Search results for: indoor ventilation
193 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates
Authors: Qiong He, S. Thomas Ng
Abstract:
Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model
Procedia PDF Downloads 364192 Fixed Point Iteration of a Damped and Unforced Duffing's Equation
Authors: Paschal A. Ochang, Emmanuel C. Oji
Abstract:
The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis
Procedia PDF Downloads 292191 A Study on Marble-Slag Based Geopolymer Green Concrete
Authors: Zong-Xian Qiu, Ta-Wui Cheng, Wei-Hao Lee, Yung-Chin Ding
Abstract:
The greenhouse effect is an important issue since it has been responsible for global warming. Carbon dioxide plays an important part of role in the greenhouse effect. Therefore, human has the responsibility for reducing CO₂ emissions in their daily operations. Except iron making and power plants, another major CO₂ production industry is cement industry. According to the statistics by EPA of Taiwan, production 1 ton of Portland cement will produce 520.29 kg of CO₂. There are over 7.8 million tons of CO₂ produced annually. Thus, trying to development low CO₂ emission green concrete is an important issue, and it can reduce CO₂ emission problems in Taiwan. The purpose of this study is trying to use marble wastes and slag as the raw materials to fabricate geopolymer green concrete. The result shows the marble based geopolymer green concrete have good workability and the compressive strength after curing for 28 days and 365 days can be reached 44MPa and 53MPa in indoor environment, 28MPa and 40.43MPa in outdoor environment. The acid resistance test shows the geopolymer green concrete have good resistance for chemical attack. The coefficient of permeability of geopolymer green concrete is better than Portland concrete. By comparing with Portland cement products, the marble based geopolymer not only reduce CO₂ emission problems but also provides great performance in practices. According to the experiment results shown that geopolymer concrete has great potential for further engineering development in the future, the new material could be expected to replace the Portland cement products in the future days.Keywords: marble, slag, geopolymer, green concrete, CO₂ emission
Procedia PDF Downloads 138190 An Assessment of Housing Affordability and Safety Measures in the Varied Residential Area of Lagos, A Case Study of the Amuwo-Odofin Local Government Area in Lagos State
Authors: Jubril Olatunbosun Akinde
Abstract:
Unplanned population growth are mostly attributed to a lack of infrastructural facilities and poor economic condition in the rural dwellings and the incidence of rural-urban migration, which has resulted in severe housing deficiency in the urban centre, with a resultant pressure on housing delivery in the cities. Affordable housing does not only encompass environmental factors that make living acceptable and comfortable, which include good access routes, ventilation, sanitation and access to other basic human needs, which include water and safety. The research assessed the housing affordability and safety measures in the varied residential area of lagos by examining the demographic and socioeconomic attributes of residents; examining the existing residential safety measures; by examining the residential quality in terms of safety; the researcher therefore examined if relationship between housing affordability and safety in the varied residential areas. The research adopted the bartlett, kotrlik and higgins (2001) method of t-test to determine the sample size which specifies different populations at different levels of significance (α). The researcher adopted primary data which was sourced from a field survey where the sample population was simply randomly selected to give a member of the population an equal chance of being selected, therefore, the sample size for the field survey was two hundred (200) respondents, and subjected to necessary testing. The research come to conclusion that housing safety and security is the responsibility of every resident, the landlords/landladies possess a better sense of security in their neighbourhood than renters in the community, therefore they need to be aware of their responsibility of ensuring the safety of lives and property.Keywords: housing, housing affordability, housing security, residential, residential quality
Procedia PDF Downloads 112189 Structural Insulated Panels
Authors: R. Padmini, G. V. Manoj Kumar
Abstract:
Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources
Procedia PDF Downloads 436188 An Investigation on the Need to Provide Environmental Sanitation Facilities to Informal Settlement in Shagari Low-Cost Katsina State for Sustainable Built Environment
Authors: Abdullahi Mannir Rawayau
Abstract:
This paper identifies the problems that have aided the decoy to adequate basic infrastructural amenities, sub-standard housing, over-crowding, poor ventilation in homes and work places, sanitation, and non-compliance with building bye-laws and regulation. The paper also asserts the efficient disposal of solid and liquid waste is one of the challenges in the informal areas due to threats on the environment and public health. Sanitation services in the informal settlements have been found to be much lower compared to the average for unban. Bearing in mind a factor which prevents sustainable sanitation in informal areas which include low incomes, insecure tenure, low education levels, difficulty topography and transitory populations, and this study aim to identify effective strategies for achieving sustainable sanitation with specific reference to the informal settlement. Using the Shanghai Low-Cost as a case study. The primary data collected was through observation and interview method. Similarly, the secondary data used for the study was collected through literature reviews from extent studies with specific reference to informal settlement. A number of strategies towards achieving sustainable sanitation in the study were identified here in classified into three (3):- Advocacy and capacity building, infrastructural provision and institutionalization of systems and processes. The paper concludes with the premise on the need to build alliances between the government and stakeholders concerned with sanitation provision through the creation of sanitation and employ adaptable technology. Provision of sanitation facilities in public areas and to establish a statutory body for timely response to sanitation waste management in Katsina. It is imperative to check and prevent further decay for harmonious living and sustainable development.Keywords: built environment, sanitation, facilities, settlement
Procedia PDF Downloads 225187 Effect of Perioperative Protocol of Care on Clinical Outcomes among Patients Undergoing Coronary Artery Bypass Graft
Authors: Manal Ahmed, Amal Shehata, Shereen Deeb
Abstract:
The study's purpose was to determine the effect of the perioperative protocol of care on clinical outcomes among patients undergoing coronary artery bypass graft. Subjects: A sample of 100 adult patients who were planned for coronary artery bypass graft, were selected and divided alternatively and randomly into two equal groups (50 study -50 control).The study was carried out at National heart Institute in Cairo and open heart surgical intensive care unit in Shebin El-Kom Teaching Hospital. Instruments: Four instruments were used for data collection: Interviewing questionnaire, dyspnea analogue scale, Biophysiological measurement instrument, and Compliance assessment sheet. Results: There were statistically significant differences between both groups regarding most respiratory system assessment findings at discharge. More than two-thirds of the study group of the current study had a continuous and regular commitment to diet regimen, which ranked first followed by the compliance of daily living activities then quitting smoking. Conclusions: The perioperative protocol of care has a significant improving effect on respiratory findings, dyspnea degree, duration of mechanical ventilation, length of hospital stay, compliance to diet, therapeutic regimen, daily living activities, and quit smoking among study group undergoing CABG. Recommendations: Perioperative protocol of care should be carried out for CABG patients at open-heart surgical units as well as an illustrative colored booklet about CAD, CABG and perioperative care should be available and distributed to all CABG patients.Keywords: perioperative, effect, clinical outcomes, coronary artery, bypass graft, protocol of care
Procedia PDF Downloads 139186 Ecological Investigations for the Control of Aedes aegypti (Diptera: Culicidae) in the Selected Study Districts of Punjab, Pakistan
Authors: Muhammad Sohail Sajid, Muhammad Abdullah Malik, Muhammad Saqib, Faiz Ahmad Raza, Waseem Akram
Abstract:
Aedes (Ae.) aegypti, the vector of pathogens of one health significance, has gained currency over the last decade. The present study reports the prevalence of A. aegypti larvae in indoor and outdoor niches from the three districts of different agro-geo-climatic zones of Punjab, including Chakwal (north), Faisalabad (central), and Dera Ghazi Khan (south). Mosquito larvae were collected, preserved, and transferred for identification. The relevant data were collected on a predesigned questionnaire. Stegomyia indices, including House Index (HI), Breteau Index (BI), and Container Index (CI), were calculated. The association of different breeding containers with the prevalence of Ae. aegypti larvae were estimated through Chi-square analysis. The highest Stegomyia indices were calculated in Chakwal (HI = 46.61%, BI = 91.67%, and CI = 15.28%) as compared to Faisalabad (HI = 34.11%, BI = 68.75% and, CI = 13.04%) and DG Khan (HI = 28.39%, BI = 68.23% and, CI = 11.29%), respectively. Irrespective of the geographical area, earthen jars, water tanks, and tree holes were found to be significantly associated (p < 0.05) with the abundance of Ae. aegypti larvae. However, tires and plastic bottles in Faisalabad and DG Khan while flower tubs and plastic buckets in Faisalabad and Chakwal were found to be significantly associated (p < 0.05) with the larval abundance. The results are a maiden attempt to correlate the magnitude of Ae. aegypti larvae in various microclimatic niches of Punjab, Pakistan, which might help in policy-making for preventive management of the menace.Keywords: Aedes aegypti, ecology, breeding habitats, Stegomyia indices, breeding containers
Procedia PDF Downloads 120185 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation
Authors: Naseer M. A.
