Search results for: enzyme linked immunosorbent assay (ELISA)
2910 In situ Growth of ZIF-8 on TEMPO-Oxidized Cellulose Nanofibril Film and Coated with Pectin for pH and Enzyme Dual-Responsive Controlled Release Active Packaging
Authors: Tiantian Min, Chuanxiang Cheng, Jin Yue
Abstract:
The growth and reproduction of microorganisms in food packaging can cause food decay and foodborne diseases, which pose a serious threat to the health of consumers and even cause serious economic losses. Active food packaging containing antibacterial bioactive compounds is a promising strategy for extending the shelf life of products and maintaining the food quality, as well as reducing the food waste. However, most active packaging can only act as slow-release effect for antimicrobials, which causes the release rate of antimicrobials not match the growth rate of microorganisms. Stimuli-responsive active packaging materials based on biopolymeric substrates and bioactive substances that respond to some biological and non-biological trigger factors provide more opportunities for fresh food preservation. The biological stimuli factors such as relative humidity, pH and enzyme existed in the exudate secreted by microorganisms have been expected to design food packaging materials. These stimuli-responsive materials achieved accurate release or delivery of bioactive substances at specific time and appropriate dose. Recently, metal-organic-frameworks (MOFs) nanoparticles become attractive carriers to enhance the efficiency of bioactive compounds or drugs. Cellulose nanofibrils have been widely applied for film substrates due to their biodegradability and biocompatibility. The abundant hydroxyl groups in cellulose can be oxidized to carboxyl groups by TEMPO, making it easier to anchoring MOFs and to be further modification. In this study, a pH and enzyme dual-responsive CAR@ZIF-8/TOCNF/PE film was fabricated by in-situ growth of ZIF-8 nanoparticles onto TEMPO-oxidized cellulose (TOCNF) film and further coated with pectin (PE) for stabilization and controlled release of carvacrol (CAR). The enzyme triggered release of CAR was achieved owing to the degradation of pectin by pectinase secreted by microorganisms. Similarly, the pH-responsive release of CAR was attributed to the unique skeleton degradation of ZIF-8, further accelerating the release of CAR from the topological structure of ZIF-8. The composite film performed excellent crystallinity and adsorb ability confirmed by X-ray diffraction and BET analysis, and the inhibition efficiency against Escherichia coli, Staphylococcus aureus and Aspergillus niger reached more than 99%. The composite film was capable of releasing CAR when exposure to dose-dependent enzyme (0.1, 0.2, and 0.3 mg/mL) and acidic condition (pH = 5). When inoculated 10 μL of Aspergillus niger spore suspension on the equatorial position of mango and raspberries, this composite film acted as packaging pads effectively inhibited the mycelial growth and prolonged the shelf life of mango and raspberries to 7 days. Such MOF-TOCNF based film provided a targeted, controlled and sustained release of bioactive compounds for long-term antibacterial activity and preservation effect, which can also avoid the cross-contamination of fruits.Keywords: active food packaging, controlled release, fruit preservation, in-situ growth, stimuli-responsive
Procedia PDF Downloads 652909 Relationship of Epidermal Growth Factor Receptor Gene Mutations Andserum Levels of Ligands in Non-Small Cell Lung Carcinoma Patients
Authors: Abdolamir Allameh, Seyyed Mortaza Haghgoo, Adnan Khosravi, Esmaeil Mortaz, Mihan Pourabdollah-Toutkaboni, Sharareh Seifi
Abstract:
Non-Small Cell Lung Carcinoma (NSCLC) is associated with a number of gene mutations in epidermal growth factor receptor (EGFR). The prognostic significance of mutations in exons 19 and 21, together with serum levels of EGFR, amphiregulin (AR), and Transforming Growth Factor-alpha (TGF-α) are implicated in diagnosis and treatment. The aim of this study was to examine the relationship of EGFR mutations in selected exons with the expression of relevant ligands in sera samples of NSCLC patients. For this, a group of NSCLC patients (n=98) referred to the hospital for lung surgery with a mean age of 59±10.5 were enrolled (M/F: 75/23). Blood specimen was collected from each patient. Besides, formalin fixed paraffin embedded tissues were processed for DNA extraction. Gene mutations in exons 19 and 21 were detected by direct sequencing, following DNA amplification which was done by PCR (Polymerase Chain Reaction). Also, serum levels of EGFR, AR, and TGF-α were measured by ELISA. The results of our study show that EGFR mutations were present in 37% of Iranian NSCLC patients. The most frequently identified mutations were deletions in exon 19 (72.2%) and substitutions in exon 21 (27.8%). The most frequently identified alteration, which is considered as a rare mutation, was the E872K mutation in exon 21, which was found in 90% (9 out of 10) cases. EGFR mutation detected in exon 21 was significantly (P<0.05) correlated with the levels of its ligands, EGFR and TGF-α in serum samples. Furthermore, it was found that increased serum AR (>3pg/ml) and TGF-α (>10.5 pg/ml) were associated with shorter overall survival (P<0.05). The results clearly showed a close relationship between EGFR mutations and serum EGFR and serum TGF-α. Increased serum EGFR was associated with TGF-α and AR and linked to poor prognosis of NSCLC. These findings are implicated in clinical decision-making related to EGFR-Tyrosine kinase inhibitors (TKIs).Keywords: lung cancer, Iranian patients, epidermal growth factor, mutation, prognosis
Procedia PDF Downloads 802908 The Methods of Immobilization of Laccase for Direct Transfer in an Enzymatic Fuel Cell
Authors: Afshin Farahbakhsh, Hoda Khodadadi
Abstract:
In this paper, we compare five methods of biological fuel cell fabrication by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. As a result of biofuel cell laccase with graphite nanofibers, carbon surface (PAMAN) on the pt/hpg electrode, graphite sheets MWCNT and with (PG) and (MWCNT) showed, respectively. Describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. The laccase-based biocathodes prepared either with the crude extract or with the purified enzyme can provide electrochemically active and stable biomaterials. When the device was fed with transdermal extracts, containing only 30μM of glucose, the average peak power was proportionally lower (0.004mW). The result of biofuel cell with graphite nanofibers showed the enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol and the maximum current density observed for E2electrode was 228.94mAcm.Keywords: enzymatic electrode, fuel cell, immobilization, laccase
Procedia PDF Downloads 2622907 Curcumin and Its Analogues: Potent Natural Antibacterial Compounds against Staphylococcus aureus
Authors: Prince Kumar, Shamseer Kulangara Kandi, Diwan S. Rawat, Kasturi Mukhopadhyay
Abstract:
Staphylococcus aureus is the most pathogenic of all staphylococci, a major cause of nosocomial infections, and known for acquiring resistance towards various commonly used antibiotics. Due to the widespread use of synthetic drugs, clinicians are now facing a serious threat in healthcare. The increasing resistance in staphylococci has created a need for alternatives to these synthetic drugs. One of the alternatives is a natural plant-based medicine for both disease prevention as well as the treatment of chronic diseases. Among such natural compounds, curcumin is one of the most studied molecules and has been an integral part of traditional medicines and Ayurveda from ancient times. It is a natural polyphenolic compound with diverse pharmacological effects, including anti-inflammatory, antioxidant, anti-cancerous and antibacterial activities. In spite of its efficacy and potential, curcumin has not been approved as a therapeutic agent yet, because of its low solubility, low bioavailability, and rapid metabolism in vivo. The presence of central β-diketone moiety in curcumin is responsible for its rapid metabolism. To overcome this, in the present study, curcuminoids were designed by modifying the central β-diketone moiety of curcumin into mono carbonyl moiety and their antibacterial potency against S. aureus ATCC 29213 was determined. Further, the mode of action and hemolytic activity of the most potent curcuminoids were studied. Minimum inhibitory concentration (MIC) and in vitro killing kinetics were used to study the antibacterial activity of the designed curcuminoids. For hemolytic assay, mouse Red blood cells were incubated with curcuminoids and hemoglobin release was measured spectrophotometrically. The mode of action of curcuminoids was analysed by membrane depolarization assay using membrane potential sensitive dye 3,3’-dipropylthiacarbocyanine iodide (DiSC3(5)) through spectrofluorimetry and membrane permeabilization assay using calcein-AM through flow cytometry. Antibacterial screening of the designed library (61 curcuminoids) revealed excellent in vitro potency of six compounds against S. aureus (MIC 8 to 32 µg/ml). Moreover, these six compounds were found to be non-hemolytic up to 225 µg/ml that is much higher than their corresponding MIC values. The in vitro killing kinetics data showed five of these lead compounds to be bactericidal causing >3 log reduction in the viable cell count within 4 hrs at 5 × MIC while the sixth compound was found to be bacteriostatic. Depolarization assay revealed that all the six curcuminoids caused depolarization in their corresponding MIC range. Further, the membrane permeabilization assay showed that all the six curcuminoids caused permeabilization at 5 × MIC in 2 hrs. This membrane depolarization and permeabilization caused by curcuminoids found to be in correlation with their corresponding killing efficacy. Both these assays point out that membrane perturbations might be a primary mode of action for these curcuminoids. Overall, the present study leads us six water soluble, non-hemolytic, membrane-active curcuminoids and provided an impetus for further research on therapeutic use of these lead curcuminoids against S. aureus.Keywords: antibacterial, curcumin, minimum inhibitory concentration , Staphylococcus aureus
Procedia PDF Downloads 1702906 Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies
Authors: Nadine Wiesmann, Melanie Viel, Christoph Buhr, Rachel Tanner, Wolfgang Tremel, Juergen Brieger
Abstract:
Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics.Keywords: metal oxide nanoparticles, nanomedicine, overcome resistances against classical treatment options, zinc oxide nanoparticles
Procedia PDF Downloads 1292905 Antibacterial and Antioxidant Activities of Artemisia herba-alba Asso Essential Oil Growing in M’sila (Algeria)
Authors: Asma Meliani, S. Lakehal, F. Z. Benrebiha, C. Chaouia
Abstract:
There is an increasing interest in phytochemicals as new source of natural antioxidant and antimicrobial agents. Plants essential oils have come more into the focus of phytomedicine. Many researchers have reported various biological and/or pharmacological properties of Artemisia herba alba Asso essential oil. The present study describes antimicrobial and antioxidant properties of Artemisia herba alba Asso essential oil. Artemisia herba alba Asso essential oil obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (M’sila) was analyzed by GC-MS. The essential oil yield of the study was 0.7%. The major components were found to be camphor, chrysanthenone et 1,8-cineole. The antimicrobial activity of the essential oil was tested against four bacteria (Gram-negative and Gram-positive) and three fungi using the diffusion method and by determining the inhibition zone. The oil was found to have significant antibacterial activity. In addition, antioxidant activity was determined by 1, 1-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric reducing (FRAP) assay and β-carotene bleaching test, and high activity was found for Artemisia herba-alba oil.Keywords: Artemisia herba-alba, essential oil, antibacterial activity, antioxidant activity
Procedia PDF Downloads 3332904 Effects of Exhaust Gas Emitted by the Fleet on Public Health in the Region of Annaba (Algeria): Ecotoxicological Test on Durum Wheat (Triticum durum Desf.)
