Search results for: market prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5541

Search results for: market prediction

4971 Prediction of Deformations of Concrete Structures

Authors: A. Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction

Procedia PDF Downloads 337
4970 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate

Procedia PDF Downloads 188
4969 Effect of Non-Tariff Measures to Indonesian Shrimp Export in International Market: Case of Sanitary and Phytosanitary and Technical Barriers to Trade

Authors: Muhammad Khaliqi, Amzul Rifin, Andriyono Kilat Adhi

Abstract:

The non-tariff policy could make Indonesian shrimp exports decrease in the international market. This research was aimed to analyze factors affecting Indonesia's exports of shrimp and the impact of SPS and TBT policy on Indonesian shrimp. Factors affecting the exports of Indonesian shrimp were estimated using gravity model. The results showed the GDP of exporters and exchange rate, have a negative influence against the export of Indonesia’s shrimp exports. The GDP of the importers and trade cost have a positive influence against the export of shrimp Indonesia while the SPS policy and TBT don’t affect Indonesia's exports of shrimp in the international market.

Keywords: gravity model, international trade, non-tariff measure, sanitary and phytosanitary, shrimp, technical barriers to trade

Procedia PDF Downloads 194
4968 Stock Price Informativeness and Profit Warnings: Empirical Analysis

Authors: Adel Almasarwah

Abstract:

This study investigates the nature of association between profit warnings and stock price informativeness in the context of Jordan as an emerging country. The analysis is based on the response of stock price synchronicity to profit warnings percentages that have been published in Jordanian firms throughout the period spanning 2005–2016 in the Amman Stock Exchange. The standard of profit warnings indicators have related negatively to stock price synchronicity in Jordanian firms, meaning that firms with a high portion of profit warnings integrate with more firm-specific information into stock price. Robust regression was used rather than OLS as a parametric test to overcome the variances inflation factor (VIF) and heteroscedasticity issues recognised as having occurred during running the OLS regression; this enabled us to obtained stronger results that fall in line with our prediction that higher profit warning encourages firm investors to collect and process more firm-specific information than common market information.

Keywords: Profit Warnings, Jordanian Firms, Stock Price Informativeness, Synchronicity

Procedia PDF Downloads 142
4967 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 218
4966 Restriction on the Freedom of Economic Activity in the Polish Energy Law

Authors: Zofia Romanowska

Abstract:

Recently there have been significant changes in the Polish energy market. Due to the government's decision to strengthen energy security as well as to strengthen the implementation of the European Union common energy policy, the Polish energy market has been undergoing significant changes. In the face of these, it is necessary to answer the question about the direction the Polish energy rationing sector is going, how wide apart the powers of the state are and also whether the real regulator of energy projects in Poland is not in fact the European Union itself. In order to determine the role of the state as a regulator of the energy market, the study analyses the basic instruments of regulation, i.e. the licenses, permits and permissions to conduct various activities related to the energy market, such as the production and sale of liquid fuels or concessions for trade in natural gas. Bearing in mind that Polish law is part of the widely interpreted European Union energy policy, the legal solutions in neighbouring countries are also being researched, including those made in Germany, a country which plays a key role in the shaping of EU policies. The correct interpretation of the new legislation modifying the current wording of the Energy Law Act, such as obliging the entities engaged in the production and trade of liquid fuels (including abroad) to meet a number of additional requirements for the licensing and providing information to the state about conducted business, plays a key role in the study. Going beyond the legal framework for energy rationing, the study also includes a legal and economic analysis of public and private goods within the energy sector and delves into the subject of effective remedies. The research caused the relationships between progressive rationing introduced by the legislator and the rearrangement rules prevailing on the Polish energy market to be taken note of, which led to the introduction of greater transparency in the sector. The studies refer to the initial conclusion that currently, despite the proclaimed idea of liberalization of the oil and gas market and the opening of market to a bigger number of entities as a result of the newly implanted changes, the process of issuing and controlling the conduction of the concessions will be tightened, guaranteeing to entities greater security of energy supply. In the long term, the effect of the introduced legislative solutions will be the reduction of the amount of entities on the energy market. The companies that meet the requirements imposed on them by the new regulation to cope with the profitability of the business will in turn increase prices for their services, which will be have an impact on consumers' budgets.

