Search results for: construction value addition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11512

Search results for: construction value addition

10942 Field Management Solutions Supporting Foreman Executive Tasks

Authors: Maroua Sbiti, Karim Beddiar, Djaoued Beladjine, Romuald Perrault

Abstract:

Productivity is decreasing in construction compared to the manufacturing industry. It seems that the sector is suffering from organizational problems and have low maturity regarding technological advances. High international competition due to the growing context of globalization, complex projects, and shorter deadlines increases these challenges. Field employees are more exposed to coordination problems than design officers. Execution collaboration is then a major issue that can threaten the cost, time, and quality completion of a project. Initially, this paper will try to identify field professional requirements as to address building management process weaknesses such as the unreliability of scheduling, the fickleness of monitoring and inspection processes, the inaccuracy of project’s indicators, inconsistency of building documents and the random logistic management. Subsequently, we will focus our attention on providing solutions to improve scheduling, inspection, and hours tracking processes using emerging lean tools and field mobility applications that bring new perspectives in terms of cooperation. They have shown a great ability to connect various field teams and make informations visual and accessible to planify accurately and eliminate at the source the potential defects. In addition to software as a service use, the adoption of the human resource module of the Enterprise Resource Planning system can allow a meticulous time accounting and thus make the faster decision making. The next step is to integrate external data sources received from or destined to design engineers, logisticians, and suppliers in a holistic system. Creating a monolithic system that consolidates planning, quality, procurement, and resources management modules should be our ultimate target to build the construction industry supply chain.

Keywords: lean, last planner system, field mobility applications, construction productivity

Procedia PDF Downloads 103
10941 Assembly Solution for Modular Buildings: Development of a Plug-In Self-Locking Device Designed for Light-Framed Structures

Authors: Laurence Picard, André Bégin-Drolet, Pierre Blanchet

Abstract:

The prefabricated construction industry has been operating in North America for several years now and differs from traditional construction by its much shorter project timelines, lower costs, and increased build quality. Faced with the global housing crisis, prefabrication should be the first choice for erecting buildings quickly and at a low cost. However, the reality is quite different; manufacturers focus their operations mainly on single-home construction. This is explained by the lack of a suitable and efficient assembly solution for erecting large-scale buildings. Indeed, it is difficult to maintain the coveted advantages of prefabrication with a laborious on-site assembly and a colossal load of additional operations such as the installation of fasteners and the internal finishing. In the desire to maximize the benefits of prefabrication and make it a smart choice even for large buildings, an automated connection solution is developed. The plug-in self-locking device was developed accordingly to the product design phases: on-site observations, the definition of the problem and product requirements, solution generation, prototyping, fabricating and testing.

Keywords: assembly solution, automation, construction productivity, modular connection, modular buildings, plug-in device, self-lock mechanism

Procedia PDF Downloads 157
10940 A Study on Exploring and Prioritizing Critical Risks in Construction Project Assessment

Authors: A. Swetha

Abstract:

This study aims to prioritize and explore critical risks in construction project assessment, employing the Weighted Average Index method and Principal Component Analysis (PCA). Through extensive literature review and expert interviews, project assessment risk factors were identified across Budget and Cost Management Risk, Schedule and Time Management Risk, Scope and Planning Risk, Safety and Regulatory Compliance Risk, Resource Management Risk, Communication and Stakeholder Management Risk, and Environmental and Sustainability Risk domains. A questionnaire was distributed to stakeholders involved in construction activities in Hyderabad, India, with 180 completed responses analyzed using the Weighted Average Index method to prioritize risk factors. Subsequently, PCA was used to understand relationships between these factors and uncover underlying patterns. Results highlighted dependencies on critical resources, inadequate risk assessment, cash flow constraints, and safety concerns as top priorities, while factors like currency exchange rate fluctuations and delayed information dissemination ranked lower but remained significant. These insights offer valuable guidance for stakeholders to mitigate risks effectively and enhance project outcomes. By adopting systematic risk assessment and management approaches, construction projects in Hyderabad and beyond can navigate challenges more efficiently, ensuring long-term viability and resilience.