Abstract:
Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings
Procedia PDF Downloads 252184 Workers’ Prevention from Occupational Chemical Exposures during Container Handling
Authors: Balázs Ádám, Randi Nørgaard Fløe Pedersen, Jørgen Riis Jepsen
Abstract:
Volatile chemicals that accumulate and release from freight containers constitute significant health risks. Fumigation to prevent spread of pests and off-gassing of freight are sources of hazardous chemicals. The aim of our study was to investigate the regulation and practice of container handling with focus on preventive measures applied against chemical exposures in Denmark. A comprehensive systematic search of scientific literature and organizational domains of international and Danish regulatory bodies was performed to explore regulations related to safe work with transport containers. The practice of container work was investigated in a series of semi-structured interviews with managers and health and safety representatives of organizations that handle transport containers. Although there are several international and national regulations and local safety instructions that relate to container handling, the provided information is not specific or up-to-date enough to conduct safe practice in many aspects. The interviewees estimate high frequency of containers with chemical exposure and deem that they can potentially damage health, although recognizable health effects are rare. Knowledge is limited about the chemicals and most of them cannot be measured by available devices. Typical preventive measures are passive ventilation and personal protective equipment but their use is not consistent and may not provide adequate protection. Hazardous chemicals are frequently present in transport containers; however, managers, workers and even occupational health professionals have limited knowledge about the problem. Detailed risk assessment and specific instructions on risk management are needed to provide safe conditions for work with containers.Keywords: chemical exposure, fumigation, occupational health and safety regulation, transport container
Procedia PDF Downloads 381183 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices
Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes
Abstract:
Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves
Procedia PDF Downloads 466182 A Review of the Drawbacks of Current Fixed Connection Façade Systems, Non-Structural Standards, and Ways of Integrating Movable Façade Technology into Buildings
Abstract:
Façade panels of various shapes, weights, and connections usually act as a barrier between the indoor and outdoor environments. They also play a major role in enhancing the aesthetics of building structures. They are attached by different types of connections to the primary structure or inner panels in double skin façade skins. Structural buildings designed to withstand seismic shocks have been undergoing a critical appraisal in recent years, with the emphasis changing from ‘strength’ to ‘performance’. Performance based design and analysis have found their way into research, development, and practice of earthquake engineering, particularly after the 1994 Northridge and 1995 Kobe earthquakes. The design performance of facades as non-structural elements has now focused mainly on evaluating the damage sustained by façade frames with fixed connections, not movable ones. This paper will review current design standards for structural buildings, including the performance of structural and non-structural components during earthquake excitations in order to overview and evaluate the damage assessment and behaviour of various façade systems in building structures during seismic activities. The proposed solutions for each facade system will be discussed case by case to evaluate their potential for incorporation with newly designed connections. Finally, Double-Skin-Facade systems can potentially be combined with movable facade technology, although other glazing systems would require minor to major changes in their design before being integrated into the system.Keywords: building performance, earthquake engineering, glazing system, movable façade technology
Procedia PDF Downloads 548181 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.Keywords: cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort
Procedia PDF Downloads 231180 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing
Authors: Jason R. King, Hugh H. T. Liu
Abstract:
This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing
Procedia PDF Downloads 341179 Effects of GRF on CMJ in Different Wooden Surface Systems
Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen
Abstract:
Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad
Procedia PDF Downloads 445178 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model
Authors: Yaseri Dahlia Apritasari
Abstract:
Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.Keywords: aluminium material, Facade, second skin, visual comfort
Procedia PDF Downloads 352177 Minimally Invasive versus Conventional Sternotomy for Aortic Valve Replacement: A Systematic Review and Meta-Analysis
Authors: Ahmed Shaboub, Yusuf Jasim Althawadi, Shadi Alaa Abdelaal, Mohamed Hussein Abdalla, Hatem Amr Elzahaby, Mohamed Mohamed, Hazem S. Ghaith, Ahmed Negida
Abstract:
Objectives: We aimed to compare the safety and outcomes of the minimally invasive approaches versus conventional sternotomy procedures for aortic valve replacement. Methods: We conducted a PRISMA-compliant systematic review and meta-analysis. We ran an electronic search of PubMed, Cochrane CENTRAL, Scopus, and Web of Science to identify the relevant published studies. Data were extracted and pooled as standardized mean difference (SMD) or risk ratio (RR) using StataMP version 17 for macOS. Results: Forty-one studies with a total of 15,065 patients were included in this meta-analysis (minimally invasive approaches n=7231 vs. conventional sternotomy n=7834). The pooled effect size showed that minimally invasive approaches had lower mortality rate (RR 0.76, 95%CI [0.59 to 0.99]), intensive care unit and hospital stays (SMD -0.16 and -0.31, respectively), ventilation time (SMD -0.26, 95%CI [-0.38 to -0.15]), 24-h chest tube drainage (SMD -1.03, 95%CI [-1.53 to -0.53]), RBCs transfusion (RR 0.81, 95%CI [0.70 to 0.93]), wound infection (RR 0.66, 95%CI [0.47 to 0.92]) and acute renal failure (RR 0.65, 95%CI [0.46 to 0.93]). However, minimally invasive approaches had longer operative time, cross-clamp, and bypass times (SMD 0.47, 95%CI [0.22 to 0.72], SMD 0.27, 95%CI [0.07 to 0.48], and SMD 0.37, 95%CI [0.20 to 0.45], respectively). There were no differences between the two groups in blood loss, endocarditis, cardiac tamponade, stroke, arrhythmias, pneumonia, pneumothorax, bleeding reoperation, tracheostomy, hemodialysis, or myocardial infarction (all P>0.05). Conclusion: Current evidence showed higher safety and better operative outcomes with minimally invasive aortic valve replacement compared to the conventional approach. Future RCTs with long-term follow-ups are recommended.Keywords: aortic replacement, minimally invasive, sternotomy, mini-sternotomy, aortic valve, meta analysis
Procedia PDF Downloads 121176 Heat Sink Optimization for a High Power Wearable Thermoelectric Module
Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras
Abstract:
As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat
Procedia PDF Downloads 151175 Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant
Authors: S. Mokhtar, R. Ibrahim, K. Abdan, A. Rashidi
Abstract:
The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations.Keywords: biocomposite, natural reinforce fiber, smart farming, vertical farming
Procedia PDF Downloads 165174 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques
Authors: Kishor T. Zingre, Seshadhri Srinivasan
Abstract:
Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates
Procedia PDF Downloads 114173 Pre-Experimental Research to Investigate the Retention of Basic and Advanced Life Support Measures Knowledge and Skills by Qualified Nurses Following a Course in Professional Development in a Tertiary Teaching Hospital
Authors: Ram Sharan Mehta, Gayanandra Malla, Anita Gurung, Anu Aryal, Divya Labh, Hricha Neupane
Abstract:
Objectives: Lack of resuscitation skills of nurses and doctors in basic life support (BLS) and advanced life support (ALS) has been identified as a contributing factor to poor outcomes of cardiac arrest victims. The objective of this study was to examine retention of life support measures (BLS/ALS) knowledge and skills of nurses following education intervention programme. Materials and Methods: Pre-experimental research design was used to conduct the study among the nurses working in medical units of B.P Koirala Institute of Health Sciences, where CPR is very commonly performed. Using convenient sampling technique total of 20 nurses agreed to participate and give consent were included in the study. The theoretical, demonstration and re-demonstration were arranged involving the trained doctors and nurses during the three hours educational session. Post-test was carried out after two week of education intervention programme. The 2010 BLS & ALS guidelines were used as guide for the study contents. The collected data were analyzed using SPSS-15 software. Results: It was found that there is significant increase in knowledge after education intervention in the components of life support measures (BLS/ALS) i.e. ratio of chest compression to ventilation in BLS (P=0.001), correct sequence of CPR (p <0.001), rate of chest compression in ALS (P=0.001), the depth of chest compression in adult CPR (p<0.001), and position of chest compression in CPR (P=0.016). Nurses were well appreciated the programme and request to continue in future for all the nurses. Conclusions: At recent BLS/ALS courses (2010), a significant number of nurses remain without any such training. Action is needed to ensure all nurses receive BLS training and practice this skill regularly in order to retain their knowledge.Keywords: pre-experimental, basic and advance life support, nurses, sampling technique