Authors: Aouissi Nora, Meksem Leila
Abstract:
This work focused on the study of air pollution generated by the transport sector in the region of Annaba. Our study is based on two parts: the first one concerns an epidemiological investigation in the area of Annaba situated in the east Algerian coast, which deals with the development of the fleet and its impact on public health. To get a more precise idea of the impact of road traffic on public health, we consulted the computing center office of the National Social Insurance Fund. The information we were given by this office refers to the number of reported asthma and heart disease after medical examination during the period 2006-2010. The second part was devoted to the study of the toxicity of exhaust gases on some physical and biochemical parameters of durum wheat (Triticum durum Desf.). After germination and three-leaf stage, the pots are placed in a box of volume (0,096 m3) having an input which is linked directly to the exhaust pipe of a truck, and an outlet to prevent asphyxiation plant. The experience deals with 30 pots: 10 pots are exposed for 5 minutes to exhaust smoke; the other 10 are exposed for 15 minutes, and the remaining 10 for 30 minutes. The epidemiological study shows that the levels of pollutants emitted by the fleet are responsible for the increase of people respiratory and cardiovascular diseases. As for biochemical analyses of vegetation, they clearly show the toxicity of pollutants emitted by the exhaust gases, with an increase in total protein, proline and stimulation of detoxification enzyme (catalase).Keywords: air pollution, toxicity, epidemiology, biochemistry
Procedia PDF Downloads 3352903 Effect of Enzymatic Modification on the Crystallinity of Cellulose Pulps
Authors: J. Janicki, M. Rom, C. Slusarczyk, J. Fabia, M. Siika-aho, K. Marjamaa, K. Kruus, K. Langfelder, C. Steel, M. Paloheimo, T. Puranen, S. Mäkinen, D. Wawro
Abstract:
The cellulose is one of the most abundant polymers in the world, however, its application in the high-end value products such as films or fibres, it triggered by the cellulose properties. The noticeable presence of hydrogen bonding reflected with partially crystalline structure makes the cellulose insoluble in common solvents and not meltable. The existing technologies, such as viscose process, suffer from environmental and economical problems, because of the risk of harmful chemicals liberation during the spinning process. The enzymatic modification of cellulose with endoglucanase makes it directly alkali soluble in NaOH solution, giving the opportunities for film and fibers formation. As the effect of enzymatic treatment, there are observed changes in crystalline structure and accompanying changes of the affinity of cellulose to water, demonstrated by water retention value. The objective of the project ELMO - Novel carbohydrate modifying enzymes for fibre modification is is to develop new enzyme products for modification of dissolving grade pulps. The aim is to increase the reactivity of dissolving grade pulps and remove residual hemicellulose. The scientific aim of this paper is to present the effect of enzymatic treatment on the crystallinity and affinity to water of cellulose pulps modified with enzymes.Keywords: cellulose, crystallinity, WAXS, enzyme
Procedia PDF Downloads 2372902 Antibacterial and Antioxidant Properties of Artemisia herba-alba Asso Essential Oil Growing in M’sila, Algeria
Authors: Asma Meliani, S. Lakehal, F. Z. Benrebiha, C. Chaouia
Abstract:
There is an increasing interest in phytochemicals as new source of natural antioxidant and antimicrobial agents. Plants essential oils have come more into the focus of phytomedicine. Many researchers have reported various biological and/or pharmacological properties of Artemisia herba alba Asso essential oil. The present study describes antimicrobial and antioxidant properties of Artemisia herba alba Asso essential oil. Artemisia herba alba Asso essential oil obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (M’sila) was analyzed by GC-MS. The essential oil yield of the study was 0.7 %. The major components were found to be camphor, chrysanthenone et 1,8-cineole. The antimicrobial activity of the essential oil was tested against four bacteria (Gram-negative and Gram-positive) and one fungi using the diffusion method and by determining the inhibition zone. The oil was found to have significant antibacterial activity. In addition, antioxidant activity was determined by 1,1-diphenyl-1-picrylhydrazyl (DPPH) assay, ferric reducing (FRAP) assay and β-carotene bleaching test, and high activity was found for Artemisia herba-alba oil.Keywords: Artemisia herba-alba, essential oil, antibacterial activity, antioxidant activity
Procedia PDF Downloads 4712901 Sardine Oil as a Source of Lipid in the Diet of Giant Freshwater Prawn (Macrobrachium rosenbergii)
Authors: A. T. Ramachandra Naik, H. Shivananda Murthy, H. n. Anjanayappa
Abstract:
The freshwater prawn, Macrobrachium rosenbergii is a more popular crustacean cultured widely in monoculture system in India. It has got high nutritional value in the human diet. Hence, understanding its enzymatic and body composition is important in order to judge its flesh quality. Fish oil specially derived from Indian oil sardine is a good source of highly unsaturated fatty acid and lipid source in fish/prawn diet. A 35% crude protein diet with graded levels of Sardine oil as a source of fat was incorporated at four levels viz, 2.07, 4.07, 6.07 and 8.07% maintaining a total lipid level of feed at 8.11, 10.24, 12.28 and 14.33% respectively. Diet without sardine oil (6.05% total lipid) was served as basal treatment. The giant freshwater prawn, Macrobrachium rosenbergii was used as test animal and the experiment was lost for 112 days. Significantly, higher gain in weight of prawn was recorded in the treatment with 6.07% sardine oil incorporation followed by higher specific growth rate, food conversion rate and protein efficiency ratio. The 8.07% sardine oil diet produced the highest RNA: DNA ratio in the prawn muscle. Digestive enzyme analyses in the digestive tract and mid-gut gland showed the greatest activity in prawns fed the 8.07% diet.Keywords: digestive enzyme, fish diet, Macrobrachium rosenbergii, sardine oil
Procedia PDF Downloads 3302900 Change of Substrate in Solid State Fermentation Can Produce Proteases and Phytases with Extremely Distinct Biochemical Characteristics and Promising Applications for Animal Nutrition
