Search results for: controlling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1236

Search results for: controlling

666 Computational Approach for Grp78–Nf-ΚB Binding Interactions in the Context of Neuroprotective Pathway in Brain Injuries

Authors: Janneth Gonzalez, Marco Avila, George Barreto

Abstract:

GRP78 participates in multiple functions in the cell during normal and pathological conditions, controlling calcium homeostasis, protein folding and unfolded protein response. GRP78 is located in the endoplasmic reticulum, but it can change its location under stress, hypoxic and apoptotic conditions. NF-κB represents the keystone of the inflammatory process and regulates the transcription of several genes related with apoptosis, differentiation, and cell growth. The possible relationship between GRP78-NF-κB could support and explain several mechanisms that may regulate a variety of cell functions, especially following brain injuries. Although several reports show interactions between NF-κB and heat shock proteins family members, there is a lack of information on how GRP78 may be interacting with NF-κB, and possibly regulating its downstream activation. Therefore, we assessed the computational predictions of the GRP78 (Chain A) and NF-κB complex (IkB alpha and p65) protein-protein interactions. The interaction interface of the docking model showed that the amino acids ASN 47, GLU 215, GLY 403 of GRP78 and THR 54, ASN 182 and HIS 184 of NF-κB are key residues involved in the docking. The electrostatic field between GRP78-NF-κB interfaces and molecular dynamic simulations support the possible interaction between the proteins. In conclusion, this work shed some light in the possible GRP78-NF-κB complex indicating key residues in this crosstalk, which may be used as an input for better drug design strategy targeting NF-κB downstream signaling as a new therapeutic approach following brain injuries.

Keywords: computational biology, protein interactions, Grp78, bioinformatics, molecular dynamics

Procedia PDF Downloads 330
665 Impact of Welding Distortion on the Design of Fabricated T-Girders Using Finite Element Modeling

Authors: Ahmed Hammad, Yehia Abdel-Nasser, Mohamed Shamma

Abstract:

The main configuration of ship construction consists of standard and fabricated stiffening members which are commonly used in shipbuilding such as fabricated T-sections. During the welding process, the non-uniform heating and rapid cooling lead to the inevitable presence of out-of-plane distortion and welding induced residual stresses. Because of these imperfections, the fabricated structural members may not attain their design load to be carried. The removal of these imperfections will require extra man-hours. In the present work, controlling these imperfections has been investigated at both design and fabrication stages. A typical fabricated T-girder is selected to investigate the problem of these imperfections using double-side welding. A numerical simulation based on finite element (FE) modeling has been used to investigate the effect of different parameters of the selected fabricated T-girder such as geometrical properties and welding sequences on the magnitude of welding imperfections. FE results were compared with the results of experimental model of a double-side fillet weld. The present work concludes that: Firstly, in the design stage, the optimum geometry of the fabricated T- girder is determined based on minimum steel weight and out- of- plane distortion. Secondly, in the fabrication stage, the best welding sequence is determined on the basis of minimum welding out- of- plane distortion.

Keywords: fabricated T-girder, FEM, out-of-plane distortion, section modulus, welding residual stresses

Procedia PDF Downloads 107
664 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel

Authors: Soroush Momeni

Abstract:

Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.

Keywords: PVD coatings, sliding wear, hardness, tool steel

Procedia PDF Downloads 267
663 Isolation, Identification and Antimicrobial Susceptibility of Mycobacterium tuberculosis among Pulmonary Tuberculosis Patients

Authors: Naima Nur, Safa Islam, Saeema Islam, Faridul Alam

Abstract:

Background: Drug-resistant pulmonary tuberculosis (DR-PTB), particularly multidrug-resistant tuberculosis (MDR-TB) and pre-extensive drug-resistant (pre-XDR), is a major challenge in effectively controlling TB, especially in developing. This study aimed to identify the strains of M. tuberculosis complex (MTC) and drug resistance patterns among the pulmonary tuberculosis patients. Methods: The study used a cross-sectional design, and 815 patients were recruited randomly in three study periods. In the first-period, 210 treated PTB patients, who were completed their treatment, received their diagnoses using light microscopy, fluorescence microscopy and cultured on Lowenstein-Jensen (L-J) slant, and then strains were identified as MTC by biochemical tests, and then sensitivity test in National Institute of Diseases of the Chest and Hospital. In the second-period, 220 re-treated PTB patients, who were completed their treatment, received their diagnoses using culture on L-J slant, line probe assay (LPA), and GeneXpert in the same hospital. In the last-period, during treatment, 385 MDR-PTB patients received their diagnoses using culture on L-J slant and LPA in the same hospital. Results: Among sixty-two (29.5%) PTB patients, 13% were sensitive to all first-line anti-TB drugs, 26% were MDR-TB patients, and 14.2% were pre-XDR-TB among 14 MDR-TB patients. After three years, 31% were MDR-TB among 220 re-treated PTB patients. After five years, 16.4% was pre-XDR-TB among 385 MDR-TB patients. Compared to females, male patients were significantly higher at all times. Conclusion: The current study demonstrated that in three study periods, the proportions of DR-TB, MDR-TB, and pre-XDR patients were an alarming issue and increasing daily.

Keywords: multi-drug resistant, drug-resistant, pre-extensive drug resistant, pulmonary tuberculosis

Procedia PDF Downloads 36
662 Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems

Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket

Abstract:

The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.

Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives

Procedia PDF Downloads 79
661 Exploitation of Endophytes for the Management of Plant Pathogens

Authors: N. P. Eswara Reddy, S. Thahir Basha

Abstract:

Here, we report the success stories of potential leaf, seed and root endophytes against soil borne as well as foliar plant pathogens which are nutritionally adequate and safe for consumption. Endophytes are the microorganisms that reside asymptomatically in the tissues of higher plants are a robust source of potential biocontrol agents and it is presumed that the survival ability of endophytes may be better when compared to phylloplane microflora. Of all the 68 putative leaf endophytes, the endophytes viz., EB9 (100%), and EB35 (100%) which were superior in controlling Colletotrichum gloeosporioides causing mango anthracnose were identified as Brevundimonas bullata (EB09) and Bacillus thuringiensis (EB35) and further delayed in ripening of mango fruits up to 21 days. As a part, the seed endophyte GSE-4 was identified as Archoromobacter spp. against Sclerotium rolfsii causing stem rot of groundnut and the root endophyte REB-8 against Rhizoctonia bataticola causing dry root rot of chickpea was identified as Bacillus subtilis. Both recorded least percent disease incidence (PDI) and increased plant growth promotion, respectively. Further, the novel Bacillus subtilis (SEB-2) against Macrophomina pahseolina causing charcoal rot of sunflower provides an ample scope for exploring the endophytes at large scale. The talc-based formulations of these endophytes developed can be commercialized after toxicological studies. At the bottom line these unexplored endophytes are the need of the hour against aggressive plant pathogens and to maintain the quality and abundance of food and feed and also to fetch marginal economy to the farmers will be discussed.

Keywords: endophytes, plant pathogens, commercialization, abundance of food

Procedia PDF Downloads 405
660 Shape Evolution of CdSe Quantum Dots during the Synthesis in the Presence of Silver Halides

Authors: Pavel Kotin, Sergey Dotofeev, Daniil Kozlov, Alexey Garshev

Abstract:

We propose the investigation of CdSe quantum dots which were synthesized in the presence of silver halides. To understand a process of nanoparticle formation in more detail, we varied the silver halide amount in the synthesis and proposed a sampling during colloidal growth. The attempts were focused on the investigation of shape, structure and optical properties of nanoparticles. We used the colloidal method of synthesis. Cadmium oleate, tri-n-octylphosphine selenide (TOPSe) and AgHal in TOP were precursors of cadmium, selenium and silver halides correspondingly. The molar Ag/Cd ratio in synthesis was varied from 1/16 to 1/1. The sampling was basically realized in 20 sec, 5 min, and 30 min after the beginning of quantum dots nucleation. To investigate nanoparticles we used transmission electron microscopy (including high resolution one), X-ray diffraction, and optical spectroscopy. It was established that silver halides lead to obtaining tetrapods with different leg length and large ellipsoidal nanoparticles possessing an intensive near IR photoluminescence. The change of the amount of silver halide in synthesis and the selection of an optimal growth time allows controlling the shape and the share of tetrapods or ellipsoidal nanoparticles in the product. Our main attempts were focused on a detailed investigation of the quantum dots structure and shape evolution and, finally, on mechanisms of such nanoparticle formation.

Keywords: colloidal quantum dots, shape evolution, silver doping, tetrapods

Procedia PDF Downloads 272
659 Control System Design for a Simulated Microbial Electrolysis Cell

Authors: Pujari Muruga, T. K. Radhakrishnan, N. Samsudeen

Abstract:

Hydrogen is considered as the most important energy carrier and fuel of the future because of its high energy density and zero emission properties. Microbial Electrolysis Cell (MEC) is a new and promising approach for hydrogen production from organic matter, including wastewater and other renewable resources. By utilizing anode microorganism activity, MEC can produce hydrogen gas with smaller voltages (as low as 0.2 V) than those required for electrolytic hydrogen production ( ≥ 1.23 V). The hydrogen production processes of the MEC reactor are very nonlinear and highly complex because of the presence of microbial interactions and highly complex phenomena in the system. Increasing the hydrogen production rate and lowering the energy input are two important challenges of MEC technology. The mathematical model of the MEC is based on material balance with the integration of bioelectrochemical reactions. The main objective of the research is to produce biohydrogen by selecting the optimum current and controlling applied voltage to the MEC. Precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. Various simulation tests involving multiple set-point changes disturbance and noise rejection were performed to evaluate the performance using PID controller tuned with Ziegler Nichols settings. Simulation results shows that other good controller can provide better control effect on the MEC system, so that higher hydrogen production can be obtained.

Keywords: microbial electrolysis cell, hydrogen production, applied voltage, PID controller

Procedia PDF Downloads 229
658 Fabrication of Fe3O4core-meso SiO2/TiO2 Double Shell for Dye Pollution Remediation

Authors: Mohamed Habila, Ahmed Mohamed El-Toni, Mohamed Sheikh Moshab, Abdulrhman Al-Awadi, Zeid AL Othman

Abstract:

Water pollution with dyes is a critical environmental issue because off the huge amount of dyes disbarred annually, which cause severe damage for the ecosystem and human life. The main raison for this severs pollution is the rapid industrial development which led to more production of harmful pollutants. on the other hand, the core shell based magnetic materials have showed amazing character for controlling the material synthesis with the targeted structure to enhance the adsorptive removal of pollutants. Herein, the Fe3O4core-meso SiO2/TiO2 double shell have been prepared for methylene blue dye adsorption. the preparation procedure is controlled to prepare the magnetic core with further coating layers from silica and titania. The prepared Fe3O4core-meso SiO2/TiO2 double shell showed adsorption capacity for methylene blue removal about 50 mg/g at pH 6 after 80 min contact time form 50 ppm methylene blue solution. The adsorption process of methylene blue onto Fe3O4core-meso SiO2/TiO2 double shell was well fitted with the pseudo-second-order kinetic model and freundlish isotherm, indicating a quick and multilayer adsorption mechanism.

Keywords: magnetic core, silica shell, titania shell, water treatment, methylene blue, solvo-thermal process, adsorption

Procedia PDF Downloads 106
657 Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs

Authors: Yuan Yang, Mickey Lam

Abstract:

Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells.

