Search results for: geographically-weighted regression
2651 Risk Factors for High Resistance of Ciprofloxacin Against Escherichia coli in Complicated Urinary Tract Infection
Authors: Liaqat Ali, Khalid Farooq, Shafieullah Khan, Nasir Orakzai, Qudratullah
Abstract:
Objectives: To determine the risk factors for high resistance of ciprofloxacin in complicated urinary tract infections. Materials and Methods: It is an analytical study that was conducted in the department of Urology (Team ‘C’) at Institute of Kidney Diseases Hayatabad Peshawar from 1st June 2012 till 31st December 2012. Total numbers of 100 patients with complicated UTI was selected in the study. Multivariate analysis and linear regression were performed for the detection of risk factors. All the data was recorded on structured Proforma and was analyzed on SPSS version 17. Results: The mean age of the patient was 55.6 years (Range 3-82 years). 62 patients were male while 38 patients were female. 66 isolates of E-Coli were found sensitive to ciprofloxacin while 34 isolates were found Resistant for ciprofloxacin. Using multivariate analysis and linear regression, an increasing age above 50 (p=0.002) History of urinary catheterization especially for bladder outflow obstruction (p=0.001) and previous multiple use of ciprofloxacin (p=0.001) and poor brand of ciprofloxacin were found to be independent risk factors for high resistance of ciprofloxacin. Conclusion: UTI is common illness across the globe with increasing trend of antimicrobial resistance for ciprofloxacin against E Coli in complicated UTI. The risk factors for emerging resistance are increasing age, urinary catheterization and multiple use and poor brand of ciprofloxacin.Keywords: urinary tract infection, ciprofloxacin, urethral catheterization, antimicrobial resistance
Procedia PDF Downloads 3542650 Determining Variables in Mathematics Performance According to Gender in Mexican Elementary School
Authors: Nora Gavira Duron, Cinthya Moreda Gonzalez-Ortega, Reyna Susana Garcia Ruiz
Abstract:
This paper objective is to analyze the mathematics performance in the Learning Evaluation National Plan (PLANEA for its Spanish initials: Plan Nacional para la Evaluación de los Aprendizajes), applied to Mexican students who are enrolled in the last elementary-school year over the 2017-2018 academic year. Such test was conducted nationwide in 3,573 schools, using a sample of 108,083 students, whose average in mathematics, on a scale of 0 to 100, was 45.6 points. 75% of the sample analyzed did not reach the sufficiency level (60 points). It should be noted that only 2% got a 90 or higher score result. The performance is analyzed while considering whether there are differences in gender, marginalization level, public or private school enrollment, parents’ academic background, and living-with-parents situation. Likewise, this variable impact (among other variables) on school performance by gender is evaluated, considering multivariate logistic (Logit) regression analysis. The results show there are no significant differences in mathematics performance regarding gender in elementary school; nevertheless, the impact exerted by mothers who studied at least high school is of great relevance for students, particularly for girls. Other determining variables are students’ resilience, their parents’ economic status, and the fact they attend private schools, strengthened by the mother's education.Keywords: multivariate regression analysis, academic performance, learning evaluation, mathematics result per gender
Procedia PDF Downloads 1472649 In silico Statistical Prediction Models for Identifying the Microbial Diversity and Interactions Due to Fixed Periodontal Appliances
Authors: Suganya Chandrababu, Dhundy Bastola
Abstract:
Like in the gut, the subgingival microbiota plays a crucial role in oral hygiene, health, and cariogenic diseases. Human activities like diet, antibiotics, and periodontal treatments alter the bacterial communities, metabolism, and functions in the oral cavity, leading to a dysbiotic state and changes in the plaques of orthodontic patients. Fixed periodontal appliances hinder oral hygiene and cause changes in the dental plaques influencing the subgingival microbiota. However, the microbial species’ diversity and complexity pose a great challenge in understanding the taxa’s community distribution patterns and their role in oral health. In this research, we analyze the subgingival microbial samples from individuals with fixed dental appliances (metal/clear) using an in silico approach. We employ exploratory hypothesis-driven multivariate and regression analysis to shed light on the microbial community and its functional fluctuations due to dental appliances used and identify risks associated with complex disease phenotypes. Our findings confirm the changes in oral microbiota composition due to the presence and type of fixed orthodontal devices. We identified seven main periodontic pathogens, including Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Firmicutes, whose abundances were significantly altered due to the presence and type of fixed appliances used. In the case of metal braces, the abundances of Bacteroidetes, Proteobacteria, Fusobacteria, Candidatus saccharibacteria, and Spirochaetes significantly increased, while the abundance of Firmicutes and Actinobacteria decreased. However, in individuals With clear braces, the abundance of Bacteroidetes and Candidatus saccharibacteria increased. The highest abundance value (P-value=0.004 < 0.05) was observed with Bacteroidetes in individuals with the metal appliance, which is associated with gingivitis, periodontitis, endodontic infections, and odontogenic abscesses. Overall, the bacterial abundances decrease with clear type and increase with metal type of braces. Regression analysis further validated the multivariate analysis of variance (MANOVA) results, supporting the hypothesis that the presence and type of the fixed oral appliances significantly alter the bacterial abundance and composition.Keywords: oral microbiota, statistical analysis, fixed or-thodontal appliances, bacterial abundance, multivariate analysis, regression analysis
