary rotor propeller diameter), the angle of incidence of the main rotor and the twist angle of the main rotor blades on selected performance criteria is presented.

Keywords: unmanned aerial vehicle (UAV), quadrotor, petrol quadcopter, flying robot

Procedia PDF Downloads 451
5053 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree

Authors: S. A. Gayvoronsky, T. A. Ezangina

Abstract:

The robust control system objects with interval-undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.

Keywords: interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy

Procedia PDF Downloads 302
5052 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization

Procedia PDF Downloads 396
5051 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients

Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará

Abstract:

Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.

Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media

Procedia PDF Downloads 517
5050 Comparison of Volume of Fluid Model: Experimental and Empirical Results for Flows over Stacked Drop Manholes

Authors: Ramin Mansouri

Abstract:

The manhole is one of the types of structures that are installed at the site of change direction or change in the pipe diameter or sewage pipes as well as in step slope areas to reduce the flow velocity. In this study, the flow characteristics of hydraulic structures in a manhole structure have been investigated with a numerical model. In this research, the types of computational grid coarse, medium, and fines have been used for simulation. In order to simulate flow, k-ε model (standard, RNG, Realizable) and k-w model (standard SST) are used. Also, in order to find the best wall conditions, two types of standard and non-equilibrium wall functions were investigated. The turbulent model k-ε has the highest correlation with experimental results or all models. In terms of boundary conditions, constant speed is set for the flow input boundary, the output pressure is set in the boundaries which are in contact with the air, and the standard wall function is used for the effect of the wall function. In the numerical model, the depth at the output of the second manhole is estimated to be less than that of the laboratory and the output jet from the span. In the second regime, the jet flow collides with the manhole wall and divides into two parts, so hydraulic characteristics are the same as large vertical shaft hydraulic characteristics. In this situation, the turbulence is in a high range since it can be seen more energy loss in it. According to the results, energy loss in numerical is estimated at 9.359%, which is more than experimental data.

Keywords: manhole, energy, depreciation, turbulence model, wall function, flow

Procedia PDF Downloads 82
5049 The Study of Rapeseed Characteristics by Factor Analysis under Normal and Drought Stress Conditions

Authors: Ali Bakhtiari Gharibdosti, Mohammad Hosein Bijeh Keshavarzi, Samira Alijani

Abstract:

To understand internal characteristics relationships and determine factors which explain under consideration characteristics in rapeseed varieties, 10 rapeseed genotypes were implemented in complete accidental plot with three-time repetitions under drought stress in 2009-2010 in research field of agriculture college, Islamic Azad University, Karaj branch. In this research, 11 characteristics include of characteristics related to growth, production and functions stages was considered. Variance analysis results showed that there is a significant difference among rapeseed varieties characteristics. By calculating simple correlation coefficient under both conditions, normal and drought stress indicate that seed function characteristics in plant and pod number have positive and significant correlation in 1% probable level with seed function and selection on the base of these characteristics was effective for improving this function. Under normal and drought stress, analyzing the main factors showed that numbers of factors which have more than one amount, had five factors under normal conditions which were 82.72% of total variance totally, but under drought stress four factors diagnosed which were 76.78% of total variance. By considering total results of this research and by assessing effective characteristics for factor analysis and selecting different components of these characteristics, they can be used for modifying works to select applicable and tolerant genotypes in drought stress conditions.

Keywords: correlation, drought stress, factor analysis, rapeseed

Procedia PDF Downloads 190
5048 A Generalization of Option Pricing with Discrete Dividends to Markets with Daily Price Limits

Authors: Jiahau Guo, Yihe Zhang

Abstract:

This paper proposes solutions for pricing options on stocks paying discrete dividends in markets with daily price limits. We first extend the intraday density function of Guo and Chang (2020) to a multi-day one and use the framework of Haug et al. (2003) to value European options on stocks paying discrete dividends. Next, we adopt the fast Fourier transform (FFT) to derive accurate and efficient formulae for American options and further employ the three-point Richardson extrapolation to accelerate the computation. Finally, the accuracy of our proposed methods is verified by simulations.