Keywords: construction project assessment risk factor, risk prioritization, weighted average index, principal component analysis, project risk factors

Procedia PDF Downloads 15
10939 'Pacta Sunt Servanda': Which Form of Contract to Use in the Construction Industry

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The contract in its simplest definition is an agreement involving parties with a number of documents which may be as little as a marriage contract involving two parties or as big as a contract of construction and operation of a nuclear power plant involving companies and stakeholders with hundreds or even thousands of documents. All parties in the construction industry, not only the contract experts, agree that the success of a project is linked primarily to the form of contract regulating the relationship between stakeholders of the project. Therefore it is essential for the construction industry to study, analyze and improve its contracts forms continuously. However, it should be mentioned that different contract forms are developed to suit the construction evolution in term of its machinery, materials and construction process. There exist some similarities in some clauses and variations in many of these forms depending upon the type of project, the kind of clients and more importantly the laws and regulations governing the transaction in the country where the project is carried out. This paper will discuss the most important forms of construction contracts starting from national level, intended to the contract form in Germany and moving on to the international level introducing FIDIC contracts and its different forms, some newly developed contracts forms namely the integrated form of agreement, the new engineering contract and the project alliance agreement. The result of the study shows that many of the contract’s paragraphs are similar and the main difference comes in the approach of the relationship between the parties. Is it based on co-operation and mutual trust, or in some cases a load of responsibility for a particular party which increases the problems and disputes that affects the success of the project negatively. Thus we can say that the form of the contract, that plays an essential role in the approach of the project management, which is ultimately the key factor for the success of the project. So we advise to use a form of contract, which enhance the mutual trust between the project parties, contribute to support the cooperation between them, distribute responsibility and risks on an equitable basis and build on the principle “win-win". In additional to the conventional role of the contract it should integrate all parties into one team to achieve the target value of the project.

Keywords: contract, FIDIC, integrated form of agreement, new engineering contract, project alliance agreemen

Procedia PDF Downloads 355
10938 Reclaiming Properties of Bituminous Concrete Using Cold Mix Design Technology

Authors: Pradeep Kumar, Shalinee Shukla

Abstract:

Pavement plays a vital role in the socio-economic development of a country. Bituminous roads construction with conventional paving grade bitumen obtained from hot mix plant creates pollution and involves emission of greenhouse gases, also the construction of pavements at very high temperature is not feasible or desirable for high rainfall and snowfall areas. This problem of overheating can be eliminated by the construction of pavements with the usage of emulsified cold mixes which will eliminate emissions and help in the reduction of fuel requirement at mixing plant, which leads to energy conservation. Cold mix is a mixture of unheated aggregate and emulsion or cutback and filler. The primary objective of this research is to assess the volumetric mix design parameters of recycled aggregates with cold mixing technology and also to assess the impact of additives on volumetric mix characteristics. In this present study, bituminous pavement materials are reclaimed using cold mix technology, and Marshall specimens are prepared with the help of slow setting type 2 (SS-2) cationic bitumen emulsion as a binder for recycled aggregates. This technique of road construction is more environmentally friendly and can be done in adverse weather conditions.

Keywords: cold mixes, bitumen emulsion, recycled aggregates, volumetric properties

Procedia PDF Downloads 128
10937 Experimental Investigation on High Performance Concrete with Silica Fume and Ceramic Waste

Authors: P. Vinayagam, A. Madhanagopal

Abstract:

This experimental investigation focuses on the study of the strength of concrete with ceramic waste as coarse aggregate. It is not a new concept of using alternate materials for aggregates. Pottery and ceramics have been an important part of human culture for thousands of years. The ceramic waste from ceramic and construction industries is a major contribution to construction demolition waste (CDW), representing a serious environmental, technical, and economical problem of today’s society. The major sources of ceramic waste are ceramic industry, building construction and building demolition. In ceramic industries, a significant part of the losses in the manufacturing of ceramic elements is not returned to the production process. In building construction, ceramic waste is produced during transportation to the building site, on the execution of several construction elements and on subsequent works. This waste is regionally deposited in dumping grounds, without any separation or reuse. In this study an attempt has been made to find the suitability of the ceramic industrial wastes as a possible replacement for conventional crushed stone coarse aggregate in high performance concrete. In this study, glazed stoneware pipe waste was used as coarse aggregates. In this investigation, physical properties of ceramic waste coarse aggregates were studied. Experiments were carried out to determine the strength of high performance concrete with silica fume and ceramic stoneware pipe waste coarse aggregate of 10%, 20%, 30%, 40% and 50% different replacement ratios in comparison with those of corresponding conventional concrete mixes.