Procedia PDF Downloads 1942648 Evidence Based Approach on Beliefs and Perceptions on Mental Health Disorder and Substance Abuse: The Role of a Social Worker
Authors: Helena Baffoe
Abstract:
The US has developed numerous programs over the past 50 years to enhance the lives of those who suffer from mental health illnesses and substance abuse, as well as the effectiveness of their treatments. Despite these advances over the past 50 years, there hasn't been a corresponding improvement in American public attitudes and beliefs about mental health disorders and substance abuse. Highly publicized acts of violence frequently elicit comments that blame the perpetrator's perceived mental health disorder since such people are thought to be substance abusers. Despite these strong public beliefs and perception about mental disorder and substance abuse, concreate empirical evidence that entail this perception is lacking, and evidence of their effectiveness has not been integrated. A rich data was collected from Substance Abuse and Mental Health Services Administration (SAMHSA) with a hypothesis that people who are diagnosed with a mental health disorder are likely to be diagnosed with substance abuse using logit regression analysis and Instrumental Variable. It was found that depressive, anxiety, and trauma/stressor mental disorders constitute the most common mental disorder in the United States, and the study could not find statistically significant evidence that being diagnosed with these leading mental health disorders in the United States does necessarily imply that such a patient is diagnosed with substances abuse. Thus, the public has a misconception of mental health and substance abuse issues, and social workers' responsibilities are outlined in order to assist ameliorate this attitude and perception.Keywords: mental health disorder, substance use, empirical evidence, logistic regression
Procedia PDF Downloads 782647 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm
Authors: Anuradha Chug, Sunali Gandhi
Abstract:
Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm
Procedia PDF Downloads 3802646 Prediction of Marijuana Use among Iranian Early Youth: an Application of Integrative Model of Behavioral Prediction
Authors: Mehdi Mirzaei Alavijeh, Farzad Jalilian
Abstract:
Background: Marijuana is the most widely used illicit drug worldwide, especially among adolescents and young adults, which can cause numerous complications. The aim of this study was to determine the pattern, motivation use, and factors related to marijuana use among Iranian youths based on the integrative model of behavioral prediction Methods: A cross-sectional study was conducted among 174 youths marijuana user in Kermanshah County and Isfahan County, during summer 2014 which was selected with the convenience sampling for participation in this study. A self-reporting questionnaire was applied for collecting data. Data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean marijuana use of respondents was 4.60 times at during week [95% CI: 4.06, 5.15]. Linear regression statistical showed, the structures of integrative model of behavioral prediction accounted for 36% of the variation in the outcome measure of the marijuana use at during week (R2 = 36% & P < 0.001); and among them attitude, marijuana refuse, and subjective norms were a stronger predictors. Conclusion: Comprehensive health education and prevention programs need to emphasize on cognitive factors that predict youth’s health-related behaviors. Based on our findings it seems, designing educational and behavioral intervention for reducing positive belief about marijuana, marijuana self-efficacy refuse promotion and reduce subjective norms encourage marijuana use has an effective potential to protect youths marijuana use.Keywords: marijuana, youth, integrative model of behavioral prediction, Iran
Procedia PDF Downloads 5542645 The Impact of International Financial Reporting Standards (IFRS) Adoption on Performance’s Measure: A Study of UK Companies
Authors: Javad Izadi, Sahar Majioud
Abstract:
This study presents an approach of assessing the choice of performance measures of companies in the United Kingdom after the application of IFRS in 2005. The aim of this study is to investigate the effects of IFRS on the choice of performance evaluation methods for UK companies. We analyse through an econometric model the relationship of the dependent variable, the firm’s performance, which is a nominal variable with the independent ones. Independent variables are split into two main groups: the first one is the group of accounting-based measures: Earning per share, return on assets and return on equities. The second one is the group of market-based measures: market value of property plant and equipment, research and development, sales growth, market to book value, leverage, segment and size of companies. Concerning the regression used, it is a multinomial logistic regression performed on a sample of 130 UK listed companies. Our finding shows after IFRS adoption, and companies give more importance to some variables such as return on equities and sales growth to assess their performance, whereas the return on assets and market to book value ratio does not have as much importance as before IFRS in evaluating the performance of companies. Also, there are some variables that have no impact on the performance measures anymore, such as earning per share. This article finding is empirically important for business in subjects related to IFRS and companies’ performance measurement.Keywords: performance’s Measure, nominal variable, econometric model, evaluation methods
Procedia PDF Downloads 1382644 Mindfulness as a Predictor of School Results and Well-Being in Adolescence: The Mediating Role of Emotional Intelligence
Authors: Ines Vieira, Luisa Faria
Abstract:
Globally, half of all mental disorders begin by age 14 and the current gap of poorly addressed adolescent mental health has future consequences in adulthood. Schoolwork pressure to achieve good performance in secondary education might lead to lower levels of life satisfaction in youth and individual emotional competencies are crucial in this life stage. The present study aimed to determine how mindfulness relates to school achievements and well-being in adolescence and whether such a relationship might be mediated by emotional intelligence. We also studied the moderation interaction effects of gender and the involvement in non-curricular activities. A sample of 597 Portuguese adolescents aged 15 to 17 years old (N=597; 292 girls; 298 boys), enrolled in secondary education completed self-report measures of mindfulness (CAMM), emotional intelligence (TEIQue-ASF) and well-being (SWLS) in their Portuguese versions. Using SPSS and AMOS, the results were obtained through path analyses and multiple linear regression. A Confirmatory Factor Analysis was also conducted. The correlation coefficients reported a positive and statistically significant relationship between mindfulness, emotional intelligence and well-being. Regression analysis indicated that mindfulness reduced its influence on well-being and on school results when emotional intelligence was added to the model. Overall, our results provided further evidence supporting the development of robust hypotheses by perceiving the relevance of mindfulness and individual emotional competencies to school achievements and well-being in a way of improving adolescents’ health, wellness, and school success.Keywords: mindfulness, emotional intelligence, well-being, adolescence, school
Procedia PDF Downloads 782643 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum
Authors: Rubab Zafar Kahlon, Ibtisam Butt
Abstract:
Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.Keywords: forest resource, biodiversity, expliotation, human activities
Procedia PDF Downloads 922642 The Efficacy of Clobazam for Landau-Kleffner Syndrome
Authors: Nino Gogatishvili, Davit Kvernadze, Giorgi Japharidze
Abstract:
Background and aims: Landau Kleffner syndrome (LKS) is a rare disorder with epileptic seizures and acquired aphasia. It usually starts in initially healthy children. The first symptoms are language regression and behavioral disturbances, and the sleep EEG reveals abnormal epileptiform activity. The aim was to discuss the efficacy of Clobazam for Landau Kleffner syndrome. Case report: We report a case of an 11-year-old boy with an uneventful pregnancy and delivery. He began to walk at 11 months and speak with simple phrases at the age of 2,5 years. At the age of 18 months, he had febrile convulsions; at the age of 5 years, the parents noticed language regression, stuttering, and serious behavioral dysfunction, including hyperactivity, temper outbursts. The epileptic seizure was not noticed. MRI was without any abnormality. Neuropsychological testing revealed verbal auditory agnosia. Sleep EEG showed abundant left fronto-temporal spikes, reaching over 85% during non-rapid eye movement sleep (non-REM sleep). Treatment was started with Clobazam. After ten weeks, EEG was improved. Stuttering and behavior also improved. Results: Since the start of Clobazam treatment, stuttering and behavior improved. Now, he is 11 years old, without antiseizure medication. Sleep EEG shows fronto-temporal spikes on the left side, over 10-49 % of non-REM sleep, bioccipital spikes, and slow-wave discharges and spike-waves. Conclusions: This case provides further support for the efficacy of Clobazam in patients with LKS.Keywords: Landau-Kleffner syndrome, antiseizure medication, stuttering, aphasia
Procedia PDF Downloads 662641 Factor Affecting Decision Making for Tourism in Thailand by ASEAN Tourists
Authors: Sakul Jariyachansit
Abstract:
The purposes of this research were to investigate and to compare the factors affecting the decision for Tourism in Thailand by ASEAN Tourists and among ASEAN community tourists. Samples in this research were 400 ASEAN Community Tourists who travel in Thailand at Suvarnabhumi Airport during November 2016 - February 2016. The researchers determined the sample size by using the formula Taro Yamane at 95% confidence level tolerances 0.05. The English questionnaire, research instrument, was distributed by convenience sampling, for gathering data. Descriptive statistics was applied to analyze percentages, mean and standard deviation and used for hypothesis testing. The statistical analysis by multiple regression analysis (Multiple Regression) was employed to prove the relationship hypotheses at the significant level of 0.01. The results showed that majority of the respondents indicated the factors affecting the decision for Tourism in Thailand by ASEAN Tourists, in general there were a moderate effects and the mean of each side is moderate. Transportation was the most influential factor for tourism in Thailand. Therefore, the mode of transport, information, infrastructure and personnel are very important to factor affecting decision making for tourism in Thailand by ASEAN tourists. From the hypothesis testing, it can be predicted that the decision for choosing Tourism in Thailand is at R2 = 0.449. The predictive equation is decision for choosing Tourism in Thailand = 1.195 (constant value) + 0.425 (tourist attraction) +0.217 (information received) and transportation factors, tourist attraction, information, human resource and infrastructure at the significant level of 0.01.Keywords: factor, decision making, ASEAN tourists, tourism in Thailand
Procedia PDF Downloads 2062640 Determinants of Economic Growth in Pakistan: A Structural Vector Auto Regression Approach
Authors: Muhammad Ajmair
Abstract:
This empirical study followed structural vector auto regression (SVAR) approach proposed by the so-called AB-model of Amisano and Giannini (1997) to check the impact of relevant macroeconomic determinants on economic growth in Pakistan. Before that auto regressive distributive lag (ARDL) bound testing technique and time varying parametric approach along with general to specific approach was employed to find out relevant significant determinants of economic growth. To our best knowledge, no author made such a study that employed auto regressive distributive lag (ARDL) bound testing and time varying parametric approach with general to specific approach in empirical literature, but current study will bridge this gap. Annual data was taken from World Development Indicators (2014) during period 1976-2014. The widely-used Schwarz information criterion and Akaike information criterion were considered for the lag length in each estimated equation. Main findings of the study are that remittances received, gross national expenditures and inflation are found to be the best relevant positive and significant determinants of economic growth. Based on these empirical findings, we conclude that government should focus on overall economic growth augmenting factors while formulating any policy relevant to the concerned sector.Keywords: economic growth, gross national expenditures, inflation, remittances
Procedia PDF Downloads 1992639 Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis
Authors: K. A. Bindu, T. V. Raja, P. M. Rojan, A. Siby
Abstract:
The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits.Keywords: component analysis, multivariate, slaughter, regression
Procedia PDF Downloads 1652638 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression
Procedia PDF Downloads 2232637 Nexus Between Agricultural Insurance Scheme and Performance of Agribusiness in Nigeria
Authors: Festus Epetimehin
Abstract:
Agriculture remains the dominant sector in the rural areas where over 70% of Nigerian reside and it’s still the backbone of our economy. The observed poor performance of farmers in agricultural productivity is due to the nature of risks and uncertainties in agriculture.Agricultural insurance is one of the mechanisms by which farmers can stabilize farm income and investment. The study examined the relationship between agricultural insurance scheme (AIS) and performance of agribusiness in Nigeria. The study adopted exploratory research design which is an ex-ante research approach. One hundred copies of structured questionnaire were administered for the purpose of the study. Correlation analysis and regression analysis were employed for the study. The correlation analysis of the finding revealed that the independent variable; agricultural insurance scheme (AIS) is positively and significantly correlated with the set of dependent variables; where turnover (ABT)=0.582**, profitability (ABP)=0.321**, solvency (ABS)=0.418**and cost of production (ABC)=0.23** respectively. The regression analysis result also revealed the degree of relationship between the independent variable (AIS) and set of dependent variables where one(1%) percent increase in independent variable will lead to 33.9% (ABT), 9.7% (ABP), 17.5%(ABS) and 1.5%(ABC).The study recommended that the Federal Government in collaboration with the participating Agricultural insurers embark on awareness campaign through to the length and breadth of Nigeria on government support and insurance scheme for farmers. Government should also ensure that the loan and insurance scheme should extend beyond the mechanized farmers and include the intensive subsistence farmers in view of the fact that they are the dominants in most of the farm produce markets.Keywords: agribusiness, agricultural insurance, performance, turnover, solvency, agricultural risks