Authors: Paula K. Novelli, Margarida M. Barros, Luciana F. Flueri
Abstract:
Utilization of agricultural by-products, wheat ban and soybean bran, as substrate for solid state fermentation (SSF) was studied, aiming the achievement of different enzymes from Aspergillus sp. with distinct biological characteristics and its application and improvement on animal nutrition. Aspergillus niger and Aspergillus oryzea were studied as they showed very high yield of phytase and protease production, respectively. Phytase activity was measure using p-nitrophenilphosphate as substrate and a standard curve of p-nitrophenol, as the enzymatic activity unit was the quantity of enzyme necessary to release one μmol of p-nitrophenol. Protease activity was measure using azocasein as substrate. Activity for phytase and protease substantially increased when the different biochemical characteristics were considered in the study. Optimum pH and stability of the phytase produced by A. niger with wheat bran as substrate was between 4.0 - 5.0 and optimum temperature of activity was 37oC. Phytase fermented in soybean bran showed constant values at all pHs studied, for optimal and stability, but low production. Phytase with both substrates showed stable activity for temperatures higher than 80oC. Protease from A. niger showed very distinct behavior of optimum pH, acid for wheat bran and basic for soybean bran, respectively and optimal values of temperature and stability at 50oC. Phytase produced by A. oryzae in wheat bran had optimum pH and temperature of 9 and 37oC, respectively, but it was very unstable. On the other hand, proteases were stable at high temperatures, all pH’s studied and showed very high yield when fermented in wheat bran, however when it was fermented in soybean bran the production was very low. Subsequently the upscale production of phytase from A. niger and proteases from A. oryzae were applied as an enzyme additive in fish fed for digestibility studies. Phytases and proteases were produced with stable enzyme activity of 7,000 U.g-1 and 2,500 U.g-1, respectively. When those enzymes were applied in a plant protein based fish diet for digestibility studies, they increased protein, mineral, energy and lipids availability, showing that these new enzymes can improve animal production and performance. In conclusion, the substrate, as well as, the microorganism species can affect the biochemical character of the enzyme produced. Moreover, the production of these enzymes by SSF can be up to 90% cheaper than commercial ones produced with the same fungi species but submerged fermentation. Add to that these cheap enzymes can be easily applied as animal diet additives to improve production and performance.Keywords: agricultural by-products, animal nutrition, enzymes production, solid state fermentation
Procedia PDF Downloads 3262899 Suitability Evaluation of CNW as Scaffold for Osteoblast
Authors: Hoo Cheol Lee, Dae Seung Kim, Sang Myung Jung, Gwang Heum Yoon, Hwa Sung Shin
Abstract:
Loss of bone tissue can occur due to a bone tissue disease and aging or fracture. Renewable formation of bone is mainly made by its differentiation and metabolism. For this reason, osteoblasts have been studied for regeneration of bone tissue. So, tissue engineering has attracted attention as a recovery means. In tissue engineering, a particularly important factor is a scaffold that supports cell growth. For osteoblast scaffold, we used the cellulose nanowhisker (CNW) extracted from marine organism. CNW is one of an abundant material obtained from a number of plants and animals. CNW is polymer consisting of monomer cellulose and this composition offers biodegradability and biocompatibility to CNW. Mechanical strength of CNW is superior to the existing natural polymers. In addition, substances of marine origin have a low risk of secondary infection by bacteria and pathogen in contrast with those of land-derived. For evaluating its suitability as an osteoblast scaffold, we fabricate CNW film for osteoblast culture and performed the MTT assay and ALP assay to confirm its cytotoxicity and effect on differentiation. Taking together these results, we assessed CNW is a potential candidate of a material for bone tissue regeneration.Keywords: bone regeneration, cellulose nanowhisker, marine derived material, osteoblast
Procedia PDF Downloads 3482898 Nonclassical Antifolates: Synthesis, Biological Evaluation and Molecular Modeling Study of Some New Quinazolin-4-One Analogues as Dihydrofolate Reductase Inhibitors
Authors: Yomna Ibrahim El-Gazzar, Hussien Ibrahim El-Subbagh, Hanan Hanaa Georgey, Ghada S. Hassan Hassan
Abstract:
Dihydrofolate reductase (DHFR) is an enzyme that has pivotal importance in biochemistry and medicinal chemistry. It catalyzes the reduction of dihydrofolate to tetrahydrofolate and intimately couples with thymidylate synthase. Thymidylate synthase is a crucial enzyme that catalyzes the reductive methylation of (dUMP) to (dTMP) utilizing N5, N10-methylenetetrahydrofolate as a cofactor. A new series of 2-substituted thio-quinazolin-4-one analogs was designed that possessed electron withdrawing or donating functional groups (Cl or OCH3) at position 6- or 7-, 4-methoxyphenyl function at position 3-.The thiol function is used to connect to either 1,2,4-triazole, or 1,3,4-thiadiazole via a methylene bridge. Most of the functional groups designed to be accommodated on the quinazoline ring such as thioether, alkyl to increase lipid solubility of polar compounds, a character very much needed in the nonclassical DHFR inhibitors. The target compounds were verified with spectral data and elemental analysis. DHFR inhibitions, as well as antitumor activity, were applied on three cell lines (MCF-7, CACO-2, HEPG-2).Keywords: nonclassical antifolates, DHFR Inhibitors, antitumor activity, quinazoline ring
Procedia PDF Downloads 3952897 Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology
Authors: Noura El-Ahmady El-Naggar
Abstract:
Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days.Keywords: Streptomyces olivaceus NEAE-119, glutaminase free L-asparaginase, production, Plackett-Burman design, central composite face-centered design, 16S rRNA, scanning electron microscope
Procedia PDF Downloads 3652896 Assessment of Sperm Aneuploidy Using Advanced Sperm Fish Technique in Infertile Patients
Authors: Archana S., Usha Rani G., Anand Balakrishnan, Sanjana R., Solomon F., Vijayalakshmi J.