Keywords: ceramic waste, coarse aggregate replacement, glazed stoneware pipe waste, silica fume

Procedia PDF Downloads 276
10936 Engaging Local Communities on Large-Scale Construction Project

Authors: Melissa Teo

Abstract:

It is increasingly important that project managers develop greater capabilities to better manage the social, cultural, political, environmental and economic impacts on proposed construction projects. These challenges are best resolved in consultation with communities rather than in conflict with them. This is particularly important on controversial projects which are projects that have obtained government sanctioned ‘development approval’ but not ‘community approval’. While a rich body of research and intellectual frameworks exist in the fields of urban geography and planning to understand and manage community concerns during the pre-development approval stages of new projects, current theoretical frameworks guiding community engagement in project management are inadequate. A new and innovative research agenda is needed to guide thinking about the role of local communities in the construction process and is an important research gap that needs to be filled. Within this context, this research aims to assess the effectiveness of strategies adopted by project teams to engage with local communities so as to capture lessons learnt to apply to future projects. This paper reports a research methodology which uses Arnstein’s model of participation to better understand how power differentials between the project team and local communities can influence the adoption of community engagement strategies. A case study approach is utilizing interviews and documentary analysis of a large-scale controversial construction project in Queensland, Australia is presented. The findings will result in a number of recommendations to guide community engagement practices on future projects.

Keywords: community engagement, construction, case study, project management

Procedia PDF Downloads 245
10935 Strategies for Medium Sized Construction Firms to Survive the Current Economic Conditions That Is Compounded by the Most Recent COVID-19 Pandemic in Nigeria

Authors: Aloysius Colman Chukwuemeka Ezeabasili, Chibuike Patrick Ezeabasili

Abstract:

Medium Sized Construction Companies in Nigeria are those employing 50-250 workers that are mostly involved in roads, Commercial and domestic building Construction, among others. These companies are in the majority and contribute immensely to infrastructural development in Nigeria. Despite the last eight years of economic downturn and the past years of COVID-19 pandemic, signs of these Companies recovering from the economic recession and pandemic seem bright. Nigeria has recorded 213,000 confirmed cases 3968 deaths from COVID-19 as at now. These medium sized companies are currently trying to explore various opportunities to grow their businesses to achieve competitive advantages over others by studying and improving on their bidding efficiency, Strategies for selecting businesses, bidding markup Strategies, and cash flow. These strategies were studied through the recruitment of construction experts and professionals. Many of them have acquired new technologies that have impacted positively on their strategies. The impact of these technologies like the BIM, e-tendering, conditions of contract, and claim management strategies are advantages to them and has given them good advantages over their peers. Monte Carlo solution, Swot analysis, and average bid methods have also clearly added advantages to bidding practices. New and existing strategies are Scrutinized, and training of young Nigerians in advanced countries to acquire knowledge in best practices have elevated some of these companies. The Covid-19 has not been very harsh to Nigeria, and the country is surely not as devastated as the advanced countries. Nigeria has therefore been able to cope with the combination of the downturn and the pandemic.

Keywords: medium sized construction companies, competitive advantage, new bidding technologies, Nigeria

Procedia PDF Downloads 124
10934 Multi-Stakeholder Involvement in Construction and Challenges of Building Information Modeling Implementation

Authors: Zeynep Yazicioglu

Abstract:

Project development is a complex process where many stakeholders work together. Employers and main contractors are the base stakeholders, whereas designers, engineers, sub-contractors, suppliers, supervisors, and consultants are other stakeholders. A combination of the complexity of the building process with a large number of stakeholders often leads to time and cost overruns and irregular resource utilization. Failure to comply with the work schedule and inefficient use of resources in the construction processes indicate that it is necessary to accelerate production and increase productivity. The development of computer software called Building Information Modeling, abbreviated as BIM, is a major technological breakthrough in this area. The use of BIM enables architectural, structural, mechanical, and electrical projects to be drawn in coordination. BIM is a tool that should be considered by every stakeholder with the opportunities it offers, such as minimizing construction errors, reducing construction time, forecasting, and determination of the final construction cost. It is a process spreading over the years, enabling all stakeholders associated with the project and construction to use it. The main goal of this paper is to explore the problems associated with the adoption of BIM in multi-stakeholder projects. The paper is a conceptual study, summarizing the author’s practical experience with design offices and construction firms working with BIM. In the transition period to BIM, three of the challenges will be examined in this paper: 1. The compatibility of supplier companies with BIM, 2. The need for two-dimensional drawings, 3. Contractual issues related to BIM. The paper reviews the literature on BIM usage and reviews the challenges in the transition stage to BIM. Even on an international scale, the supplier that can work in harmony with BIM is not very common, which means that BIM's transition is continuing. In parallel, employers, local approval authorities, and material suppliers still need a 2-D drawing. In the BIM environment, different stakeholders can work on the same project simultaneously, giving rise to design ownership issues. Practical applications and problems encountered are also discussed, providing a number of suggestions for the future.