Keywords: daily price limit, discrete dividend, early exercise, fast Fourier transform, multi-day density function, Richardson extrapolation

Procedia PDF Downloads 164
5047 An Analysis of the Relation between Need for Psychological Help and Psychological Symptoms

Authors: İsmail Ay

Abstract:

In this study, it was aimed to determine the relations between need for psychological help and psychological symptoms. The sample of the study consists of 530 university students getting educated in University of Atatürk in 2015-2016 academic years. Need for Psychological Help Scale and Brief Symptom Inventory were used to collect data in the study. In data analysis, correlation analysis and structural equation model with latent variables were used. Normality and homogeneity analyses were used to analyze the basic conditions of parametric tests. The findings obtained from the study show that as the psychological symptoms increase, need for psychological help also increases. The findings obtained through the study were approached according to the literature.

Keywords: psychological symptoms, need for psychological help, structural equation model, correlation

Procedia PDF Downloads 368
5046 Effects of Virtual Reality on the Upper Extremity Spasticity and Motor Function in Patients with Stroke: A Single Blinded Randomized Controlled Trial

Authors: Kasra Afsahi, Maryam Soheilifar, S. Hossein Hosseini, Omid Seyed Esmaeili, Rouzbeh Kezemi, Noushin Mehrbod, Nazanin Vahed, Tahereh Hajiahmad, Noureddin Nakhostin Ansari

Abstract:

Background: Stroke is a disabling neurological disease. Rehabilitative therapies are important treatment methods. This clinical trial was done to compare the effects of VR beside conventional rehabilitation versus conventional rehabilitation alone on spasticity and motor function in stroke patients. Materials and Methods: In this open-label randomized controlled clinical trial, 40 consecutive patients with stable first-ever ischemic stroke in the past three to 12 months that were referred to a rehabilitation clinic in Tehran, Iran, in 2020 were enrolled. After signing the informed written consent form, subjects were randomly assigned by block randomization of five in each block as cases with 1:1 into two groups of 20 cases; conventional plus VR therapy group: 45-minute conventional therapy session plus 15-minute VR therapy, and conventional group: 60-minute conventional therapy session. VR rehabilitation is designed and developed with different stages. Outcomes were modified Ashworth scale, recovery stage score for motor function, range of motion (ROM) of shoulder abduction/wrist extension, and patients’ satisfaction rate. Data were compared after study termination. Results: The satisfaction rate among the patients was significantly better in the combination group (P=0.003). Only wrist extension was varied between groups and was better in the combination group. The variables generally had a statistically significant difference (P < 0.05). Conclusion: Virtual reality plus conventional rehabilitation therapy is superior versus conventional rehabilitation alone on the wrist and elbow spasticity and motor function in patients with stroke.

Keywords: stroke, virtual therapy, rehabilitation, treatment

Procedia PDF Downloads 229
5045 Effect of Motor Imagery of Truncal Exercises on Trunk Function and Balance in Early Stroke: A Randomized Controlled Trial

Authors: Elsa Reethu, S. Karthik Babu, N. Syed

Abstract:

Background: Studies in the past focused on the additional benefits of action observation in improving upper and lower limb functions and improving activities of daily living when administered along with conventional therapy. Nevertheless, there is a paucity of literature proving the effects of motor imagery of truncal exercise in improving trunk control in patients with stroke. Aims/purpose: To study the effect of motor imagery of truncal exercises on trunk function and balance in early stroke. Methods: A total of 24 patients were included in the study. 12 were included in the experimental group and 12 were included in control group Trunk function was measured using Trunk Control Test (TCT), Trunk Impairment Scale Verheyden (TIS Verheyden) and Trunk Impairment Scale Fujiwara (TIS Fujiwara). The balance was assessed using Brunel Balance Assessment (BBA) and Tinetti POMA. For the experimental group, each session was for 30 minutes of physical exercises and 15 minutes of motor imagery, once a day, six times a week for 3 weeks and prior to the exercise session, patients viewed a video tape of all the trunk exercises to be performed for 15minutes. The control group practiced the trunk exercises alone for the same duration. Measurements were taken before, after and 4 weeks after intervention. Results: The effect of treatment in motor imagery group showed better improvement when compared with control group when measured after 3 weeks on values of static sitting balance, dynamic balance, total TIS (Verheyden) score, BBA, Tinetti balance and gait with a large effect size of 0.86, 1.99, 1.69, 1.06, 1.63 and 0.97 respectively. The moderate effect size was seen in values of TIS Fujiwara (0.58) and small effect size was seen on TCT (0.12) and TIS coordination component (0.13).at the end of 4 weeks after intervention, the large effect size was identified on values of dynamic balance (2.06), total TIS score (1.59) and Tinetti balance (1.24). The moderate effect size was observed on BBA (0.62) and Tinetti gait (0.72). Conclusion: Trunk motor imagery is effective in improving trunk function and balance in patients with stroke and has a carryover effect in the aspects of mobility. The therapy gain that was observed during the time of discharge was seen to be maintained at the follow-up levels.

Keywords: stroke, trunk rehabilitation, trunk function, balance, motor imagery

Procedia PDF Downloads 300
5044 Collagen Deposition in Lung Parenchyma Driven by Depletion of LYVE-1+ Macrophages Protects Emphysema and Loss of Airway Function

Authors: Yinebeb Mezgebu Dagnachew, Hwee Ying Lim, Liao Wupeng, Sheau Yng Lim, Lim Sheng Jie Natalie, Veronique Angeli

Abstract:

Collagen is essential for maintaining lung structure and function, and its remodeling has been associated with respiratory diseases, including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood. Using a mouse model of Lyve-1 expressing macrophage depletion, we found that the absence of this subpopulation of tissue-resident macrophage led to the preferential deposition of type I collagen fibers around the alveoli and bronchi in the steady state. Further analysis by polarized light microscopy revealed that the collagen fibers accumulating in the lungs depleted of Lyve-1+ macrophages were thicker and crosslinked. A decrease in MMP-9 gene expression and proteolytic activity, together with an increase in Col1a1, Timp-3 and Lox gene expression, accompanied the collagen alterations. Next, we investigated the effect of the collagen remodeling on the pathophysiology of COPD and airway function in mouse lacking Lyve-1+ macrophage exposed chronically to cigarette smoke (CS), a well-established animal model of COPD. We showed that the deposition of collagen protected mouse against the destruction of alveoli (emphysema) and bronchi thickening after CS exposure and prevented loss of airway function. Thus, we demonstrate that interstitial Lyve-1+ macrophages regulate the composition, amount, and architecture of the collagen network in the lungs and that such collagen remodeling functionally impacts the development of COPD. This study further supports the potential of targeting collagen as a promising approach to treating respiratory diseases.

Keywords: lung, extracellular matrix, chronic obstructive pulmonary disease, matrix metalloproteinases, collagen

Procedia PDF Downloads 37
5043 A Series Solution of Fuzzy Integro-Differential Equation

Authors: Maryam Mosleh, Mahmood Otadi

Abstract:

The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.

Keywords: Fuzzy number, parametric form of a fuzzy number, fuzzy integrodifferential equation, homotopy analysis method

Procedia PDF Downloads 557
5042 An Intelligent Decision Support System Approach for New Product Development by Using QFD and Its Application in Metal Plating Industry

Authors: Ufuk Cebeci, Onur Doğan

Abstract:

New product becomes critical in competitive environment shortening a product's lifecycle due to the rapidly changing technology and increasing consumer requirements. Quality Function Deployment is one of the first steps of NPD process. The study presents an intelligent QFD application in metal plating industry. For application, an intelligent decision support system was developed. By intelligent system, house of quality was drawn and some calculations were shown. According to the results, some recommendations are given to end user. One of the purposes of this system is to give some advices to firms which do not know technical details of QFD and guide them about first steps of the new product development process.