Keywords: oral dissolvable film, nano-suspension, nano-emulsion, bioavailability

Procedia PDF Downloads 154
656 Influence of Readability of Paper-Based Braille on Vertical and Horizontal Dot Spacing in Braille Beginners

Authors: K. Doi, T. Nishimura, H. Fujimoto

Abstract:

The number of people who become visually impaired and do not have sufficient tactile experiences has increased by various disease. Especially, many acquired visually impaired persons due to accidents, disorders, and aging cannot adequately read Braille. It is known that learning Braille requires a great deal of time and the acquisition of various skills. In our previous studies, we reported one of the problems in learning Braille. Concretely, the standard Braille size is too small for Braille beginners. And also we are short of the objective data regarding easily readable Braille size. Therefore, it is necessary to conduct various experiments for evaluating Braille size that would make learning easier for beginners. In this study, for the purpose of investigating easy-to-read conditions of vertical and horizontal dot spacing for beginners, we conducted one Braille reading experiment. In this our experiment, we prepared test pieces by use of our original Braille printer with controlling function of Braille size. We specifically considered Braille beginners with acquired visual impairments who were unfamiliar with Braille. Therefore, ten sighted subjects with no experience of reading Braille participated in this experiment. Size of vertical and horizontal dot spacing was following conditions. Each dot spacing was 2.0, 2.3, 2.5, 2.7, 2.9, 3.1mm. The subjects were asked to read one Braille character with controlled Braille size. The results of this experiment reveal that Braille beginners can read Braille accurately and quickly when both vertical and horizontal dot spacing are 3.1 mm or more. This knowledge will be helpful data in considering Braille size for acquired visually impaired persons.

Keywords: paper-based Braille, vertical and horizontal dot spacing, readability, acquired visual impairment, Braille beginner

Procedia PDF Downloads 162
655 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot

Procedia PDF Downloads 150
654 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 156
653 Kids and COVID-19: They are Winning with Their Immunity

Authors: Husham Bayazed, Fatimah Yousif

Abstract:

Purpose of Presentation: The infant immune system has a reputation for being weak and underdeveloped when compared to the adult immune system, but the comparison isn’t quite fair. At the start, as the COVID-19 pandemic drags on and evolves, many Pediatricians and kids' parents have been left with renewed questions about the consequences and sequel of infection on children and the steps to be taken if their child has the symptoms of COVID-19 or tests positive. Recent Findings Literature reviews and recent studies revealed that children are better than adults at controlling SARS-CoV-2. There was conflicting evidence on age-related differences in ACE2 expression in the nose and lungs. But scientists who measured the ‘viral load’ in children's upper airways have seen no clear difference between children and adults. Moreover, the hypothesis is that kids might be more exposed to other coronaviruses common cold, with a production of ready protective antibodies to lock on to the pandemic coronavirus. But the evidence suggests that adults also have this immunity too. Strikingly, these ‘cross-reactive’ antibodies don’t offer any special protection. Summary One of the few silver linings of the Covid-19 pandemic is that children are relatively spared. The kid's Innate Immunity is hardly the whole story, the innate immune response against SARS-CoV-2 infection is early initiative calm with low immunological tone to prevent an overactive immunity and with rapidly repair damage to the lungs in contrast to stormy waves in adults. Therefore, Kids are at much lower risk of Covid-19 infection, and they are still winning the battle against Covid-19 with their innate immunity.

Keywords: Covid-19, kids, ACE2 receptors, immunity

Procedia PDF Downloads 72
652 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation

Procedia PDF Downloads 136
651 Vehicle Maneuverability on Horizontal Curves on Hilly Terrain: A Study on Shillong Highway

Authors: Surendra Choudhary, Sapan Tiwari

Abstract:

The driver has two fundamental duties i) controlling the position of the vehicle along the longitudinal and lateral direction of movement ii) roadway width. Both of these duties are interdependent and are concurrently referred to as two-dimensional driver behavior. One of the main problems facing driver behavior modeling is to identify the parameters for describing the exemplary driving conduct and car maneuver under distinct traffic circumstances. Still, to date, there is no well-accepted theory that can comprehensively model the 2-D driver conduct (longitudinal and lateral). The primary objective of this research is to explore the vehicle's lateral longitudinal behavior in the heterogeneous condition of traffic on horizontal curves as well as the effect of road geometry on dynamic traffic parameters, i.e., car velocity and lateral placement. In this research, with their interrelationship, a thorough assessment of dynamic car parameters, i.e., speed, lateral acceleration, and turn radius. Also, horizontal curve road parameters, i.e., curvature radius, pavement friction, are performed. The dynamic parameters of the various types of car drivers are gathered using a VBOX GPS-based tool with high precision. The connection between dynamic car parameters and curve geometry is created after the removal of noise from the GPS trajectories. The major findings of the research are that car maneuvers with higher than the design limits of speed, acceleration, and lateral deviation on the studied curves of the highway. It can become lethal if the weather changes from dry to wet.

Keywords: geometry, maneuverability, terrain, trajectory, VBOX

Procedia PDF Downloads 130
650 Evaluation of Deformation for Deep Excavations in the Greater Vancouver Area Through Case Studies

Authors: Boris Kolev, Matt Kokan, Mohammad Deriszadeh, Farshid Bateni

Abstract:

Due to the increasing demand for real estate and the need for efficient land utilization in Greater Vancouver, developers have been increasingly considering the construction of high-rise structures with multiple below-grade parking. The temporary excavations required to allow for the construction of underground levels have recently reached up to 40 meters in depth. One of the challenges with deep excavations is the prediction of wall displacements and ground settlements due to their effect on the integrity of City utilities, infrastructure, and adjacent buildings. A large database of survey monitoring data has been collected for deep excavations in various soil conditions and shoring systems. The majority of the data collected is for tie-back anchors and shotcrete lagging systems. The data were categorized, analyzed and the results were evaluated to find a relationship between the most dominant parameters controlling the displacement, such as depth of excavation, soil properties, and the tie-back anchor loading and arrangement. For a select number of deep excavations, finite element modeling was considered for analyses. The lateral displacements from the simulation results were compared to the recorded survey monitoring data. The study concludes with a discussion and comparison of the available empirical and numerical modeling methodologies for evaluating lateral displacements in deep excavations.

Keywords: deep excavations, lateral displacements, numerical modeling, shoring walls, tieback anchors

Procedia PDF Downloads 163
649 Using Interval Type-2 Fuzzy Controller for Diabetes Mellitus

Authors: Nafiseh Mollaei, Reihaneh Kardehi Moghaddam

Abstract:

In case of Diabetes Mellitus the controlling of insulin is very difficult. This illness is an incurable disease affecting millions of people worldwide. Glucose is a sugar which provides energy to the cells. Insulin is a hormone which supports the absorption of glucose. Fuzzy control strategy is attractive for glucose control because it mimics the first and second phase responses that the pancreas beta cells use to control glucose. We propose two control algorithms a type-1 fuzzy controller and an interval type-2 fuzzy method for the insulin infusion. The closed loop system has been simulated for different patients with different parameters, in present of the food intake disturbance and it has been shown that the blood glucose concentrations at a normoglycemic level of 110 mg/dl in the reasonable amount of time. This paper deals with type 1 diabetes as a nonlinear model, which has been simulated in MATLAB-SIMULINK environment. The novel model, termed the Augmented Minimal Model is used in the simulations. There are some uncertainties in this model due to factors such as blood glucose, daily meals or sudden stress. In addition to eliminate the effects of uncertainty, different control methods may be utilized. In this article, fuzzy controller performance were assessed in terms of its ability to track a normoglycemic set point (110 mg/dl) in response to a [0-10] g meal disturbance. Finally, the development reported in this paper is supposed to simplify the insulin delivery, so increasing the quality of life of the patient.