Procedia PDF Downloads 254172 Prioritizing the Most Important Information from Contractors’ BIM Handover for Firefighters’ Responsibilities
Authors: Akram Mahdaviparsa, Tamera McCuen, Vahideh Karimimansoob
Abstract:
Fire service is responsible for protecting life, assets, and natural resources from fire and other hazardous incidents. Search and rescue in unfamiliar buildings is a vital part of firefighters’ responsibilities. Providing firefighters with precise building information in an easy-to-understand format is a potential solution for mitigating the negative consequences of fire hazards. The negative effect of insufficient knowledge about a building’s indoor environment impedes firefighters’ capabilities and leads to lost property. A data rich building information modeling (BIM) is a potentially useful source in three-dimensional (3D) visualization and data/information storage for fire emergency response. Therefore, this research’s purpose is prioritizing the required information for firefighters from the most important information to the least important. A survey was carried out with firefighters working in the Norman Fire Department to obtain the importance of each building information item. The results show that “the location of exit doors, windows, corridors, elevators, and stairs”, “material of building elements”, and “building data” are the three most important information specified by firefighters. The results also implied that the 2D model of architectural, structural and way finding is more understandable in comparison with the 3D model, while the 3D model of MEP system could convey more information than the 2D model. Furthermore, color in visualization can help firefighters to understand the building information easier and quicker. Sufficient internal consistency of all responses was proven through developing the Pearson Correlation Matrix and obtaining Cronbach’s alpha of 0.916. Therefore, the results of this study are reliable and could be applied to the population.Keywords: BIM, building fire response, ranking, visualization
Procedia PDF Downloads 133171 Application of Design Thinking for Technology Transfer of Remotely Piloted Aircraft Systems for the Creative Industry
Authors: V. Santamarina Campos, M. de Miguel Molina, B. de Miguel Molina, M. Á. Carabal Montagud
Abstract:
With this contribution, we want to show a successful example of the application of the Design Thinking methodology, in the European project 'Technology transfer of Remotely Piloted Aircraft Systems (RPAS) for the creative industry'. The use of this methodology has allowed us to design and build a drone, based on the real needs of prospective users. It has demonstrated that this is a powerful tool for generating innovative ideas in the field of robotics, by focusing its effectiveness on understanding and solving real user needs. In this way, with the support of an interdisciplinary team, comprised of creatives, engineers and economists, together with the collaboration of prospective users from three European countries, a non-linear work dynamic has been created. This teamwork has generated a sense of appreciation towards the creative industries, through continuously adaptive, inventive, and playful collaboration and communication, which has facilitated the development of prototypes. These have been designed to enable filming and photography in interior spaces, within 13 sectors of European creative industries: Advertising, Architecture, Fashion, Film, Antiques and Museums, Music, Photography, Televison, Performing Arts, Publishing, Arts and Crafts, Design and Software. Furthermore, it has married the real needs of the creative industries, with what is technologically and commercially viable. As a result, a product of great value has been obtained, which offers new business opportunities for small companies across this sector.Keywords: design thinking, design for effectiveness, methodology, active toolkit, storyboards, PAR, focus group, innovation, RPAS, indoor drone, aerial film, creative industry, end users, stakeholder
