Search results for: isolated word recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3975

Search results for: isolated word recognition

3405 Identification and Characterisation of Oil Sludge Degrading Bacteria Isolated from Compost

Authors: O. Ubani, H. I. Atagana, M. S. Thantsha, R. Adeleke

Abstract:

The oil sludge components (polycyclic aromatic hydrocarbons, PAHs) have been found to be cytotoxic, mutagenic and potentially carcinogenic and microorganisms such as bacteria and fungi can degrade the oil sludge to less toxic compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading potentials from the co-composting of oil sludge and different animal manure. These bacteria were isolated on the mineral base medium and mineral salt agar plates as a growth control. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rDNA gene with specific primers (16S-P1 PCR and 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the gene bank database. The phylogenetical analyses of the isolates showed that they belong to 3 different clades namely Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus species. The results showed that Bacillus species were more dominant in all treated compost piles. Based on their characteristics these bacterial isolates have high potential to utilise PAHs of different molecular weights as carbon and energy sources. These identified bacteria are of special significance in their capacity to emulsify the PAHs and their ability to utilize them. Thus, they could be potentially useful for bioremediation of oil sludge and composting processes.

Keywords: bioaugmentation, biodegradation, bioremediation, composting, oil sludge, PAHs, animal manures

Procedia PDF Downloads 253
3404 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 66
3403 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 106
3402 Isolation, Screening and Identification of Frog Cutaneous Bacteria for Anti-Batrachochytrium dendrobatidis Activity

Authors: Adria Rae Abigail R. Eda, Arvin C. Diesmos, Vance T. Vredenburg, Merab A. Chan

Abstract:

Mitigating strategies using symbiotic cutaneous bacteria is one of the major concerns in the conservation of amphibian population. Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis associated with mass mortality and amphibian extinctions worldwide. In the Philippines, there is a lack of study on the cutaneous bacteria of Philippine amphibians that may have beneficial effects to ward off the deadly fungal infection. In this study, cutaneous bacteria from frogs were isolated and examined for anti-B. dendrobatidis activity. Eight species of frogs were collected at Mt. Palay-palay Mataas na Gulod National Park in Cavite, a site positive for the presence of B. dendrobatidis. Bacteria were isolated from the skin of frogs by swabbing the surfaces of the body and inoculated in Reasoner´s 2A (R2A) agar. Isolated bacteria were tested for potential inhibitory properties against B. dendrobatidis through zoospore inhibition assay. Results showed that frog cutaneous bacteria significantly inhibited the growth of B. dendrobatidis in vitro. By means of 16S rRNA gene primers, the anti-B. dendrobatidis bacteria were identified to be Enterobacter sp., Alcaligenes faecalis and Pseudomonas sp. Cutaneous bacteria namely Enterobacter sp. (isolates PLd33 and PCv4) and Pseudomonas (isolate PLd31) remarkably cleared the growth of B. dendrobatidis zoospore in 1% tryptone agar. Therefore, frog cutaneous bacteria inhibited B. dendrobatidis in vitro and could possibly contribute to the immunity and defense of frogs against the lethal chytridiomycosis.

Keywords: Batrachochytrium dendrobatidis, cutaneous bacteria, frogs, zoospore inhibition assay

Procedia PDF Downloads 454
3401 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 356
3400 Identification and Antibiotic Resistance Rates of Proteus Mirabilis Strains from Various Clinical Specimens in a University Hospital, 2013-2015

Authors: Recep Keşli, Gülşah Aşık, Cengiz Demir, Onur Türkyılmaz

Abstract:

Objective: Proteus mirabilis (P. mirabilis) is one of Gram-negative pathogens in human and it causes urinary tract and nosocomial infections. P. mirabilis is susceptible to β-lactams, aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. It was aimed to investigate the resistance status to antimicrobial agents of Proteus mirabilis strains produced from samples sent to Afyon Kocatepe University, ANS Research and Practice Hospital, Microbiology Laboratory from different clinics and polyclinics during the period of 24 months. Methods: Between October 2013 and September 2015, a total of 30 Proteus were isolated from clinical samples of patients were hospitalized in intensive care units and in various departments of Afyon Kocatepe University, ANS Research and Practice Hospital. Identification of the bacteria was determined by conventional methods and VITEK 2 system (bioMérieux, France) was used additionally. Antibacterial susceptibility tests were performed by Kirby Bauer disc (Oxoid, Hempshire, England) diffusion method following the recommendations of CLSI. Results: Of the total 30 Proteus strains isolated from clinical samples, 19 from urine, 7 from wound, 4 from tracheal aspiration materials were isolated. Antimicrobial resistant for these strains were determined to 24,3% for meropenem, 26.2% for imipenem, 20.2% for amikacin 10.5% for cefepim, 33.3% for ciprofloxacin and levofloxacine, 31.6% for ceftazidime, 20% for ceftriaxone, 15.2% for gentamicin and 26.6% for amoxicillin-clavulanate, 26.2% trimethoprim-sulfamethoxale. Conclusion: In the present study, the highest number of clinical isolates of P. mirabilis were isolated from urine (63,3%), followed by the others (36,6%). The distribution of samples P. mirabilis strains to the clinics were as fallows; 16,8% intensive care unit (ICU), 29,9% polyclinics, 53,3% hospital service units The most effective antibiotic on the total of strains were found to be cefepim, the least effective antibiotics on the total of strains were found to be trimethoprim-sulfamethoxale.

Keywords: proteus mirabilis, antibiotic resistance, intensive care unit, Proteus spp.

Procedia PDF Downloads 280
3399 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection

Authors: P. Bhavya, P. R. Jayasree

Abstract:

This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.

Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink

Procedia PDF Downloads 341
3398 Potential Biosorption of Rhodococcus erythropolis, an Isolated Strain from Sossego Copper Mine, Brazil

Authors: Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Ingrid Avanzi, Elen A. Perpetuo

Abstract:

In this work, bacterial strains were isolated from environmental samples from a copper mine and three of them presented potential for bioremediation of copper. All the strains were identified by mass spectrometry (MALDI-TOF-Biotyper) and grown in three diferent media supplemented with 100 ppm of copper chloride in flasks of 500mL and it was incubated at 28 °C and 180 rpm. Periodically, samples were taken and monitored for cellular growth and copper biosorption by spectrophotometer UV-Vis (600 nm) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), respectively. At the end of exponential phase of cellular growth, the biomass was utilized to construct a correlation curve between absorbance and dry mass of the cells. Among the three isolates with potential for biorremediation, 1 strain exhibit capacity the most for bioremediation of effluents contaminated by copper being identified as Rhodococcus erythropolis.

Keywords: bioprocess, bioremediation, biosorption, copper

Procedia PDF Downloads 388
3397 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 142
3396 Objectives of the Standardization of Technical Terminology Nowadays in Albanian

Authors: Gani Pllana

Abstract:

In the conditions of the rapid development of technics and technology in recent years, the cooperation of the scientific-technical language with the standard Albanian language is continuing with a higher intensity than before. We notice a vigor of enrichment in the vocabulary of technical terminology, due to the birth and formation of new fields and subfields of technics, technology, as computing, mechatronics, telemetry, a multitude of concepts many of which, on the one hand, are marked with names of the languages they come from, mainly from English, but on the other hand, they meet their needs with the lexical mother tongue composition (by common words being raised to terms) and with the activation of other layers, such as compound word terms. Thus, for example, in the field of computing, we notice in it the inclusion of the ordinary vocabulary for reproductive reasons, like mi, dritare, flamur, adresë, skedar (Engl: mouse, window, flag, address, file), and along with them, the compound word terms, serving to differentiate relevant concepts, like, adresë e hiperlidhjes, adresë e uebit, adresë relative, adresë virtuale (Engl. address hyperlink, web address, relative address, virtual address) etc.

Keywords: common words, Albanian language, technical terminology, standardization

Procedia PDF Downloads 289
3395 An Assessment of Impact of Financial Statement Fraud on Profit Performance of Manufacturing Firms in Nigeria: A Study of Food and Beverage Firms in Nigeria

Authors: Wale Agbaje

Abstract:

The aim of this research study is to assess the impact of financial statement fraud on profitability of some selected Nigerian manufacturing firms covering (2002-2016). The specific objectives focused on to ascertain the effect of incorrect asset valuation on return on assets (ROA) and to ascertain the relationship between improper expense recognition and return on assets (ROA). To achieve these objectives, descriptive research design was used for the study while secondary data were collected from the financial reports of the selected firms and website of security and exchange commission. The analysis of covariance (ANCOVA) was used and STATA II econometric method was used in the analysis of the data. Altman model and operating expenses ratio was adopted in the analysis of the financial reports to create a dummy variable for the selected firms from 2002-2016 and validation of the parameters were ascertained using various statistical techniques such as t-test, co-efficient of determination (R2), F-statistics and Wald chi-square. Two hypotheses were formulated and tested using the t-statistics at 5% level of significance. The findings of the analysis revealed that there is a significant relationship between financial statement fraud and profitability in Nigerian manufacturing industry. It was revealed that incorrect assets valuation has a significant positive relationship and so also is the improper expense recognition on return on assets (ROA) which serves as a proxy for profitability. The implication of this is that distortion of asset valuation and expense recognition leads to decreasing profit in the long run in the manufacturing industry. The study therefore recommended that pragmatic policy options need to be taken in the manufacturing industry to effectively manage incorrect asset valuation and improper expense recognition in order to enhance manufacturing industry performance in the country and also stemming of financial statement fraud should be adequately inculcated into the internal control system of manufacturing firms for the effective running of the manufacturing industry in Nigeria.

Keywords: Althman's Model, improper expense recognition, incorrect asset valuation, return on assets

Procedia PDF Downloads 161
3394 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 506
3393 Role of Interleukin 6 on Cell Differentiations in Stem Cells Isolated from Human Exfoliated Deciduous Teeth

Authors: Nunthawan Nowwarote, Waleerat Sukarawan, Prasit Pavasant, Thanaphum Osathanon

Abstract:

Interleukin 6 (IL-6) is a multifunctional cytokine, regulating various biological responses in several tissues. A Recent study shows that IL-6 plays a role in stemness maintenance in stem cells isolated from human exfoliated deciduous teeth (SHEDs). However, the role of IL-6 on cell differentiation in SHEDs remains unknown. The present study investigated the effect of IL-6 on SHEDs differentiation. Cells were isolated from dental pulp tissues of human deciduous teeth. Flow cytometry was used to determined mesenchymal stem cell marker expression, and the multipotential differentiation (osteogenic, adipogenic and neurogenic lineage ) was also determined. The mRNA was determined using real-time quantitative polymerase chain reaction, and the phenotypes were confirmed by chemical and immunofluorescence staining. Results demonstrated that SHEDs expressed CD44, CD73, CD90, CD105 but not CD45. Further, the up-regulation of osteogenic, adipogenic and neurogenic marker genes was observed upon maintaining cells in osteogenic, adipogenic and neurogenic induction medium, respectively. The addition of IL-6 induced osteogenic by up-regulated osteogenic marker gene also increased in vitro mineralization. Under neurogenic medium supplement with IL-6, up-regulated neurogenic marker. Whereas, an addition of IL-6 attenuated adipogenic differentiation by SHEDs. In conclusion, this evidence implies that IL-6 may participate in cells differentiation ability of SHEDs.

Keywords: SHEDs, IL-6, cell differentiations, dental pulp

Procedia PDF Downloads 180
3392 Developmental Trends on Initial Letter Fluency in Typically Developing Children

Authors: Sunila John, B. Rajashekhar

Abstract:

Initial letter fluency tasks are one of the simple behavioral measures to evaluate the complex nature of word retrieval ability. This task requires the participant to retrieve as many words as possible beginning with a particular letter in a fixed time frame. Though the task of verbal fluency is popular among adult clinical conditions, its role in children has been less emphasized. There exists a lack of in-depth understanding of processes underlying verbal fluency performance in typically developing children. The present study, therefore, aims to delineate the developmental trend on initial letter fluency task observed in typically developing Malayalam speaking children. The participants were aged between 5 to 10 years and categorized into three groups: Group I (class I and II, mean (SD) age years: 6.44(.78)), Group II (class III and IV, mean (SD) age years: 8.59 (.83)) and group III (class V and VI, mean (SD) age years: 10.28 (.80). On two tasks of initial letter fluency, the verbal fluency outcome measures were analyzed. The study findings revealed a distinct pattern of initial letter fluency development which may enhance its usefulness in clinical and research settings.

Keywords: children, development, initial letter fluency, word retrieval

Procedia PDF Downloads 461
3391 Chemical Analysis and Sensory Evaluation of 'Domiati Cheese' Using Strains Isolated from Algerian Goat's Milk

Authors: A. Cheriguene, F. Chougrani

Abstract:

A total of 120 wild lactic acid bacteria were isolated from goat’s milk collected from different areas in Western Algeria. The strains were screened for production and technological properties such as acid production, aminopeptidase activity, autolytic properties, antimicrobial activity, and exopolysaccharide production. In general most tested isolates showed a good biomass separation when collected by centrifugation; as for the production of the lactic acid, results revealed that our strains are weakly acidifying; nevertheless, lactococci showed a best acidifying activity compared to lactobacilli. Aminopeptidase activity was also weak in most strains; but, it was generally higher for lactobacilli compared to lactococci. Autolytic activity was generally higher for most strains, more particularly lactobacilli. Antimicrobial activity was detected in 50% of the isolates, particularly in lactobacilli where 80% of strains tested were able to inhibit the growth of other strains. The survey of the profile of the texture, the proteolysis as well as the development of the flavor in the Domiati cheese made on the basis of our isolated strains have been led during the ripening. The sensory assessment shows that the cheese salted in milk received the best scores in relation to cheese salted after drainage. Textural characteristics, such as hardness, cohesiveness, gumminess, and chewiness decreased in the two treatments during the 60 days of ripening. Otherwise, it has been noted that adhesiveness and adhesive force increased in the cheese salted in milk.

Keywords: lactic acid bacteria, technological properties, acidification, exopolysaccharide, bacteriocin, textural properties

Procedia PDF Downloads 160
3390 Parallel among Urinary Tract Infection in Diabetic and Non-Diabetic Patients: A Case Study

Authors: Khaled Khleifat

Abstract:

This study detects the bacterial species that responsible for UTI in both diabetic patients and non-diabetic patients, Jordan. 116 urine samples were investigated in order to determine UTI-causing bacteria. These samples distributed unequally between diabetic male (12) and diabetic female (25) and also non-diabetic male (13) and non-diabetic female (66). The results represent that E.coli is responsible for UTI in both diabetic and non-diabetic patients (15.5% and 29.3% respectively) with large proportion (44.8%). This study showed that not all bacterial species that isolated from the non-diabetic sample could be isolated from diabetic samples. E. coli (15.5%), P. aeruginosa (4.3%), K. pneumonia (1.7%), P. mirabilis (2.6%), S. marcescens (0.9%), S. aureus (1.7%), S. pyogenes (1.7%), E. faecalis (0.9%), S. epidermidis (1.7%) and S. saprophyticus (0.9%). But E. aerogenes, E. cloacae, C. freundii, A. baumannii and B. subtilis are five bacterial species that can’t isolate from all diabetic samples. This study shows that for the treatment of UTI in both diabetic and non-diabetic patients, Chloramphenicol (30 μg), Ciprofloxacin (5 μg) and Vancomycin (30 μg) are more favorable than other antibiotics. In the same time, Cephalothin (30μg) is not recommended.

Keywords: urinary tract infections, diabetes mellitus, bacterial species, infections

Procedia PDF Downloads 327
3389 Learning with Music: The Effects of Musical Tension on Long-Term Declarative Memory Formation

Authors: Nawras Kurzom, Avi Mendelsohn

Abstract:

The effects of background music on learning and memory are inconsistent, partly due to the intrinsic complexity and variety of music and partly to individual differences in music perception and preference. A prominent musical feature that is known to elicit strong emotional responses is musical tension. Musical tension can be brought about by building anticipation of rhythm, harmony, melody, and dynamics. Delaying the resolution of dominant-to-tonic chord progressions, as well as using dissonant harmonics, can elicit feelings of tension, which can, in turn, affect memory formation of concomitant information. The aim of the presented studies was to explore how forming declarative memory is influenced by musical tension, brought about within continuous music as well as in the form of isolated chords with varying degrees of dissonance/consonance. The effects of musical tension on long-term memory of declarative information were studied in two ways: 1) by evoking tension within continuous music pieces by delaying the release of harmonic progressions from dominant to tonic chords, and 2) by using isolated single complex chords with various degrees of dissonance/roughness. Musical tension was validated through subjective reports of tension, as well as physiological measurements of skin conductance response (SCR) and pupil dilation responses to the chords. In addition, music information retrieval (MIR) was used to quantify musical properties associated with tension and its release. Each experiment included an encoding phase, wherein individuals studied stimuli (words or images) with different musical conditions. Memory for the studied stimuli was tested 24 hours later via recognition tasks. In three separate experiments, we found positive relationships between tension perception and physiological measurements of SCR and pupil dilation. As for memory performance, we found that background music, in general, led to superior memory performance as compared to silence. We detected a trade-off effect between tension perception and memory, such that individuals who perceived musical tension as such displayed reduced memory performance for images encoded during musical tension, whereas tense music benefited memory for those who were less sensitive to the perception of musical tension. Musical tension exerts complex interactions with perception, emotional responses, and cognitive performance on individuals with and without musical training. Delineating the conditions and mechanisms that underlie the interactions between musical tension and memory can benefit our understanding of musical perception at large and the diverse effects that music has on ongoing processing of declarative information.