Keywords: interval type-2, fuzzy controller, minimal augmented model, uncertainty

Procedia PDF Downloads 412
648 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production

Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim

Abstract:

This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.

Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell

Procedia PDF Downloads 83
647 Meiobenthic Diversity off Pudimadaka, Bay of Bengal, East Coast of India with Special Reference to Free-Living Marine Nematodes

Authors: C. Annapurna, Rao M. Srinivasa, Bhanu C. H. Vijaya, M. Sivalakshmi, Rao P. V. Surya

Abstract:

A study on the community structure of meiobenthic fauna was undertaken during three cruises (June 2008, October 2008 and March 2009). Ten stations at depth between 10 and 40 m off Pudimadaka in Visakhapatnam (Lat.17º29′12″N and Long. 83º00′09″), East coast of India were investigated. Ninety species representing 3 major (meiofaunal) taxa namely foraminifera (2), copepoda (9), nematoda (58) and polychaeta (21) were encountered. Overall, meiofaunal (mean) abundance ranged from 2 individuals to 63 ind. 10cm-² with an average of 24.3 ind.10cm-2. The meiobenthic biomass varied between 0.135 to 0.48 mg.10cm-2 with an average 0.27 ± 0.12. On the whole, nematodes constituted 73.62% of the meiofauna in terms of numerical abundance. Shannon –Wiener index values were 2.053 ± 0.64 (June, 2008), 2.477 ± 0.177 (October 2008) and 2.2815±0.24 (March 2009). Multivariate analyses were used to define the most important taxon in nematode assemblages. Three nematode associations could be recognized off Pudimadaka coast, namely Laimella longicaudata, Euchromodora vulgaris and Sabatieria elongata assemblage (June, 2008); Catanema sp. and Leptosomatum sp. assemblage (October 2008) assemblage; Sabatieria sp. and Setosabatieria sp. assemblage (March 2009). Canonical correspondence analysis showed that temperature, organic matter, silt and mean particle diameter were important in controlling nematode community structure.

Keywords: meiofauna, marine nematode, biodiversity, community structure, India

Procedia PDF Downloads 287
646 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: cascade control, dynamic braking system, DC traction motors, slip control

Procedia PDF Downloads 342
645 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: composite, fuzzy, tool life, wear

Procedia PDF Downloads 274
644 Environmental and Economic Impact of Mangrove Deforestation: Case Study of Vadamaradchy East, Sri Lanka

Authors: Kumaraamy Sasikumar

Abstract:

The study was conducted in Vadamarachchi-East in Sri Lanka. Data collection was done for a period of two months from June to July 2011. The main focus of this study was to examine factors contributing to mangrove deforestation within the study area, and resultant impacts from deforestation. The study found that, the main factors that have contributed to deforestation include: Long civil wars in the region, poverty which pushed people to clear the forest to earn income through the sale of firewood and timber among others, industrial development, increasing demand for farm and settlement land, limited knowledge within the local community, weak government polices and implementation strategies, and natural disasters especially the 2004 Tsunami destruction. The impacts presented are those that impact both on the environment and the economy including; loss of income sources, loss of biodiversity, climate change, desertification, conflicts in the use of forest products and loss of land productivity due to reduced fertility caused by soil erosion. However, a few strategies have been put in place by the government to ensure the sustainable use of mangrove forest products, though these have not proved successful in reducing deforestation. The recommendations make suggestions to the government and other stakeholders to work together in ensuring sustainable use of natural resources, for example implementing laws and regulations aimed at controlling deforestation among others.