Procedia PDF Downloads 922636 Work Ability Index (WAI) and Its Health-Related Detriments among Iranian Farmers Working in the Small Farm Enterprises
Authors: Akbar Rostamabadi, Adel Mazloumi, Abbas Rahimi Foroushani
Abstract:
This study aimed to determine the Work Ability Index (WAI) and examine the influence of health dimensions and demographic variables on the work ability of Iranian farmers working in small farm enterprises. A cross-sectional study was conducted among 294 male farmers. The WAI and SF-36 questionnaires were used to determine work ability and health status. The effect of demographics variables on the work ability index was investigated with the independent samples t-test and one-way ANOVA. Also, multiple linear regression analysis was used to test the association between the mean WAI score and the SF-36 scales. The mean WAI score was 35.1 (SD=10.6). One-way ANOVA revealed a significant relationship between the mean WAI and age. Multiple linear regression analysis showed that work ability was more influenced by physical scales of the health dimensions, such as physical function, role-physical, and general health, whereas a lower association was found for mental scales such as mental health. The average WAI was at a moderate work ability level for the sample population of farmers in this study. Based on the WAI guidelines, improvement of work ability and identification of factors affecting it should be considered a priority in interventional programs. Given the influence of health dimensions on WAI, any intervention program for preservation and promotion work ability among the studied farmers should be based on balancing and optimizing the physical and psychosocial work environments, with a special focus on reducing physical work load.Keywords: farmers, SF-36, Work Ability Index (WAI), Iran
Procedia PDF Downloads 4402635 Efficient Estimation for the Cox Proportional Hazards Cure Model
Authors: Khandoker Akib Mohammad
Abstract:
While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood
Procedia PDF Downloads 1442634 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model
Authors: Nureni O. Adeboye, Dawud A. Agunbiade
Abstract:
This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.Keywords: audit fee lagrange multiplier test, heteroscedasticity, lagrange multiplier test, Monte-Carlo scheme, periodicity
Procedia PDF Downloads 1412633 Social Participation and Associated Life Satisfaction among Older Adults in India: Moderating Role of Marital Status and Living Arrangements
Authors: Varsha Pandurang Nagargoje, K. S. James
Abstract:
Background: Social participation is considered as one of the central components of successful and healthy aging. This study aimed to examine the moderating role of marital status and living arrangement in the relationship between social participation and life satisfaction and other potential factors associated with life satisfaction of Indian older adults. Method: For analyses, the nationally representative study sample of 31,464 adults aged ≥60 years old was extracted from the Longitudinal Ageing Study in India (LASI) wave 1, 2017-18. Descriptive statistics and bivariate analysis have been performed to determine the proportion of life satisfaction. The first set of multivariable linear regression analyses examined Diener’s Satisfaction with Life Scale and its association with various predictor variables, including social participation, marital status, living arrangements, socio-demographic, economic, and health-related variables. Further, the second and third sets of regression investigated the moderating role of marital status and living arrangements respectively in the association of social participation and level of life satisfaction among Indian older adults. Results: Overall, the proportion of life satisfaction among older men was relatively higher than women counterparts in most background characteristics. Regression results stressed the importance of older adults’ involvement in social participation [β = 0.39, p < 0.05], being in marital union [β = 0.68, p < 0.001] and co-residential living arrangements either only with spouse [β = 1.73, p < 0.001] or with other family members [β = 2.18, p < 0.001] for the improvement of life satisfaction. Results also showed that some factors were significant for life satisfaction: in particular, increased age, having a higher level of educational status, MPCE quintile, and caste category. Higher risk of life dissatisfaction found among Indian older adults who were exposed to vulnerabilities like consuming tobacco, poor self-rated health, having difficulty in performing ADL and IADL were of major concern. The interaction effect of social participation with marital status or with living arrangements explained that currently married older individuals, and those older adults who were either co-residing with their spouse only or with other family members irrespective of their involvement in social participation remained an important modifiable factor for life satisfaction. Conclusion: It would be crucial for policymakers and practitioners to advocate social policy programs and service delivery oriented towards meaningful social connections, especially for those Indian older adults who were staying alone or currently not in the marital union to enhance their overall life satisfaction.Keywords: Indian, older adults, social participation, life satisfaction, marital status, living arrangement