Keywords: license, energy law, energy market, public goods, regulator

Procedia PDF Downloads 246
4965 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 111
4964 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 282
4963 Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique

Authors: Ahmed Najah Ahmed Al-Mahfoodh, Ali Najah Ahmed Al-Mahfoodh, Ahmed Al-Shafie

Abstract:

In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia.

Keywords: genetic programming, prediction, rainfall-runoff, Malaysia

Procedia PDF Downloads 482
4962 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 147
4961 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome

Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder

Abstract:

Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.

Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps

Procedia PDF Downloads 226
4960 An Investigation of the Relationship between Organizational Culture and Innovation Type: A Mixed Method Study Using the OCAI in a Telecommunication Company in Saudi Arabia

Authors: A. Almubrad, R. Clouse, A. Aljlaoud

Abstract:

Organizational culture (OC) is recognized to have an influence on the propensity of organizations to innovate. It is also presumed that it may impede the innovation process from thriving within the organization. Investigating the role organizational culture plays in enabling or inhibiting innovation merits exploration to investigate organizational cultural attributes necessary to reach innovation goals. This study aims to investigate a preliminary matching heuristic of OC attributes to the type of innovation that has the potential to thrive within those attributes. A mixed methods research approach was adopted to achieve the research aims. Accordingly, participants from a national telecom company in Saudi Arabia took the Organizational Culture Assessment Instrument (OCAI). A further sample selected from the respondents’ pool holding the role of managing directors was interviewed in the qualitative phase. Our study findings reveal that the market culture type has a tendency to adopt radical innovations to disrupt the market and to preserve its market position. In contrast, we find that the adhocracy culture type tends to adopt the incremental innovation type and found this tends to be more convenient for employees due to its low levels of uncertainty. Our results are an encouraging indication that matching organizational culture attributes to the type of innovation aids in innovation management. This study carries limitations while drawing its findings from a limited sample of OC attributes that identify with the adhocracy and market culture types. An extended investigation is merited to explore other types of organizational cultures and their optimal innovation types.

Keywords: incremental innovation, radical innovation, organization culture, market culture, adhocracy culture, OACI

Procedia PDF Downloads 105
4959 The Effect of the Enterprises Being Classified as Socially Responsible on Their Stock Returns

Authors: Chih-Hsiang Chang, Chia-Ching Tsai

Abstract:

The aim of this study is to examine the stock price effect of the enterprises being classified as socially responsible. We explore the stock price response to the announcement that an enterprise is selected for the Taiwan Corporate Sustainability Awards. Empirical results indicate that the announcements of the Taiwan Corporate Sustainability Awards provide useful informational content to stock market. We find the evidence of insignificantly positive short-term and significantly positive long-term price reaction to the enterprises being classified as socially responsible. This study concludes that investors in the Taiwan stock market tend to view an enterprise being selected for the Taiwan Corporate Sustainability Awards as one with superior quality and long-term price potential.

Keywords: corporate social responsibility, stock price effect, Taiwan stock market, investments

Procedia PDF Downloads 154
4958 Value Co-Creation Model for Relationships Management

Authors: Kolesnik Nadezda A.

Abstract:

The research aims to elaborate inter-organizational network relationships management model to maximize value co-creation. We propose a network management framework that requires evaluation of network partners with respect to their position and role in network; and elaboration of appropriate relationship development strategy with partners in network. Empirical research and approval is based on the case study method, including structured in-depth interviews with the companies from b2b market.