Abstract:
Background: There is evidence that male factors contribute to the infertility of up to 50% of couples, who are evaluated and treated for infertility using advanced assisted reproductive technologies. Genetic abnormalities, including sperm chromosome aneuploidy as well as structural aberrations, are one of the major causes of male infertility. Recent advances in technology expedite the evaluation of sperm aneuploidy. The purpose of the study was to de-termine the prevalence of sperm aneuploidy in infertile males and the degree of association between DNA fragmentation and sperm aneuploidy. Methods: In this study, 75 infertile men were included, and they were divided into four abnormal groups (Oligospermia, Terato-spermia, Asthenospermia and Oligoasthenoteratospermia (OAT)). Men with children who were normozoospermia served as the control group. The Fluorescence in situ hybridization (FISH) method was used to test for sperm aneuploidy, and the Sperm Chromatin Dispersion Assay (SCDA) was used to measure the fragmentation of sperm DNA. Spearman's correla-tion coefficient was used to evaluate the relationship between sperm aneuploidy and sperm DNA fragmentation along with age. P < 0.05 was regarded as significant. Results: 75 partic-ipants' ages varied from 28 to 48 years old (35.5±5.1). The percentage of spermatozoa bear-ing X and Y was determined to be statistically significant (p-value < 0.05) and was found to be 48.92% and 51.18% of CEP X X 1 – nucish (CEP XX 1) [100] and CEP Y X 1 – nucish (CEP Y X 1) [100]. When compared to the rate of DNA fragmentation, it was discovered that infertile males had a greater frequency of sperm aneuploidy. Asthenospermia and OAT groups in sex chromosomal aneuploidy were significantly correlated (p<0.05). Conclusion: Sperm FISH and SCDA assay results showed increased sperm aneuploidy frequency, and DNA fragmentation index in infertile men compared with fertile men. There is a significant relationship observed between sperm aneuploidy and DNA fragmentation in OAT patients. When evaluating male variables and idiopathic infertility, the sperm FISH screening method can be used as a valuable diagnostic tool.Keywords: ale infertility, dfi (dna fragmentation assay) (scd-sperm chromatin dispersion).art (artificial reproductive technology), trisomy, aneuploidy, fish (fluorescence in-situ hybridization), oat (oligoasthoteratospermia)
Procedia PDF Downloads 562895 The Role of the STAT3 Signaling for Melatonergic Synthetic Pathway in the Rat Pineal Gland
Authors: Simona Moravcova, Jiri Novotny, Zdenka Bendova
Abstract:
The pineal gland of the vertebrate brain is a circumventricular organ which serves as a major neuroendocrine gland with the primary function of rhythmic secretion of neurohormone melatonin under the control of the hypothalamic suprachiasmatic nucleus (SCN). Soon after the onset of the darkness, the activity of the key rate-limiting enzyme for melatonin synthesis, arylalkylamine N-acetyltransferase (AANAT), raises due to the increased release of norepinephrine from sympathetic neurons terminating on the parenchymal cells where it binds to β-adrenergic receptors. Melatonin codes the length of the night, and it is well recognized for its anti-inflammatory effects. However, to our knowledge, less is known about the effect of the immune system on the melatonin biosynthesis and the precise role of the STAT3 in the signaling pathway leading to the expression of AANAT. Lipopolysaccharide (LPS) is the essential component in the outer surface membrane of gram-negative bacteria and acts as a strong stimulator of natural and innate immunity. STAT3 acts as an important factor in immune response. Here we investigated the effect of LPS on the components of the melatonergic synthetic pathway in the pineal gland. The experiments were performed both in vivo and in vitro. The changes in AANAT activity were determined by radioenzymatic assay. PCR analyses were carried out to detect aa-nat, icer, spi-3 and stat3 gene expression. From our results, it is apparent that the high basal level of phosphorylated forms of STAT3 can be elevated after systemic as well as in vitro administration of LPS. Our experiments have shown that LPS reduces melatonin synthesis, nevertheless, the activity of AANAT was increased. Moreover, the basal level of phosphorylated STAT3 counteracts β-adrenergic receptor-mediated aa-nat gene expression and sustains its own and spi-3 gene expression. In conclusion, LPS can affect immunomodulators such as melatonin in the pineal gland.Keywords: AANAT, lipopolysaccharide, pineal gland, rat, STAT3
Procedia PDF Downloads 1692894 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase
Authors: Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Juan Carlos Serrato Bermúdez, Carlos Arturo Martínez Riascos
Abstract:
Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.Keywords: β-galactosidase, galactooligosaccharides, inhibition, lactose, Matlab, modeling
Procedia PDF Downloads 3582893 Biological Activities of Protease Inhibitors from Cajanus cajan and Phaseolus limensis
Authors: Tooba N. Shamsi, Romana Perveen, Sadaf Fatima
Abstract:
Protease Inhibitors (PIs) are widespread in nature, produced by animals, plants and microorganisms. They play vital role in various biological activities by keeping a check on activity of proteases. Present study aims to investigate antioxidant and anti-inflammatory properties of PPI from Cajanus cajan (CCTI) and Phaseolus limensis (LBTI). PPI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. The anti-oxidant activity was analyzed by two most common radical scavenging assays of FRAP (ferric reducing antioxidant power) and DPPH (1,1- diphenyl-2-picrylhydrazyl). Also, in-vitro anti-inflammatory activity was evaluated using albumin denaturation assay and membrane stabilization assay at different concentrations. Ascorbic acid and aspirin were used as a standards for antioxidant and anti-inflammatory assays respectively. The PPIs were also checked for antimicrobial activity against a number of bacterial strains. The CCTI and LBTI showed DPPH radical scavenging activity in a concentration–dependent manner with IC50 values 544 µg/ml and 506 µg/ml respectively comparative to ascorbic acid which was 258 µg/ml. Following FRAP assay, it was evaluated that LBTI had 87.5% and CCTI showed 84.4% antioxidant activity, taking value of standard ascorbic acid to be 100%. The PPIs also showed in-vitro anti‐inflammatory activity by inhibiting the heat induced albumin denaturation with IC50 values of 686 µg/ml and 615 µg/ml for CCTI and LBTI respectively compared to the standard (aspirin) which was 70.8 µg/ml. Red blood cells membrane stabilization with IC50 values of 641 µg/ml and 587 µg/ml for CCTI and LBTI respectively against aspirin which showed IC50 value of 70.4 µg/ml. PPIs showed antibacterial activity against 7 known strains while there was apparently no action against fungi.Keywords: Cajanus cajan, Phaseolus limensis, Lima beans, protein protease inhibitor, antioxidant, anti-inflammatory, antimicrobial activity