Procedia PDF Downloads 204170 A Review of Protocols and Guidelines Addressing the Exposure of Occupants to Electromagnetic Field (EMF) Radiation in Buildings
Authors: Shabnam Monadizadeh, Charles Kibert, Jiaxuan Li, Janghoon Woo, Ashish Asutosh, Samira Roostaei, Maryam Kouhirostami
Abstract:
A significant share of the technology that has emerged over the past several decades produces electromagnetic field (EMF) radiation. Communications devices, household appliances, industrial equipment, and medical devices all produce EMF radiation with a variety of frequencies, strengths, and ranges. Some EMF radiation, such as Extremely Low Frequency (ELF), Radio Frequency (RF), and the ionizing range have been shown to have harmful effects on human health. Depending on the frequency and strength of the radiation, EMF radiation can have health effects at the cellular level as well as at brain, nervous, and cardiovascular levels. Health authorities have enacted regulations locally and globally to set critical values to limit the adverse effects of EMF radiation. By introducing a more comprehensive field of EMF radiation study and practice, architects and designers can design for a safer electromagnetic (EM) indoor environment, and, as building and construction specialists, will be able to monitor and reduce EM radiation. This paper identifies the nature of EMF radiation in the built environment, the various EMF radiation sources, and its human health effects. It addresses European and US regulations for EMF radiation in buildings and provides a preliminary action plan. The challenges of developing measurement protocols for the various EMF radiation frequency ranges and determining the effects of EMF radiation on building occupants are discussed. This paper argues that a mature method for measuring EMF radiation in building environments and linking these measurements to human health impacts occupant health should be developed to provide adequate safeguards for human occupants of buildings for future research.Keywords: biological affection, electromagnetic field, building regulation, human health, healthy building, clean construction
Procedia PDF Downloads 181169 Ambulatory Care Utilization of Individuals with Cerebral Palsy in Taiwan- A Country with Universal Coverage and No Gatekeeper Regulation
Authors: Ming-Juei Chang, Hui-Ing Ma, Tsung-Hsueh Lu
Abstract:
Introduction: Because of the advance of medical care (e.g., ventilation techniques and gastrostomy feeding), more and more children with CP can live to adulthood. However, little is known about the use of health care services from children to adults who have CP. The patterns of utilization of ambulatory care are heavily influenced by insurance coverage and primary care gatekeeper regulation. The purpose of this study was to examine patterns of ambulatory care utilization among individuals with CP in Taiwan, a country with universal coverage and no gatekeeper regulation. Methods: A representative sample of one million patients (about 1/23 of total population) covered by Taiwan’s National Health Insurance was used to analyze the ambulatory care utilization in individuals with CP. Data were analyzed by 3 different age groups (children, youth and adults) during 2000 to 2003. Participants were identified by the presence of CP diagnosis made by pediatricians or physicians of physical and rehabilitation medicine and stated at least three times in claims data. Results: Annual rates of outpatient physician visits were 31680 for children, 16492 for youth, and 28617 for adults with CP (per 1000 persons). Individuals with CP received over 50% of their outpatient care from hospital outpatient department. Higher use of specialist physician services was found in children (54.7%) than in the other two age groups (28.4% in youth and 18.8% in adults). Diseases of respiratory system were the most frequent diagnoses for visits in both children and youth with CP. Diseases of the circulatory system were the main reasons (24.3%) that adults with CP visited hospital outpatient care department or clinics. Conclusion: This study showed different patterns of ambulatory care utilization among different age groups. It appears that youth and adults with CP continue to have complex health issues and rely heavily on the health care system. Additional studies are needed to determine the factors which influence ambulatory care utilization among individuals with CP.Keywords: cerebral palsy, health services, lifespan, universal coverage
Procedia PDF Downloads 374168 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings
Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt
Abstract:
Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy
Procedia PDF Downloads 175167 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 85166 Lactate in Critically Ill Patients an Outcome Marker with Time