Keywords: inter-organizational networks, value co-creation, model, B2B market

Procedia PDF Downloads 456
4957 Future of the Supply Chain Management

Authors: Mehmet Şimşek

Abstract:

In the rapidly changing market conditions, it is getting harder to survive without adapting new abilities. Technology and globalization have enabled foreign producers to enter into national markets, even local ones. For this reason there is now big competition among production companies for market share. Furthermore, competition has provided customer with broad range of options to choose from. To be able to survive in this environment, companies need to produce at low price and at high quality. The best way to succeed this is the efficient use of supply chain management that has started to get shaped by the needs of customers and the environment.

Keywords: cycle time, logistics, outsourcing, production, supply chain

Procedia PDF Downloads 483
4956 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim Fares Zaidi

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: ARSDS, HTK, HMM, MFCC, PLP

Procedia PDF Downloads 108
4955 The Internationalization of Capital Market Influencing Debt Sustainability's Impact on the Growth of the Nigerian Economy

Authors: Godwin Chigozie Okpara, Eugine Iheanacho

Abstract:

The paper set out to assess the sustainability of debt in the Nigerian economy. Precisely, it sought to determine the level of debt sustainability and its impact on the growth of the economy; whether internationalization of capital market has positively influenced debt sustainability’s impact on economic growth; and to ascertain the direction of causality between external debt sustainability and the growth of GDP. In the light of these objectives, ratio analysis was employed for the determination of debt sustainability. Our findings revealed that the periods 1986 – 1994 and 1999 – 2004 were periods of severe unsustainable borrowing. The unit root test showed that the variables of the growth model were integrated of order one, I(1) and the cointegration test provided evidence for long run stability. Considering the dawn of internationalization of capital market, the researcher employed the structural break approach using Chow Breakpoint test on the vector error correction model (VECM). The result of VECM showed that debt sustainability, measured by debt to GDP ratio exerts negative and significant impact on the growth of the economy while debt burden measured by debt-export ratio and debt service export ratio are negative though insignificant on the growth of GDP. The Cho test result indicated that internationalization of capital market has no significant effect on the debt overhang impact on the growth of the Economy. The granger causality test indicates a feedback effect from economic growth to debt sustainability growth indicators. On the bases of these findings, the researchers made some necessary recommendations which if followed religiously will go a long way to ameliorating debt burdens and engendering economic growth.

Keywords: debt sustainability, internalization, capital market, cointegration, chow test

Procedia PDF Downloads 437
4954 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143
4953 Small Entrepreneurs as Creators of Chaos: Increasing Returns Requires Scaling

Authors: M. B. Neace, Xin GAo

Abstract:

Small entrepreneurs are ubiquitous. Regardless of location their success depends on several behavioral characteristics and several market conditions. In this concept paper, we extend this paradigm to include elements from the science of chaos. Our observations, research findings, literature search and intuition lead us to the proposition that all entrepreneurs seek increasing returns, as did the many small entrepreneurs we have interviewed over the years. There will be a few whose initial perturbations may create tsunami-like waves of increasing returns over time resulting in very large market consequences–the butterfly impact. When small entrepreneurs perturb the market-place and their initial efforts take root a series of phase-space transitions begin to occur. They sustain the stream of increasing returns by scaling up. Chaos theory contributes to our understanding of this phenomenon. Sustaining and nourishing increasing returns of small entrepreneurs as complex adaptive systems requires scaling. In this paper we focus on the most critical element of the small entrepreneur scaling process–the mindset of the owner-operator.

Keywords: entrepreneur, increasing returns, scaling, chaos

Procedia PDF Downloads 456
4952 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 153
4951 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid

Authors: Benjamin Blat Belmonte, Stephan Rinderknecht

Abstract:

The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.

Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market

Procedia PDF Downloads 74
4950 Prediction of Rotating Machines with Rolling Element Bearings and Its Components Deterioration

Authors: Marimuthu Gurusamy

Abstract:

In vibration analysis (with accelerometers) of rotating machines with rolling element bearing, the customers are interested to know the failure of the machine well in advance to plan the spare inventory and maintenance. But in real world most of the machines fails before the prediction of vibration analyst or Expert analysis software. Presently the prediction of failure is based on ISO 10816 vibration limits only. But this is not enough to monitor the failure of machines well in advance. Because more than 50% of the machines will fail even the vibration readings are within acceptable zone as per ISO 10816.Hence it requires further detail analysis and different techniques to predict the failure well in advance. In vibration Analysis, the velocity spectrum is used to analyse the root cause of the mechanical problems like unbalance, misalignment and looseness etc. The envelope spectrum are used to analyse the bearing frequency components, hence the failure in inner race, outer race and rolling elements are identified. But so far there is no correlation made between these two concepts. The author used both velocity spectrum and Envelope spectrum to analyse the machine behaviour and bearing condition to correlated the changes in dynamic load (by unbalance, misalignment and looseness etc.) and effect of impact on the bearing. Hence we could able to predict the expected life of the machine and bearings in the rotating equipment (with rolling element bearings). Also we used process parameters like temperature, flow and pressure to correlate with flow induced vibration and load variations, when abnormal vibration occurs due to changes in process parameters. Hence by correlation of velocity spectrum, envelope spectrum and process data with 20 years of experience in vibration analysis, the author could able to predict the rotating Equipment and its component’s deterioration and expected duration for maintenance.

Keywords: vibration analysis, velocity spectrum, envelope spectrum, prediction of deterioration

Procedia PDF Downloads 451
4949 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 101
4948 Prediction of Coronary Heart Disease Using Fuzzy Logic

Authors: Elda Maraj, Shkelqim Kuka

Abstract:

Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.

Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model

Procedia PDF Downloads 161
4947 Prediction of Scour Profile Caused by Submerged Three-Dimensional Wall Jets

Authors: Abdullah Al Faruque, Ram Balachandar

Abstract:

Series of laboratory tests were carried out to study the extent of scour caused by a three-dimensional wall jets exiting from a square cross-section nozzle and into a non-cohesive sand beds. Previous observations have indicated that the effect of the tailwater depth was significant for densimetric Froude number greater than ten. However, the present results indicate that the cut off value could be lower depending on the value of grain size-to-nozzle width ratio. Numbers of equations are drawn out for a better scaling of numerous scour parameters. Also suggested the empirical prediction of scour to predict the scour centre line profile and plan view of scour profile at any particular time.

Keywords: densimetric froude number, jets, nozzle, sand, scour, tailwater, time

Procedia PDF Downloads 435
4946 Impact of Digitization and Diversification in Reducing Volatility in Art Markets

Authors: Nishi Malhotra

Abstract:

Art has developed as a mode of investment and saving. Art and culture of any nation is the source of foreign direct investment (FDI) generation and growth development. Several intermediaries and skill-building organizations thrive on at and culture for their earnings. Indian art market has grown to Rs. 2000 Crores. Art establishment houses access to privileged information is the main reason for arbitrariness and volatility in the market. The commercialization of art and development of the markets with refinement in the taste of the customers have led to the development of art as an investment avenue. Investors keen on investing in these products can do so, and earnings from art are taxable too, like any other capital asset. This research paper is aimed at exploring the role of art and culture as an investment avenue in India and reasons for increasing volatilities in the art market. Based on an extensive literature review and secondary research, a benchmarking study has been conducted to capture the growth of the art as an investment avenue. These studies indicate that during the financial crisis of 2008-10, the art emerged as an alternative investment avenue. The paper aims at discussing the financial engineering of various art funds and instruments. Based on secondary data available from Sotheby’s, Christies, Bonham, there is a positive correlation between strategic diversification and increasing return in the Art market. Similarly, digitization has led to disintermediation in the art markets and also helped to increase the market base. The data clearly enumerates the growing interest of the Indian investor towards art as an investment option. Much like any other broad asset class, art market too thrives on excess returns provided by diversification. Many financial intermediaries and art funds have emerged, to offer valuable investment planning advisory to a genuine investor. This paper clearly highlights the increasing returns of strategic diversification and its impact on reducing volatility in the art markets. Moreover, with coming up of e-auctions and websites, investors are able to analyse art more objectively. Digitization and commercialization of art have definitely helped in reducing volatility in world art markets.