Procedia PDF Downloads 2982892 Effects of Rice Plant Extracts and Phenolic Allelochemicals on Seedling Growth of Radish
Authors: Mohammad Shamim Hasan Mandal, Phu Minh, Do Tan Khang, Phung Thi Tuyen, Tran Dang Xuan
Abstract:
Rice (Oryza sativa L.) is one of the major crops of Vietnam which has more than thousands of varieties. Many of the local varieties have greater potentiality but they are in danger of extinct. Rice plant contains many secondary metabolites that are allelopathic to other plants. Seven rice varieties were cultivated in the field condition at Hiroshima University, Japan; stems and leaves from each variety were collected later, they were extracted with methanol, hexane, ethyl acetate, butanol, and water. Total phenolic content and total flavonoid contents were high in ethyl acetate extracts. DPPH antioxidant assay results showed that the ethyl acetate extracts had the higher IC50 value. Therefore, the ethyl acetate extracts were selected for laboratory experimentation through petri dish assay. Results showed that the two-local variety Re nuoc and Nan chon completely inhibited the germination of radish seedlings. Further laboratory bioassay and field experimentation will be conducted to validate the laboratory bioassay findings.Keywords: allelopathy, bioassay, Oryza sativa, Raphanus sativus
Procedia PDF Downloads 3622891 Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina
Authors: Jayarama Reddy, Anand S., H., Sundaram, Jeldi Hemachandran
Abstract:
Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.Keywords: biocontrol, bioefficacy, cellulase, chitinase
Procedia PDF Downloads 3792890 Canthin-6-One Alkaloid Inhibits NF-κB and AP-1 Activity: An Inhibitory Action At Transcriptional Level
Authors: Fadia Gafri, Kathryn Mckintosh, Louise Young, Alan Harvey, Simon Mackay, Andrew Paul, Robin Plevin
Abstract:
Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor found originally to play a key role in regulating inflammation. However considerable evidence links this pathway to the suppression of apoptosis, cellular transformation, proliferation and invasion (Aggarwal et al., 2006). Moreover, recent studies have also linked inflammation to cancer progression making NF-κB overall a promising therapeutic target for drug discovery (Dobrovolskaia & Kozlov, 2005). In this study we examined the effect of the natural product canthin-6-one (SU182) as part of a CRUK small molecule drug discovery programme for effects upon the NF-κB pathway. Initial studies demonstrated that SU182 was found to have good potency against the inhibitory kappa B kinases (IKKs) at 30M in vitro. However, at concentrations up to 30M, SU182 had no effect upon TNFα stimulated loss in cellular IκBα or p65 phosphorylation in the keratinocyte cell line NCTC2544. Nevertheless, 30M SU182 reduced TNF-α / PMA-induced NF-κB-linked luciferase reporter activity to (22.9 ± 5%) and (34.6± 3 %, P<0.001) respectively, suggesting an action downstream of IKK signalling. Indeed, SU182 neither decreased NF-κB-DNA binding as assayed by EMSA nor prevented the translocation of p65 (NF-κB) to the nucleus assessed by immunofluorescence and subcellular fractionation. In addition to the inhibition of transcriptional activity of TNFα-induced NF-κB reporter activity SU182 significantly reduced PMA-induced AP-1-linked luciferase reporter activity to about (48± 9% at 30M, P<0.001) . This mode of inhibition was not sufficient to prevent the activation of NF-κB dependent induction of other proteins such as COX-2 and iNOS, or activated MAP kinases (p38, JNK and ERK1/2) in LPS stimulated RAW 264.7 macrophages. Taken together these data indicate the potential for SU182 to interfere with the transcription factors NF-κB and AP-1 at transcriptional level. However, no potential anti-inflammatory effect was indicated, further investigation for other NF-κB dependent proteins linked to survival are also required to identify the exact mechanism of action.Keywords: Canthin-6-one, NF-κB, AP-1, phosphorylation, Nuclear translocation, DNA-binding activity, inflammatory proteins.
Procedia PDF Downloads 4582889 Effects of Benzo(k)Fluoranthene, a Polycyclic Aromatic Hydrocarbon, on DNA Damage and Oxidative Stress in Marine Gastropod Morula Granulata
Authors: Jacky Bhagat, Baban S Ingole
Abstract:
In this study, in vivo experiments were carried out to investigate the effects of a toxic polycyclic aromatic hydrocarbon (PAH), benzo(k)fluoranthene (B[k]F), on marine gastropod, Morula granulata collected from Goa, west coast of India. Snails were exposed to different concentrations of B(k)F (1, 10, 25 and 50 µg/L) for 96 h. The genotoxic effects were evaluated by measuring DNA strand breaks using alkaline comet assay and oxidative stress were measured with the help of battery of biomarkers such as superoxide dismutase (SOD) catalase (CAT), glutathione-s-transferase (GST), and lipid peroxidation (LPO). Concentration-dependent increase in percentage tail DNA (TDNA) was observed in snails exposed to B(k)F. Exposure concentrations above 1 µg/L of B(k)F, showed significant increase in SOD activity and LPO value in snails. After 96 h, SOD activity were found to be doubled for 50 µg/L of B(k)F with reference to control. Significant increase in CAT and GST activity was observed at all exposure conditions at the end of the exposure time. Our study showed that B(k)F induces oxidative stress in snails which further lead to genotoxic damage.Keywords: benzo(k)fluoranthene, comet assay, gastropod, oxidative stress
Procedia PDF Downloads 3452888 Biological Activity of Bilberry Pomace
Authors: Gordana S. Ćetković, Vesna T. Tumbas Šaponjac, Sonja M. Djilas, Jasna M. Čanadanović-Brunet, Sladjana M. Stajčić, Jelena J. Vulić
Abstract:
Bilberry is one of the most important dietary sources of phenolic compounds, including anthocyanins, phenolic acids, flavonol glycosides and flavan-3-ols. These phytochemicals have different biological activities and therefore may improve our health condition. Also, anthocyanins are interesting to the food industry as colourants. In the present study, bilberry pomace, a by-product of juice processing, was used as a potential source of bioactive compounds. The contents of total phenolic acids, flavonoids and anthocyanins in bilberry pomace were determined by HPLC/UV-Vis. The biological activities of bilberry pomace were evaluated by reducing power (RP) and α-glucosidase inhibitory potential (α-GIP), and expressed as RP0.5 value (the effective concentration of bilberry pomace extract assigned at 0.5 value of absorption) and IC50 value (the concentration of bilberry pomace extract necessary to inhibit 50% of α-glucosidase enzyme activity). Total phenolic acids content was 807.12 ± 25.16 mg/100 g pomace, flavonoids 54.36 ± 1.83mg/100 g pomace and anthocyanins 3426.18 ± 112.09 mg/100 g pomace. The RP0.5 value of bilberry pomace was 0.38 ± 0.02 mg/ml, while IC50 value was 1.82 ± 0.11 mg/ml. These results have revealed the potential for valorization of bilberry juice production by-products for further industrial use as a rich source of bioactive compounds and natural colourants (mainly anthocyanins).Keywords: bilberry pomace, phenolics, antioxidant activity, reducing power, α-glucosidase enzyme activity