Keywords: musical tension, declarative memory, learning and memory, musical perception

Procedia PDF Downloads 98
3388 Evaluation of DNA Microarray System in the Identification of Microorganisms Isolated from Blood

Authors: Merih Şimşek, Recep Keşli, Özgül Çetinkaya, Cengiz Demir, Adem Aslan

Abstract:

Bacteremia is a clinical entity with high morbidity and mortality rates when immediate diagnose, or treatment cannot be achieved. Microorganisms which can cause sepsis or bacteremia are easily isolated from blood cultures. Fifty-five positive blood cultures were included in this study. Microorganisms in 55 blood cultures were isolated by conventional microbiological methods; afterwards, microorganisms were defined in terms of the phenotypic aspects by the Vitek-2 system. The same microorganisms in all blood culture samples were defined in terms of genotypic aspects again by Multiplex-PCR DNA Low-Density Microarray System. At the end of the identification process, the DNA microarray system’s success in identification was evaluated based on the Vitek-2 system. The Vitek-2 system and DNA Microarray system were able to identify the same microorganisms in 53 samples; on the other hand, different microorganisms were identified in the 2 blood cultures by DNA Microarray system. The microorganisms identified by Vitek-2 system were found to be identical to 96.4 % of microorganisms identified by DNA Microarrays system. In addition to bacteria identified by Vitek-2, the presence of a second bacterium has been detected in 5 blood cultures by the DNA Microarray system. It was identified 18 of 55 positive blood culture as E.coli strains with both Vitek 2 and DNA microarray systems. The same identification numbers were found 6 and 8 for Acinetobacter baumanii, 10 and 10 for K.pneumoniae, 5 and 5 for S.aureus, 7 and 11 for Enterococcus spp, 5 and 5 for P.aeruginosa, 2 and 2 for C.albicans respectively. According to these results, DNA Microarray system requires both a technical device and experienced staff support; besides, it requires more expensive kits than Vitek-2. However, this method should be used in conjunction with conventional microbiological methods. Thus, large microbiology laboratories will produce faster, more sensitive and more successful results in the identification of cultured microorganisms.

Keywords: microarray, Vitek-2, blood culture, bacteremia

Procedia PDF Downloads 350
3387 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
3386 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 160
3385 A Comparative Study of Essential Oils Used in Papyrus Sterilization: A Case Study from the Early Islamic Period

Authors: Bahaa Fawwaz‬‏

Abstract:

The study was conducted on a papyrus housed at the Museum of Islamic Art in Cairo, Egypt. This papyrus was inscribed with black ink. Twelve fungal species were isolated and identified. Five types of fungi were ultimately identified to complete the study. The isolated fungi were then incubated for three months after the aging procedure. This study investigates the in-vitro growth inhibition of Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Trichoderma longibrachiatum Rifai, and Paecilomyces variotii on papyrus. The hyphal growth was observed using the environmental scanning electron microscope (ESEM). Natural oils, such as lavender oil, lemongrass oil, and rosemary oil, were used. The impact of these natural oils on the newly aged papyrus was assessed using scanning electron microscopy and color analysis to identify the most effective oils for inhibiting fungus growth.

Keywords: conservation, papyrus, fungi, growth, environmental, essential oils

Procedia PDF Downloads 47
3384 Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings

Authors: H. Gonzalez-Rivera, J. L. Palmeros-Torres

Abstract:

This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes.

Keywords: dendrite arm spacing, microstructure inspection, pattern recognition, polynomial regression

Procedia PDF Downloads 45
3383 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 230
3382 To Study the New Invocation of Biometric Authentication Technique

Authors: Aparna Gulhane

Abstract:

Biometrics is the science and technology of measuring and analyzing biological data form the basis of research in biological measuring techniques for the purpose of people identification and recognition. In information technology, biometrics refers to technologies that measure and analyze human body characteristics, such as DNA, fingerprints, eye retinas and irises, voice patterns, facial patterns and hand measurements. Biometric systems are used to authenticate the person's identity. The idea is to use the special characteristics of a person to identify him. These papers present a biometric authentication techniques and actual deployment of potential by overall invocation of biometrics recognition, with an independent testing of various biometric authentication products and technology.