Authors: Sherif Sabri, Suzy Fawzi, Sanaa Abdelshafy, Ayman Nagah
Abstract:
Introduction: Static derangements in lactate homeostasis during ICU stay have become established as a clinically useful marker of increased risk of hospital and ICU mortality. Lactate indices or kinetic alteration of the anaerobic metabolism make it a potential parameter to evaluate disease severity and intervention adequacy. This is an inexpensive and simple clinical parameter that can be obtained by a minimally invasive means. Aim of work: Comparing the predictive value of dynamic indices of hyperlactatemia in the first twenty four hours of intensive care unit (ICU) admission with other static values are more commonly used. Patients and Methods: This study included 40 critically ill patients above 18 years old of both sexes with Hyperlactamia (≥ 2 m mol/L). Patients were divided into septic group (n=20) and low oxygen transport group (n=20), which include all causes of low-O2. Six lactate indices specifically relating to the first 24 hours of ICU admission were considered, three static indices and three dynamic indices. Results: There were no statistically significant differences among the two groups regarding age, most of the laboratory results including ABG and the need for mechanical ventilation. Admission lactate was significantly higher in low-oxygen transport group than the septic group [37.5±11.4 versus 30.6±7.8 P-value 0.034]. Maximum lactate was significantly higher in low-oxygen transport group than the septic group P-value (0.044). On the other hand absolute lactate (mg) was higher in septic group P-value (< 0.001). Percentage change of lactate was higher in the septic group (47.8±11.3) than the low-oxygen transport group (26.1±12.6) with highly significant P-value (< 0.001). Lastly, time weighted lactate was higher in the low-oxygen transport group (1.72±0.81) than the septic group (1.05±0.8) with significant P-value (0.012). There were statistically significant differences regarding lactate indices in survivors and non survivors, whether in septic or low-oxygen transport group. Conclusion: In critically ill patients, time weighted lactate and percent in lactate change in the first 24 hours can be an independent predictive factor in ICU mortality. Also, a rising compared to a falling blood lactate concentration over the first 24 hours can be associated with significant increase in the risk of mortality.Keywords: critically ill patients, lactate indices, mortality in intensive care, anaerobic metabolism
Procedia PDF Downloads 241165 Recycling, Reuse and Reintegration of Steel Plant Fines
Authors: R. K. Agrawal, Shiv Agrawal
Abstract:
Fines and micro create fundamental problems of respiration. From mines to mills steel plants generate lot of pollutants. Legislation & Government laws are stricter day by day & each plant has to think of recycling, reuse &reintegration of pollutants generated during the process of steel making. This paper deals with experiments conducted in Bhilai Steel Plant and Real Ispat and Power Limited for reuse, recycle & reintegrate some of the steel making process fines. Iron ore fines with binders have been agglomerated to be used as a part of the charge for small furnaces. This will improve yield at nominal cost. Rolling mill fines have been recycled to increase the yield of sinter making. This will solve the problems of fine disposal. Huge saving on account of recycling will be achieved. Lime fines after briquetting is used along with prime lime. Lime fines have also been used as a binding material during production of fly ash bricks. These fines serve as low-cost binder. Experiments have been conducted along with coke breeze & gas cleaning plant sludge. As a result, the anti-sloping compound has been developed for converter vessels. Dolo char and Char during Sponge Iron production have been successfully used in power generation and brick making. Pellets have been made with ventilation dust & flue dust. These samples have been tried as a coolant in the converter. Pellets have been made with Sinter Plant electrostatic precipitator micro fines with liquid binder. Trials have been conducted to reuse these pellets in sinter making. Coke breeze from coke-ovens fines and mill scale along with binders were agglomerated. This was used in furnace after attaining required screening and reactivity index. These actions will definitely bring social, economic and environment-friendly universe.Keywords: briquette, dolo char, electrostatic precipitator, pellet, sinter
Procedia PDF Downloads 391164 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System
Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu
Abstract:
Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance
Procedia PDF Downloads 477