Keywords: art, investment avenue, diversification, digitization

Procedia PDF Downloads 130
4945 The Effect of Market Orientation on Business Performance of Auto Parts Industry

Authors: Vithaya Intraphimol

Abstract:

The purpose of this study is to investigate the relationship between market orientation and business performance through innovations that include product innovation and process innovation. Auto parts and accessories companies in Thailand were used as sample for this investigation. Survey research with structured questionnaire was used as the key instrument in collecting the data. The structural equation modeling (SEM) was assigned test the hypotheses. The sample size in this study requires the minimum sample size of 200. The result found that competitor orientation, and interfunctional coordination has an effect on product innovation. Moreover, interfunctional coordination has an effect on process innovation, and return on asset. This indicates that within- firm coordination has crucial to firms’ performances. The implication for practice, firms should support interfunctional coordination that members of different functional areas of an organization communicate and work together for the creation of value to target buyers they may have better profitability.

Keywords: auto parts industry, business performance, innovations, market orientation

Procedia PDF Downloads 311
4944 Market Access for Foreign Investment in Host States: Municipal Law and International Law

Authors: Qiang Ren

Abstract:

A growing number of states are improving domestic law to better protect and promote foreign investment by changing/upgrading the existing law. However, inconsistency occurs because the new law is different from the ‘old’ law. For example, China has issued an unprecedented Foreign Investment Law and several regulations allowing comprehensive market access for foreign investment in most energy sectors since 2020. However, some laws, rules, regulations, etc. enacted previously remain valid, and the provisions regulating foreign investment do not grant full market access to foreign investment as such. The inconsistency above makes it necessary to investigatehow the international investment treaty law and dispute settlement practice respond to the ‘inconsistency and conflict’ in municipal law andwhat remedy foreign investors can seek under international law if the investment is denied due to inconsistency. Ultimately, it aims to examine how international tribunals should balance the gradually developing legal system of host states and the protection of foreign investors and investments if the host states cannot provide consistency during such a transition period of law development. The research seeks to answer these questions by making a comparative analysis of domestic law on market access to foreign investment, international investment treaties, and dispute arbitral practice. The objective is to examine how international investment treaty law and international investment dispute settlement practice evaluate the conflicts in the municipal law of host states in the admission of foreign investment. It also explores the possibility of harmonisation among them.

Keywords: municipal law, protect and promote foreign investment, international law, host states

Procedia PDF Downloads 94
4943 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 852
4942 Examining Motivational Strategies of Foreign Manufacturing Firms in Ghana

Authors: Samuel Ato Dadzie

Abstract:

The objective of this study is to examine the influence of eclectic paradigm on motivational strategy of foreign subsidiaries in Ghana. This study uses binary regression model, and the analysis was based on 75 manufacturing investments made by MNEs from different countries in 1994–2008. The results indicated that perceived market size increases the probability of foreign firms undertaking a market seeking (MS) in Ghana, while perceived cultural distance between Ghana and foreign firm’s home countries decreased the probability of foreign firms undertaking an market seeking (MS) foreign direct investment (FDI) in Ghana. Furthermore, extensive international experience decreases the probability of foreign firms undertaking a market seeking (MS) foreign direct investment (FDI) in Ghana. Most of the studies done by earlier researchers were based on the advanced and emerging countries and offered support for the theory, which was used in generalizing the result that multinational corporations (MNCs) normally used the theory regarding investment strategy outside their home country. In using the same theory in the context of Ghana, the result does not offer strong support for the theory. This means that MNCs that come to Sub-Sahara Africa cannot rely much on eclectic paradigm for their motivational strategies because prevailing economic conditions in Ghana are different from that of the advanced and emerging economies where the institutional structures work.

Keywords: foreign subsidiary, motives, Ghana, foreign direct investment

Procedia PDF Downloads 433