Procedia PDF Downloads 1292632 Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains
Authors: Jim J. Catina, Jackee M. Gwynn, Jin S. Kang
Abstract:
Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing.Keywords: acrylonitrile butadiene styrene, additive manufacturing, fused deposition modeling, heat treatment
Procedia PDF Downloads 1172631 Modelling the Impacts of Geophysical Parameters on Deforestation and Forest Degradation in Pre and Post Ban Logging Periods in Hindu Kush Himalayas
Authors: Alam Zeb, Glen W. Armstrong, Muhammad Qasim
Abstract:
Loss of forest cover is one of the most important land cover changes and has been of great concern to policy makers. This study quantified forest cover changes over pre logging ban (1973-1993) and post logging ban (1993-2015) to examine the role of geophysical factors and spatial attributes of land in the two periods. We show that despite a complete ban on green felling, forest cover decreased by 28% and mostly converted to rangeland. Nevertheless, the logging ban was completely effective in controlling agriculture expansion. The binary logistic regression revealed that the south facing aspects at low elevation witnessed more deforestation in the pre-ban period compared to post-ban. Opposite to deforestation, forest degradation was more prominent on the northern aspects at higher elevation during the policy period. Agriculture expansion was widespread in the low elevation flat areas with gentle slope, while during the policy period agriculture contraction in the form of regeneration was observed on the low elevation areas of north facing slopes. All proximity variables, except distance to administrative boundary, showed a similar trend across the two periods and were important explanatory variables in understanding forest and agriculture expansion. The changes in determinants of forest and agriculture expansion and contraction over the two periods might be attributed to the influence of policy and a general decrease in resource availability.Keywords: forest conservation , wood harvesting ban, logistic regression, deforestation, forest degradation, agriculture expansion, Chitral, Pakistan
Procedia PDF Downloads 2302630 Prevalence and Associated Factors of Attention Deficit Hyperactivity Disorder among Children Age 6 to 17 Years Old Living in Girja District, Oromia Regional State, Rural Ethiopia: Community Based Cross-Sectional Study
Authors: Hirbaye Mokona, Abebaw Gebeyehu, Aemro Zerihun
Abstract:
Introduction: Attention deficit hyperactivity disorder is serious public health problem affecting millions of children throughout the world. Method: A cross-sectional study conducted from May to June 2015 among children age 6 to 17 years living in rural area of Girja district. Multi-stage cluster sampling technique was used to select 1302 study participants. Disruptive Behavior Disorder rating scale was used to collect the data. Data were coded, entered and cleaned by Epi-Data version 3.1 and analyzed by SPSS version 20. Logistic regression analysis was used and Variables that have P-values less than 0.05 on multivariable logistic regression was considered as statistically significant. Results: Prevalence of Attention deficit hyperactivity disorder (ADHD) among children age 6 to 17 years was 7.3%. Being male [AOR=1.81, 95%CI: (1.13, 2.91)]; living with single parent [AOR=5.0, 95%CI: (2.35, 10.65)]; child birth order/rank [AOR=2.35, 95%CI: (1.30, 4.25)]; low family socio-economic status [AOR= 2.43, 95%CI: (1.29, 4.59)]; maternal alcohol/khat use during pregnancy [AOR=3.14, 95%CI: (1.37, 7.37)] and complication at delivery [AOR=3.56, 95%CI: (1.19, 10.64)] were more likely to develop Attention deficit hyperactivity disorder. Conclusion: In this study, the prevalence of Attention deficit hyperactivity disorder was similar with worldwide prevalence. Prevention and early management of its modifiable risk factors should be carryout alongside increasing community awareness.Keywords: attention deficit hyperactivity disorder, ADHD, associated factors, children, prevalence
Procedia PDF Downloads 1862629 Indoor Air Pollution of the Flexographic Printing Environment
Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević
Abstract:
The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.Keywords: flexographic printing, indoor air, multiple regression analysis, pollution emission
Procedia PDF Downloads 1972628 Association of Laterality and Sports Specific Rotational Preference with Number of Injuries in Artistic Gymnasts
Authors: Teja Joshi
Abstract:
Laterality has shown to play a role in performance as well as injuries especially in unilateral sports disciplines. Uniquely, Artistic Gymnastics involves combination of unilateral, bilateral and complex multi-planer elements as well as gymnastics specific rotational preference. Therefore, this study was conducted to explore if any such preferences are associated with number of injuries in artistic gymnasts. To explore the association between lateral preferences, rotational preferences and injuries incidence in artistic gymnastics. Artistic gymnasts above 16 years of age, were invited to participate in an online survey. The survey included consent, lateral preference inventory, injury data collection according to anatomical locations and rotational preference for selected gymnastics elements performed on the floor exercise. SPSS version 24 was used to analyse Non-parametric data using Kruskal-Wallis (K- independent test) test. Multiple regression was performed to identify the predictor for injuries and their side in gymnasts. Total number of injuries per gymnast was associated with handedness (p value-0.049) and no significant association was noted for footdness (p value-0.207), eyedness (p value-0.491) and eardness (p value-0.798). Additionally, rotational preferences did not influence number of injuries (p value-0.521). In multiple regression, eyedness was identified as a predicting factor to determine the number of injuries. Rotational preferences were neither determined as a national strategy nor a product of lateral preference. Dominant hand had higher number of injuries in artistic gymnasts. Rotational preference is independent of laterality, number of injuries and nationality.Keywords: sports injury, rotational preference, gymnastics, handedness
Procedia PDF Downloads 1192627 The Salespeople's Reactions to Customer Sexual Harassment: A Case Study of Taiwan's Life Insurance Industry
Authors: Yi-Ling Lin, Lu-Ming Tseng
Abstract:
Customer sexual harassment is recognized as a serious problem in the personal selling industry. At a personal level, customer sexual harassment could have very negative impacts on the salespeople's physical and mental health. At the organizational level, customer sexual harassment is destructive in terms of organizational reputation. Therefore, this research takes Taiwan's life insurance salesperson as the research sample and explores the impacts of customer power and perceived behavioral control on the life insurance salespeople's whistleblowing intentions to report quid pro quo and hostile work environment types of customer sexual harassment. This study then investigates how personal factors (such as gender difference) may relate to the intentions. Questionnaires are often used as a data collection instrument in studies on workplace sexual harassment. This study collects data through questionnaire surveys, and the research sample of this research is the full-time life insurance salespeople in Taiwan. The hypotheses are examined by using PLS regression approach. The main results show that the types of customer sexual harassment, customer power, and gender are related to the whistleblowing intentions. To our best knowledge, this is the first empirical study to test the relationships among customer reward power, customer coercive power, perceived behavioral control, and the salespeople's whistleblowing intentions toward customer sexual harassment. The findings may provide some implications for the researchers and official authorities.Keywords: customer sexual harassment, life insurance salespeople, perceived behavioral control, PLS regression
Procedia PDF Downloads 1282626 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform
Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu
Abstract:
Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks
Procedia PDF Downloads 2322625 Use of Front-Face Fluorescence Spectroscopy and Multiway Analysis for the Prediction of Olive Oil Quality Features
Authors: Omar Dib, Rita Yaacoub, Luc Eveleigh, Nathalie Locquet, Hussein Dib, Ali Bassal, Christophe B. Y. Cordella
Abstract:
The potential of front-face fluorescence coupled with chemometric techniques, namely parallel factor analysis (PARAFAC) and multiple linear regression (MLR) as a rapid analysis tool to characterize Lebanese virgin olive oils was investigated. Fluorescence fingerprints were acquired directly on 102 Lebanese virgin olive oil samples in the range of 280-540 nm in excitation and 280-700 nm in emission. A PARAFAC model with seven components was considered optimal with a residual of 99.64% and core consistency value of 78.65. The model revealed seven main fluorescence profiles in olive oil and was mainly associated with tocopherols, polyphenols, chlorophyllic compounds and oxidation/hydrolysis products. 23 MLR regression models based on PARAFAC scores were generated, the majority of which showed a good correlation coefficient (R > 0.7 for 12 predicted variables), thus satisfactory prediction performances. Acid values, peroxide values, and Delta K had the models with the highest predictions, with R values of 0.89, 0.84 and 0.81 respectively. Among fatty acids, linoleic and oleic acids were also highly predicted with R values of 0.8 and 0.76, respectively. Factors contributing to the model's construction were related to common fluorophores found in olive oil, mainly chlorophyll, polyphenols, and oxidation products. This study demonstrates the interest of front-face fluorescence as a promising tool for quality control of Lebanese virgin olive oils.Keywords: front-face fluorescence, Lebanese virgin olive oils, multiple Linear regressions, PARAFAC analysis
Procedia PDF Downloads 4532624 Determinants of Travel to Western Countries by Kuwaiti Nationals
Authors: Yvette Reisinger
Abstract:
Relatively little is known about the Arab travel market, especially the outbound travel market from Arab countries in the Middle East. The Kuwaiti travel market is the smallest yet fastest growing in the Gulf Cooperation Council (GCC) region. The Kuwaiti travel market represents a great potential for the international tourism industry. Kuwaiti nationals have a very high spending power due to the Kuwaiti dinar being the highest-valued currency unit in the world. Although Europe, North America, and Asia/Pacific try to attract the Arab tourist market the number of Kuwaiti travellers attracted to these destinations is very low. The success in attracting the Kuwaiti travel market to Western countries must be guided by an analysis of the factors that affect its travel decisions. The objective of the study is to identify major factors that influence Kuwaiti nationals’ intentions to travel to Western countries. A model is developed and empirically tested on a sample of 343 Kuwaiti nationals. A series of regression analyses are run to determine the effects of different factors on Kuwaiti’s travel decisions. A Herman’s single factor test and Durbin-Watson test are used to assess the validity of the regression model. Analysis is controlled for socio-demographics. The results show that the Muslim friendly amenities and destination cognitive image exert significant effects on Kuwaiti nationals’ intentions to travel to Western countries. The study provides a better understanding of the factors that attract Kuwaiti tourists to Western countries. By knowing what encourages Kuwaitis to travel to Western countries marketers can plan and promote these countries accordingly. The study provides a foundation of future empirical research into the Kuwaiti/Arab travel market.Keywords: Kuwaiti travel market, travel decisions, Western countries
Procedia PDF Downloads 1922623 Teachers’ Intention to Leave: Educational Policies as External Stress Factor
Authors: A. Myrzabekova, D. Nurmukhamed, K. Nurumov, A. Zhulbarissova
Abstract:
It is widely believed that stress can affect teachers’ intention to change the workplace. While existing research primarily focuses on the intrinsic sources of stress stemming from the school climate, the current attempt analyzes educational policies as one of the determinants of teacher’s intention to leave schools. In this respect, Kazakhstan presents a unique case since the country endorsed several educational policies which directly impacted teaching and administrative practices within schools. Using Teaching and Learning International Survey 2018 (TALIS) data with the country specific questionnaire, we construct a statistical measure of stress caused by the implementation of educational policies and test its impact on teacher’s intention to leave through the logistic regression. In addition, we control for sociodemographic, professional, and students related covariates while considering the intrinsic dimension of stress stemming from the school climate. Overall, our results suggest that stress caused by the educational policies has a statistically significant positive effect on teachers’ intentions to transfer between schools. Both policy makers and educational scholars could find these results beneficial. For the former careful planning and addressing the negative effects of the educational policies is critical for the sustainability of the educational process. For the latter, accounting for exogenous sources of stress can lead to a more complete understanding of why teachers decide to change their schools.Keywords: educational policies, Kazakhstani teachers, logistic regression factor analysis, sustainability education TALIS, teacher turnover intention, work stress
Procedia PDF Downloads 1092622 Child Homicide Victimization and Community Context: A Research Note
Authors: Bohsiu Wu
Abstract:
Among serious crimes, child homicide is a rather rare event. However, the killing of children stirs up a special type of emotion in society that pales other criminal acts. This study examines the relevancy of three possible community-level explanations for child homicide: social deprivation, female empowerment, and social isolation. The social deprivation hypothesis posits that child homicide results from lack of resources in communities. The female empowerment hypothesis argues that a higher female status translates into a higher level of capability to prevent child homicide. Finally, the social isolation hypothesis regards child homicide as a result of lack of social connectivity. Child homicide data, aggregated by US postal ZIP codes in California from 1990 to 1999, were analyzed with a negative binomial regression. The results of the negative binomial analysis demonstrate that social deprivation is the most salient and consistent predictor among all other factors in explaining child homicide victimization at the ZIP-code level. Both social isolation and female labor force participation are weak predictors of child homicide victimization across communities. Further, results from the negative binomial regression show that it is the communities with a higher, not lower, degree of female labor force participation that are associated with a higher count of child homicide. It is possible that poor communities with a higher level of female employment have a lesser capacity to provide the necessary care and protection for the children. Policies aiming at reducing social deprivation and strengthening female empowerment possess the potential to reduce child homicide in the community.Keywords: child homicide, deprivation, empowerment, isolation
Procedia PDF Downloads 194