Keywords: intelligent decision support systems, metal plating, quality function deployment, QFD software, new product development

Procedia PDF Downloads 398
5041 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle

Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan

Abstract:

The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.

Keywords: spring, mass, damper, knee joint

Procedia PDF Downloads 271
5040 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process

Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria

Abstract:

Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.

Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms

Procedia PDF Downloads 107
5039 Functions and Pathophysiology of the Ventricular System: Review of the Underlying Basic Physics

Authors: Mohamed Abdelrahman Abdalla

Abstract:

Apart from their function in producing CSF, the brain ventricles have been recognized as the mere remnant of the embryological neural tube with no clear role. The lack of proper definition of the function of the brain ventricles and the central spinal canal has made it difficult to ascertain the pathophysiology of its different disease conditions or to treat them. This study aims to review the simple physics that could explain the basic function of the CNS ventricular system and to suggest new ways of approaching its pathology. There are probably more physical factors to consider than only the pressure. Monro-Killie hypothesis focuses on volume and subsequently pressure to direct our surgical management in different disease conditions. However, the enlarged volume of the ventricles in normal pressure hydrocephalus does not move any blood or brain outside the skull. Also, in idiopathic intracranial hypertension, the very high intracranial pressure rarely causes brain herniation. On this note, the continuum of the intracranial cavity with the spinal canal makes it a whole unit and hence the defect in the theory. In this study, adding different factors to the equation like brain and CSF density and positions of the brain in space, in addition to the volume and pressure, aims to identify how the ventricles are important in the CNS homeostasis. In addition, increasing the variables that we analyze to treat different CSF pathological conditions should increase our understanding and hence accuracy of treatment of such conditions.

Keywords: communicating hydrocephalus, functions of the ventricles, idiopathic intracranial hypertension physics of CSF

Procedia PDF Downloads 106
5038 Whitnall’s Sling Will Be an Alternative Method for the Surgical Correction of Poor Function Ptosis

Authors: Titap Yazicioglu

Abstract:

To examine the results of two different surgery in patients with severe ptosis and poor levator function. The records of 10 bilateral congenital ptosis patients, who underwent Whitnall’s sling surgery on one eyelid and frontalis sling surgery on the other were analyzed retrospectively. All patients had severe congenital ptosis(>4mm) and poor levator function (LF<4mm). Data regarding eyelid position, cosmetic outcomes, and postoperative complications were evaluated. All patients were assessed for a minimum of one year with regard to the amount of correction, residual ptosis and lagophthalmos. The study consisted of 10 patients, with an average age of 9.2±2.4 years. Preoperative diagnosis for all patients was noted as, the average LF was 3.4±0.51mm, vertical lid height was 3.5±0.52 mm and margin reflex distance-1 (MRD-1) was 0.4±0.51mm. The mean vertical lid height was measured as 7.1±0.73 mm in the frontalis sling group and 7.2±0.63 mm in the Whitnall’s sling group at the postoperative 1st month control. However, in patients with Whitnall’s sling, revision was performed with frontalis sling surgery due to failure in vertical lid height in the late postoperative period, and an average of 7.5±0.52 mm was achieved. Satisfactory results were obtained in all patients. Although postoperative lagophthalmitis developed in the frontalis sling group, none of them developed exposure keratitis. Granuloma was observed as sling infection in 2(20%) of the patients. Although Whitnall’s sling technique provides a natural look appearance without interfering with the functional result, we did not find it as successful as frontalis sling surgery in severe ptosis.