Keywords: deforestation, impacts, actors, environment, economic, sustainable development

Procedia PDF Downloads 340
643 Experimental Investigations on Ultimate Bearing Capacity of Soft Soil Improved by a Group of End-Bearing Column

Authors: Mamata Mohanty, J. T. Shahu

Abstract:

The in-situ deep mixing is an effective ground improvement technique which involves columnar inclusion into soft ground to increase its bearing capacity and reduce settlement. The first part of the study presents the results of unconfined compression on cement-admixed clay prepared at different cement content and subjected to varying curing periods. It is found that cement content is a prime factor controlling the strength of the cement-admixed clay. Besides cement content, curing period is important parameter that adds to the strength of cement-admixed clay. Increase in cement content leads to significant increase in Unconfined Compressive Strength (UCS) values especially at cement contents greater than 8%. The second part of the study investigated the bearing capacity of the clay ground improved by a group of end-bearing column using model tests under plain-strain condition. This study mainly focus to examine the effect of cement contents on the ultimate bearing capacity and failure stress of the improved clay ground. The study shows that the bearing capacity of the improved ground increases significantly with increase in cement contents of the soil-cement columns. A considerable increase in the stiffness of the model ground and failure stress was observed with increase in cement contents.

Keywords: bearing capacity, cement content, curing time, unconfined compressive strength, undrained shear strength

Procedia PDF Downloads 160
642 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 287
641 The Consequences of Regime Change in Iraq; Formation and Continuation of Geopolitical Crises

Authors: Ali Asghar Sotoudeh

Abstract:

Since the US invasion of Iraq in 2003 and the subsequent regime change, internal conflicts between political and ethnic-religious groups have become a hallmark of Iraqi political dynamism. The most important manifestations of these conflicts are the Kurdish-central government conflicts, as well as fundamentalism since 2003. As a result, it seems not only US presence in Iraq under the pretext of fighting terrorism and expanding democracy has not had a positive effect on controlling fundamentalism and political stability in Iraq, but it has paved the way for the formation and continuation of geopolitical crises in the form of disputes over territory and sources of power. In this regard, given the importance of the study, the main purpose of this study is to examine the process of the impact of US regime-change policy on the formation and continuation of geopolitical crises in Iraq. The central question of this study is, what effect has the US regime change policy had on Iraq's domestic political processes? Findings show that regime change and subsequent imposed federalism have widened the gaps in Iraq's sectarian-ethnic system. As a result, the geopolitical crisis in the context of the dispute over geographical territory and sources of power between ethnic-religious groups has become the most important political dynamic in Iraq since the occupation. The research method in this article is descriptive-analytical, and the data collection method is library and internet resources.

Keywords: Iraq, united states, geopolitical crisis, ethno-religious conflict, political federalism

Procedia PDF Downloads 130
640 Diffusion Mechanism of Aroma Compound (2-Acetyl-1-Pyrroline) in Rice During Storage

Authors: Mary Ann U. Baradi, Arnold R. Elepaño, Manuel Jose C. Regalado

Abstract:

Aromatic rice has become popular and continues to command higher price than ordinary rice because of its distinctive scent that makes it special. Freshly harvested aromatic rice exhibits strong aromatic scent but decreases with time and conditions during storage. Of the many volatile compounds in aromatic rice, 2-acetyl-1-pyrroline (2AP) is a major compound that gives rice its popcorn-like aroma. The diffusion mechanism of 2AP in rice was investigated. Semi-empirical models explaining 2AP diffusion as affected by temperature and duration were developed. Storage time and temperature affected 2AP loss via diffusion. The amount of 2AP in rice decreased with time. Free 2AP, being volatile, is lost due to diffusion. Storage experiment indicated rapid 2AP loss during the first five weeks and subsequently leveled off afterwards; attaining level of starch bound 2AP. Decline of 2AP during storage followed exponential equation and exhibited four stages; i.e. the initial, second, third and final stage. Free 2AP is easily lost while bound 2AP is left, only to be released upon exposure to high temperature such as cooking. Both free and bound 2AP is found in endosperm while free 2AP is in the bran. Around 63–67% of total 2AP was lost in brown and milled rice of MS 6 paddy kept at ambient. Samples stored at higher temperature (27°C) recorded higher 2AP loss than those kept at lower temperature (15°C). The study should be able to guide processors in understanding and controlling parameters in storage to produce high quality rice.