Keywords: types of biometrics, importance of biometric, review for biometrics and getting a new implementation, biometric authentication technique

Procedia PDF Downloads 321
3381 Social Media Marketing Efforts to Influence Brand Equity and Consumer Behavior: The Case of Luxury Fashion Brands in Pakistan

Authors: Syed Rashid Hussain Shah, Sumera Syed, Nida Mushtaq

Abstract:

Social media is not only acting as a medium of communication; rather it has provided a platform where customers can actually live with the brands they so dearly envy and interact with others with same interest. Organizations are making social media marketing efforts (SMME) to convert this opportunity into a meaningful experience. It may be resembled or considered as an act of branding where the notion is not only to understand the consumer behavior but also developing a strong link with them. Ultimately the quest is to influence and bend it into a mutual benefit of the stakeholders. This study investigates SMME of brands with the help of five dimensions (i.e., entertainment, interaction, trendiness, customization and word of mouth). The study has found that there is no significant impact of SMME as a construct on brand equity and consumer behavior. However, few of the dimensions (i.e. customization and word of mouth), have been found to have influence on brand equity (brand association, brand image) and consumer response (brand preferences).

Keywords: social media marketing efforts (SMME), brand equity, preference, loyalty price premium, luxury brands, international

Procedia PDF Downloads 355
3380 From the “Movement Language” to Communication Language

Authors: Mahmudjon Kuchkarov, Marufjon Kuchkarov

Abstract:

The origin of ‘Human Language’ is still a secret and the most interesting subject of historical linguistics. The core element is the nature of labeling or coding the things or processes with symbols and sounds. In this paper, we investigate human’s involuntary Paired Sounds and Shape Production (PSSP) and its contribution to the development of early human communication. Aimed at twenty-six volunteers who provided many physical movements with various difficulties, the research team investigated the natural, repeatable, and paired sounds and shape productions during human activities. The paper claims the involvement of Paired Sounds and Shape Production (PSSP) in the phonetic origin of some modern words and the existence of similarities between elements of PSSP with characters of the classic Latin alphabet. The results may be used not only as a supporting idea for existing theories but to create a closer look at some fundamental nature of the origin of the languages as well.

Keywords: body shape, body language, coding, Latin alphabet, merging method, movement language, movement sound, natural sound, origin of language, pairing, phonetics, sound and shape production, word origin, word semantic

Procedia PDF Downloads 249
3379 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech

Authors: Monica Gonzalez Machorro

Abstract:

Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.

Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment

Procedia PDF Downloads 127
3378 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 353
3377 Secondary Metabolites from Turkish Marine-Derived Fungi Hypocrea nigricans

Authors: H. Heydari, B. Konuklugil, P. Proksch

Abstract:

Marine-derived fungi can produce interesting bioactive secondary metabolites that can be considered the potential for drug development. Turkey is a country of a peninsula surrounded by the Black Sea at the north, the Aegean Sea at the west, and the Mediterranean Sea at the south. Despite the approximately 8400 km of coastline, studies on marine secondary metabolites and their biological activity are limited. In our ongoing search for new natural products with different bioactivities produced by the marine-derived fungi, we have investigated secondary metabolites of Turkish collection of the marine sea slug (Peltodoris atromaculata) associated fungi Hypocrea nigricans collected from Seferihisar in the Egean sea. According to the author’s best knowledge, no study was found on this fungal species in terms of secondary metabolites. Isolated from ethyl acetate extract of the culture of Hypocrea nigricans were (isodihydroauroglaucin,tetrahydroauroglaucin and dihydroauroglaucin. The structures of the compounds were established based on an NMR and MS analysis. Structural elucidation of another isolated secondary metabolite/s continues.

Keywords: Hypocrea nigricans, isolation, marine fungi, secondary metabolites

Procedia PDF Downloads 162
3376 Three Visions of a Conflict: The Case of La Araucania, Chile

Authors: Maria Barriga

Abstract:

The article focuses on the analysis of three images of the last five years that represent different visions of social groups in the context of the so call “Conflicto Mapuche” in la Araucanía, Chile. Using a multimodal social semiotic approach, we analyze the meaning making of these images and the social groups strategies to achieve visibility and recognition in political contexts. We explore the making and appropriation of symbols and concepts and analyze the different strategies that groups use to built hegemonic views. Among these strategies, we compare the use of digital technologies in design these images and the influence of Chilean Estate's vision on the Mapuche political conflict. Finally, we propose visual strategies to improve basic conditions for dialogue and recognition among these groups.

Keywords: visual culture, power, conflict, indigenous people

Procedia PDF Downloads 285