Keywords: congenital ptosis, frontalis suspension, Whitnall ligament, complications

Procedia PDF Downloads 106
5037 Utility of Executive Function Training in Typically Developing Adolescents and Special Populations: A Systematic Review of the Literature

Authors: Emily C. Shepard, Caroline Sweeney, Jessica Grimm, Sophie Jacobs, Lauren Thompson, Lisa L. Weyandt

Abstract:

Adolescence is a critical phase of development in which individuals are prone to more risky behavior while also facing potentially life-changing decisions. The balance of increased behavioral risk and responsibility indicates the importance of executive functioning ability. In recent years, executive function training has emerged as a technique to enhance this cognitive ability. The aim of the present systematic review was to discuss the reported efficacy of executive functioning training techniques among adolescents. After reviewing 3110 articles, a total of 24 articles were identified which examined the role of executive functioning training techniques among adolescents (age 10-19). Articles retrieved demonstrated points of comparison across psychiatric and medical diagnosis, location of training, and stage of adolescence. Typically developing samples, as well as those with attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), conduct disorder, and physical health concerns were found, allowing for the comparison of the efficacy of techniques considering physical and psychological heterogeneity. Among typically developing adolescents, executive functioning training yielded nonsignificant or low effect size improvements in executive functioning, and in some cases executive functioning ability was decreased following the training. In special populations, including those with ADHD, (ASD), conduct disorder, and physical health concerns significant differences and larger effect sizes in executive functioning were seen following treatment, particularly among individuals with ADHD. Future research is needed to identify the long-term efficacy of these treatments, as well as their generalizability to real-world conditions.

Keywords: adolescence, attention-deficit hyperactivity disorder, executive function, executive function training, traumatic brain injury

Procedia PDF Downloads 190
5036 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral

Authors: Suguru Miyauchi, Toshiyuki Hayase

Abstract:

Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.

Keywords: finite element method, level set method, mass transfer, membrane permeability

Procedia PDF Downloads 250
5035 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution

Authors: Al Omari Mohammed Ahmed

Abstract:

This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.

Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring

Procedia PDF Downloads 441
5034 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity

Authors: M. O. Durojaye, J. T. Agee

Abstract:

This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.

Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines

Procedia PDF Downloads 322
5033 A Self-Directed Home Yoga Program for Women with Breast Cancer during Chemotherapy

Authors: Hiroko Komatsu, Kaori Yagasaki

Abstract:

Background: Cancer-related cognitive impairment is a common problem seen in cancer patients undergoing chemotherapy. Physical activity may show beneficial effects on the cognitive function in such patients. Therefore, we have developed a self-directed home yoga program for cancer patients with cognitive symptoms during chemotherapy. This program involves a DVD presenting a combination of yoga courses based on patient preferences to be practiced at home. This study was performed to examine the feasibility of this program. In addition, we also examined changes in cognitive function and quality of life (QOL) in these patients participating in the program. Methods: This prospective feasibility study was conducted in a 500-bed general hospital in Tokyo, Japan. The study population consisted of breast cancer patients undergoing chemotherapy as the initial therapy. This feasibility study used a convenience sample with estimation of recruitment rate in a single facility with the availability of trained nurses and physicians to ensure safe yoga intervention. The aim of the intervention program was to improve cognitive function by means of both physical and mental activation via yoga, consisting of physical practice, breathing exercises, and meditation. Information on the yoga program was provided as a booklet, with an instructor-guided group yoga class during the orientation, and a self-directed home yoga program on DVD with yoga logs. Results: The recruitment rate was 44.7%, and the study population consisted of 18 women with a mean age of 43.9 years. This study showed high rates of retention, adherence, and acceptability of the yoga program. Improvements were only observed in the cognitive aspects of fatigue, and there were serious adverse events during the program. Conclusion: The self-directed home yoga program discussed here was both feasible and safe for breast cancer patients showing cognitive symptoms during chemotherapy. The patients also rated the program as useful, interesting, and satisfactory. Participation in the program was associated with improvements in cognitive fatigue but not cognitive function.

Keywords: yoga, cognition, breast cancer, chemotherapy, quality of life

Procedia PDF Downloads 257
5032 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 78
5031 Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model

Authors: Manasa Kalla, Narasimha Raju Chebrolu, Ashok Chatterjee

Abstract:

We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature.

Keywords: Anderson-Holstein model, Caldeira-Leggett model, spin-polarization, quantum dots

Procedia PDF Downloads 185