Keywords: 2-acetyl-1-pyrroline, aromatic rice, diffusion mechanism, storage

Procedia PDF Downloads 321
639 A Comparison of Air Quality in Arid and Temperate Climatic Conditions – a Case Study of Leeds and Makkah

Authors: Turki M. Habeebullah, Said Munir, Karl Ropkins, Essam A. Morsy, Atef M. F. Mohammed, Abdulaziz R. Seroji

Abstract:

In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from year 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and supress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions.

Keywords: air pollution, climatic conditions, particulate matter, Makkah, Leeds

Procedia PDF Downloads 444
638 The Genetic Basis of the Lack of Impulse Control: What is Provided for the Criminal Law?

Authors: Amir Bastani

Abstract:

The result of the research in the field of human behavioural genetics demonstrates a genetic contribution of behavioural differences in aggression, violence, drug and substance abuse, antisocial personality disorder and other related traits. As the field of human behavioural genetics progresses and achieves credibility, the criminal accused continue to use its types of evidence into the criminal law. One of the most important genetic factors which controls certain neurotransmitters like dopamine and serotonin is the Monoamine Oxidase Acid A (MAOA) gene, known as the 'warrior gene'. The high-profile study by Caspi and colleagues in 2002 showed that the combination between one type of variation of the MAOA gene and childhood maltreatment noticeably predisposes a person to antisocial behaviour. Moreover, further scientific research shows that individuals with the MAOA gene have to some degree difficulties in controlling their impulses. Based on the evidence of MAOA, some criminal accused claimed difficulties in self-control. In the first case – the famous case of Mobley – the court rejected the MAOA evidence on the ground of the lack of scientific support. In contrast, in other cases after the Mobley trial, courts accepted the evidence of MAOA. In this paper, the issue of lack of impulse control produced by the MAOA gene and cases which relied on the MAOA evidence and successfully being accepted will be reviewed in detail. Finally, the anticipation of the paper for the future use of the MAOA evidence in criminal cases will be presented.

Keywords: genetic defence, criminal responsibility, MAOA, self-control

Procedia PDF Downloads 453
637 Chemical Oxygen Demand Fractionation of Primary Wastewater Effluent for Process Optimization and Modelling

Authors: Thandeka Y. S. Jwara, Paul Musonge

Abstract:

Traditionally, the complexity associated with implementing and controlling biological nutrient removal (BNR) in wastewater works (WWW) has been primarily in terms of balancing competing requirements for nitrogen and phosphorus removal, particularly with respect to the use of influent chemical oxygen demand (COD) as a carbon source for the microorganisms. Successful BNR optimization and modelling using WEST (Worldwide Engine for Simulation and Training) depend largely on the accurate fractionation of the influent COD. The different COD fractions have differing effects on the BNR process, and therefore, the influent characteristics need to be well understood. This study presents the fractionation results of primary wastewater effluent COD at one of South Africa’s wastewater works treating 65ML/day of mixed industrial and domestic effluent. The method used for COD fractionation was the oxygen uptake rate/respirometry method. The breakdown of the results of the analysis is as follows: 70.5% biodegradable COD (bCOD) and 29.5% of non-biodegradable COD (iCOD) in terms of the total COD. Further fractionation led to a readily biodegradable soluble fraction (SS) of 75%, a slowly degradable particulate fraction (XS) of 24%, a particulate non-biodegradable fraction (XI) of 50.8% and a non-biodegradable soluble fraction (SI) of 49.2%. The fractionation results demonstrate that the primary effluent has good COD characteristics, as shown by the high level of the bCOD fraction with Ss being higher than Xs. This means that the microorganisms have sufficient substrate for the BNR process and that these components can now serve as inputs to the WEST Model for the plant under study.

Keywords: chemical oxygen demand, COD fractionation, wastewater modelling, wastewater optimization

Procedia PDF Downloads 132