Procedia PDF Downloads 5992887 Rauvolfine B Isolated from the Bark of Rauvolfia reflexa (Apocynaceae) Induces Apoptosis through Activation of Caspase-9 Coupled with S Phase Cell Cycle Arrest
Authors: Mehran Fadaeinasab, Hamed Karimian, Najihah Mohd Hashim, Hapipah Mohd Ali
Abstract:
In this study, three indole alkaloids namely; rauvolfine B, macusine B, and isoreserpiline have been isolated from the dichloromethane crude extract of Rauvolfia reflexa bark (Apocynaceae). The structural elucidation of the isolated compounds has been performed using spectral methods such as UV, IR, MS, 1D, and 2D NMR. Rauvolfine B showed anti proliferation activity on HCT-116 cancer cell line, its cytotoxicity induction was observed using MTT assay in eight different cell lines. Annexin-V is serving as a marker for apoptotic cells and the Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS). Apoptosis was confirmed by using caspase-8 and -9 assays. Cell cycle arrest was also investigated using flowcytometric analysis. rauvolfine B had exhibited significantly higher cytotoxicity against HCT-116 cell line. The treatment significantly arrested HCT-116 cells in the S phase. Together, the results presented in this study demonstrated that rauvolfine B inhibited the proliferation of HCT-116 cells and programmed cell death followed by cell cycle arrest.Keywords: apocynacea, indole alkaloid, apoptosis, cell cycle arrest
Procedia PDF Downloads 3352886 Synthetic Coumarin Derivatives and Their Anticancer Properties
Authors: Kabange Kasumbwe, Viresh Mohanlall, Bharti Odhav, Venu Narayanaswamy
Abstract:
Coumarins are naturally occurring plant metabolites known for their pharmacological properties such as anticoagulant, antimicrobial, anticancer, antioxidant, anti-inflammatory and antiviral properties. The pharmacological and biochemical properties and curative applications of coumarins depend on the substitution around the coumarin core structure. In the present study, seven halogenated coumarins CMRN1-CMRN7 were synthesized and evaluated for their anticancer activity. The cytotoxicity potential of the test compounds was evaluated against UACC62 (Melanoma), MCF-7 (Breast cancer) and PBM (Peripheral Blood Mononuclear) cell lines using MTT assay keeping doxorubicin as standard drug. The apoptotic potential of the coumarin compounds was evaluated against UACC62 (Melanoma) cell by assessing their morphological changes, membrane change, mitochondria membrane potential; pro-apoptotic changes were investigated using the AnnexinV-PI staining, JC-1, caspase-3 enzyme kits respectively on flow cytometer. The synthetic coumarin has strongly suppressed the cell proliferation of UACC-62 (Melanoma) and MCF-7 (Breast) Cancer cells, the higher toxicity of these compounds against UACC-62 (Melanoma) and MCF-7 (Breast) were CMRN3, CMRN4, CMRN5, CMRN6. However, compounds CMRN1, CMRN2, and CMRN7 had no significant inhibitory effect. Furthermore the active compounds CMRN3, CMRN4, CMRN5, CMRN6 exerted antiproliferative effects through apoptosis induction against UACC-62 (Melanoma), suggesting their potential could be considered as attractive lead molecules in the future for the development of potential anticancer agents since one of the important criteria in the development of therapeutic drugs for cancer treatment is to have high selectivity and less or no side-effects on normal cells and these compounds had no inhibitory effect against the PBMC cells.Keywords: coumarin, MTT, apoptosis, cytotoxicity
Procedia PDF Downloads 2392885 hsa-miR-1204 and hsa-miR-639 Prominent Role in Tamoxifen's Molecular Mechanisms on the EMT Phenomenon in Breast Cancer Patients
Authors: Mahsa Taghavi
Abstract:
In the treatment of breast cancer, tamoxifen is a regularly prescribed medication. The effect of tamoxifen on breast cancer patients' EMT pathways was studied. In this study to see if it had any effect on the cancer cells' resistance to tamoxifen and to look for specific miRNAs associated with EMT. In this work, we used continuous and integrated bioinformatics analysis to choose the optimal GEO datasets. Once we had sorted the gene expression profile, we looked at the mechanism of signaling, the ontology of genes, and the protein interaction of each gene. In the end, we used the GEPIA database to confirm the candidate genes. after that, I investigated critical miRNAs related to candidate genes. There were two gene expression profiles that were categorized into two distinct groups. Using the expression profile of genes that were lowered in the EMT pathway, the first group was examined. The second group represented the polar opposite of the first. A total of 253 genes from the first group and 302 genes from the second group were found to be common. Several genes in the first category were linked to cell death, focal adhesion, and cellular aging. Two genes in the second group were linked to cell death, focal adhesion, and cellular aging. distinct cell cycle stages were observed. Finally, proteins such as MYLK, SOCS3, and STAT5B from the first group and BIRC5, PLK1, and RAPGAP1 from the second group were selected as potential candidates linked to tamoxifen's influence on the EMT pathway. hsa-miR-1204 and hsa-miR-639 have a very close relationship with the candidates genes according to the node degrees and betweenness index. With this, the action of tamoxifen on the EMT pathway was better understood. It's important to learn more about how tamoxifen's target genes and proteins work so that we can better understand the drug.Keywords: tamoxifen, breast cancer, bioinformatics analysis, EMT, miRNAs
Procedia PDF Downloads 1292884 Malate Dehydrogenase Enabled ZnO Nanowires as an Optical Tool for Malic Acid Detection in Horticultural Products
Authors: Rana Tabassum, Ravi Kant, Banshi D. Gupta
Abstract:
Malic acid is an extensively distributed organic acid in numerous horticultural products in minute amounts which significantly contributes towards taste determination by balancing sugar and acid fractions. An enhanced concentration of malic acid is utilized as an indicator of fruit maturity. In addition, malic acid is also a crucial constituent of several cosmetics and pharmaceutical products. An efficient detection and quantification protocol for malic acid is thus highly demanded. In this study, we report a novel detection scheme for malic acid by synergistically collaborating fiber optic surface plasmon resonance (FOSPR) and distinctive features of nanomaterials favorable for sensing applications. The design blueprint involves the deposition of an assembly of malate dehydrogenase enzyme entrapped in ZnO nanowires forming the sensing route over silver coated central unclad core region of an optical fiber. The formation and subsequent decomposition of the enzyme-analyte complex on exposure of the sensing layer to malic acid solutions of diverse concentration results in modification of the dielectric function of the sensing layer which is manifested in terms of shift in resonance wavelength. Optimization of experimental variables such as enzyme concentration entrapped in ZnO nanowires, dip time of probe for deposition of sensing layer and working pH range of the sensing probe have been accomplished through SPR measurements. The optimized sensing probe displays high sensitivity, broad working range and a minimum limit of detection value and has been successfully tested for malic acid determination in real samples of fruit juices. The current work presents a novel perspective towards malic acid determination as the unique and cooperative combination of FOSPR and nanomaterials provides myriad advantages such as enhanced sensitivity, specificity, compactness together with the possibility of online monitoring and remote sensing.Keywords: surface plasmon resonance, optical fiber, sensor, malic acid
Procedia PDF Downloads 3802883 Horizon Scanning of Disruptive Technology Trends in Marine for 2030 Horizon
Authors: Jose Gonzalez, Fai Cheng, Ivy Fan
Abstract:
Shipping has a mature and ever expanding worldwide market. The future of the marine industry itself is not only irrevocably linked with the global economic, social, and political landscape; it is also subject to the technological developments in different fields. Some of them may have never been linked to the marine industry before. Companies in the marine sector are getting more dependent on technologies to achieve competitive advantage in an increasing open market. Technologies can be fused across different business functions and geopolitical influences. A successful marine business should be prepared to embrace such potential changes that lie ahead. The present paper intends to articulate long-term marine technology strategies from an industrial perspective. Methodology and current development are introduced. The paper will also provide insight into future technological trends demand for major commercial ship types. It may also assist different stakeholders in tailoring their long-term strategies to achieve a Sea Change and to uncap opportunity.Keywords: commercial sector, marine, trends, technology
Procedia PDF Downloads 4092882 A Novel Application of CORDYCEPIN (Cordycepssinensis Extract): Maintaining Stem Cell Pluripotency and Improving iPS Generation Efficiency
Authors: Shih-Ping Liu, Cheng-Hsuan Chang, Yu-Chuen Huang, Shih-Yin Chen, Woei-Cherng Shyu
Abstract:
Embryonic stem cells (ES) and induced pluripotnet stem cells (iPS) are both pluripotent stem cells. For mouse stem cells culture technology, leukemia inhibitory factor (LIF) was used to maintain the pluripotency of stem cells in vitro. However, LIF is an expensive reagent. The goal of this study was to find out a pure compound extracted from Chinese herbal medicine that could maintain stem cells pluripotency to replace LIF and improve the iPS generation efficiency. From 20 candidates traditional Chinese medicine we found that Cordycepsmilitaris triggered the up-regulation of stem cells activating genes (Oct4 and Sox2) expression levels in MEF cells. Cordycepin, a major active component of Cordycepsmilitaris, also could up-regulate Oct4 and Sox2 gene expression. Furthermore, we used ES and iPS cells and treated them with different concentrations of Cordycepin (replaced LIF in the culture medium) to test whether it was useful to maintain the pluripotency. The results showed higher expression levels of several stem cells markers in 10 μM Cordycepin-treated ES and iPS cells compared to controls that did not contain LIF, including alkaline phosphatase, SSEA1, and Nanog. Embryonic body formation and differentiation confirmed that 10 μM Cordycepin-containing medium was capable to maintain stem cells pluripotency after four times passages. For mechanism analysis, microarray analysis indicated extracellular matrix and Jak/Stat signaling pathway as the top two deregulated pathways. In ECM pathway, we determined that the integrin αVβ5 expression levels and phosphorylated Src levels increased after Cordycepin treatment. In addition, the phosphorylated Jak2 and phosphorylated Sat3 protein levels were increased after Cordycepin treatment and suppressed with the Jak2 inhibitor, AG490. The expression of cytokines associated with Jak2/Stat3 signaling pathway were also up-regulated by Q-PCR and ELISA assay. Lastly, we used Oct4-GFP MEF cells to test iPS generation efficiency following Cordycepin treatment. We observed that 10 Μm Cordycepin significantly increased the iPS generation efficiency in day 21. In conclusion, we demonstrated Cordycepin could maintain the pluripotency of stem cells through both of ECM and Jak2/Stat3 signaling pathway and improved iPS generation efficiency.Keywords: cordycepin, iPS cells, Jak2/Stat3 signaling pathway, molecular biology
Procedia PDF Downloads 4392881 Development of Functional Cosmetic Materials from Demilitarized Zone Habiting Plants
Authors: Younmin Shin, Jin Kyu Kim, Mirim Jin, Jeong June Choi
Abstract:
Demilitarized Zone (DMZ) is a peace region located between South and North Korea border to avoid accidental armed conflict. Because human accessing to the area was forced to be prohibited for more than 60 years, DMZ is one of the cleanest land keeping wild lives as nature itself in South Korea. In this study, we evaluated the biological efficacies of plants (SS, PC, and AR) inhabiting in DMZ for the development of functional cosmetics. First, we tested the cytotoxicity of plant extracts in keratinocyte and melanocyte, which are the major cell components of skin. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the cell lines, we determined the safety concentrations of the extracts for the efficacy tests. Next, we assessed the anti-wrinkle cosmetic function of SS by demonstrating that SS treatment decreased the expression of Matrix metalloproteinase-1 (MMP-1) in UV-irradiated keratinocytes via real-time PCR. The suppressive effect of SS was greatly potentiated by combination with other DMZ-inhabiting plants, PC and AR. The expression of tyrosinase, which is one the main enzyme that producing melanin in melanocyte, was also down-regulated by the DMZ-inhabiting SS extract. Wound healing activity was also investigated by in vitro test with HaCat cell line, a human fibroblast cell line. All the natural materials extracted form DMZ habiting plants accelerated the recovery of the cells. These results suggested that DMZ is a treasure island of functional plants and DMZ-inhabiting natural products are warranted to develop functional cosmetic materials. This study was carried out with the support of R&D Program for Forest Science Technology (Project No. 2017027A00-1819-BA01) provided by Korea Forest Service (Korea Forestry Promotion Institute).Keywords: anti-wrinkle, Demilitarized Zone, functional cosmetics, whitening
Procedia PDF Downloads 144