Keywords: BIM opportunities, collaboration, contract issues about BIM, stakeholders of project

Procedia PDF Downloads 99
10933 Determinants of Dividend Payout Ratio: Evidence form MENA Region

Authors: Abdul-Nasser El-Kassar, Walid Elgammal, Hisham Jawhar

Abstract:

This paper studies the determinants of the dividends payout ratio. The factors affecting the dividends payout ratio are to be identified. The study focuses only on the cement and construction industry within the MENA region in an attempt to isolate any incoherent behavior. The factors under consideration are: sales growth, ROE, ROA, ROS, debt to equity ratio, firm size, and free cash flow. Data were collected from official stock exchange markets in addition to annual reports. The study considered all firms that paid dividend in each of the three consecutive years starting from 2010 till 2012. Out of the 123 listed firms that work in cement and construction industry in MENA region, only 19 paid dividends in the three consecutive years 2010-12. Our sample consists of the 19 firms (57 observations) which are selected according to purposive sampling. Moreover, the study uses the homogeneous subcategory within the purposive sampling since only similar firms in the construction industry had been examined. The outcome of the study provides a vital insight into the determinants of dividends payout ratio of companies in MENA region. The results showed that the dividend payout ratio has a strong and positive relationship with return on assets and strong but negative relationship with return on equity. On the other hand, the results detected weak relationships between dividend payout ratio and sale growth, debt to equity ratio, firm size, and free cash flow. The study suggests that board of directors tend to compensate shareholders and minimize the agency cost by distributing a high portion of profits in form of dividends whenever return on equity decreases. Also, when the performance of the firm improves, and hence return on assets increases, boards of directors are more generous in distributing profits.

Keywords: dividends payout ratio, profitability firm size, free cashflow, debt to equity ratio

Procedia PDF Downloads 350
10932 A Systematic Review on Development of a Cost Estimation Framework: A Case Study of Nigeria

Authors: Babatunde Dosumu, Obuks Ejohwomu, Akilu Yunusa-Kaltungo

Abstract:

Cost estimation in construction is often difficult, particularly when dealing with risks and uncertainties, which are inevitable and peculiar to developing countries like Nigeria. Direct consequences of these are major deviations in cost, duration, and quality. The fundamental aim of this study is to develop a framework for assessing the impacts of risk on cost estimation, which in turn causes variabilities between contract sum and final account. This is very important, as initial estimates given to clients should reflect the certain magnitude of consistency and accuracy, which the client builds other planning-related activities upon, and also enhance the capabilities of construction industry professionals by enabling better prediction of the final account from the contract sum. In achieving this, a systematic literature review was conducted with cost variability and construction projects as search string within three databases: Scopus, Web of science, and Ebsco (Business source premium), which are further analyzed and gap(s) in knowledge or research discovered. From the extensive review, it was found that factors causing deviation between final accounts and contract sum ranged between 1 and 45. Besides, it was discovered that a cost estimation framework similar to Building Cost Information Services (BCIS) is unavailable in Nigeria, which is a major reason why initial estimates are very often inconsistent, leading to project delay, abandonment, or determination at the expense of the huge sum of money invested. It was concluded that the development of a cost estimation framework that is adjudged an important tool in risk shedding rather than risk-sharing in project risk management would be a panacea to cost estimation problems, leading to cost variability in the Nigerian construction industry by the time this ongoing Ph.D. research is completed. It was recommended that practitioners in the construction industry should always take into account risk in order to facilitate the rapid development of the construction industry in Nigeria, which should give stakeholders a more in-depth understanding of the estimation effectiveness and efficiency to be adopted by stakeholders in both the private and public sectors.

Keywords: cost variability, construction projects, future studies, Nigeria

Procedia PDF Downloads 188
10931 Construction and Demolition Waste Management in Indian Cities

Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee

Abstract:

Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.

Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency

Procedia PDF Downloads 294
10930 Converting Scheduling Time into Calendar Date Considering Non-Interruptible Construction Tasks

Authors: Salman Ali Nisar, Suzuki Koji

Abstract:

In this paper we developed a new algorithm to convert the project scheduling time into calendar date in order to handle non-interruptible activities not to be split by non-working days (such as weekend and holidays). In a construction project some activities might require not to be interrupted even on non-working days, or to be finished on the end day of business days. For example, concrete placing work might be required to be completed by the end day of weekdays i.e. Friday, and curing in the weekend. This research provides an algorithm that imposes time constraint for start and finish times of non-interruptible activities. The algorithm converts working days, which is obtained by Critical Path Method (CPM), to calendar date with consideration of the start date of a project. After determining the interruption by non-working days, the start time of a certain activity should be postponed, if there is enough total float value. Otherwise, the duration is shortened by hiring additional resources capacity or/and using overtime work execution. Then, time constraints are imposed to start time and finish time of the activity. The algorithm is developed in Excel Spreadsheet for microcomputer and therefore we can easily get a feasible, calendared construction schedule for such a construction project with some non-interruptible activities.

Keywords: project management, scheduling, critical path method, time constraint, non-interruptible tasks

Procedia PDF Downloads 493
10929 Study on the Strength and Durability Properties of Ternary Blended Concrete

Authors: Athira Babu, M. Nazeer

Abstract:

Concrete is the most common and versatile construction material used in any type of civil engineering structure. The durability and strength characteristics of concrete make it more desirable among any other construction materials. The manufacture and use of concrete produces wide range of environmental and social consequences. The major component in concrete, cement accounts for roughly 5 % of global CO2 emissions. In order to improve the environmental friendliness of concrete, suitable substitutes are added to concrete. The present study deals with GGBS and silica fume as supplementary cementitious materials. The strength and durability studies were conducted in this ternary blended concrete. Several mixes were adopted with varying percentages of Silica Fume i.e., 5%, 10% and 15%. Binary mix with 50% GGBS was also prepared. GGBS content has been kept constant for the rest of mixes. There is an improvement in compressive strength with addition of Silica Fume.Maximum workability, split tensile strength, modulus of elasticity, flexural strength and impact resistance are obtained for GGBS binary blend. For durability studies, maximum sulphate resistance,carbonation resistance andresistance to chloride ion penetration are obtained for ternary blended concrete. Partial replacement of GGBS and Silica Fume reduces the environmental effects, produces economical and eco-friendly concrete. The study showed that for strength characteristics, binary blended concrete showed better performance while for durability study ternary blend performed better.

Keywords: concrete, GGBS, silica fume, ternary blend

Procedia PDF Downloads 470
10928 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 288
10927 Meanings and Construction: Evolution of Inheriting the Traditions in Chinese Modern Architecture in the 1980s

Authors: Wei Wang

Abstract:

Queli Hotel, Xixi Scenery Spot Reception and Square Pagoda Garden are three important landmarks of localized Chinese modern architecture (LCMA) in the architectural design context of "Inheriting the Traditions in Modern Architecture" in the 1980s. As the most representative cases of LCMA in the 1980s, they interpret the traditions of Chinese garden and imperial roof from different perspectives. Based on the research text, conceptual drawings, construction drawings and site investigation, this paper extracts two groups of prominent contradictions in practice ("Pattern-Material-Structure" and "Type-Topography-Body") for keyword-based analysis to compare and examine different choices and balances by architects. Based on this, this paper attempts to indicate that the ideographic form derived from macro-narrative and the innovative investigation in construction is a pair of inevitable contradictions that must be handled and coordinated in these practices. The collision of the contradictions under specific conditions results in three cognitive attitudes and practical strategies towards traditions: Formal symbolism, spatial abstraction and construction-based narrative. These differentiated thoughts about Localization and Chineseness reflect various professional ideologies and value standpoints in the transition of Chinese Architecture discipline in the 1980s. The great variety in this particular circumstance suggests tremendous potential and possibilities of the future LCMA.

Keywords: construction, meaning, Queli Hotel, square pagoda garden, tradition, Xixi scenery spot reception

Procedia PDF Downloads 137
10926 Comparison of Fuel Cell Installation Methods at Large Commercial and Industrial Sites

Authors: Masood Sattari

Abstract:

Using fuel cell technology to generate electricity for large commercial and industrial sites is a growing segment in the fuel cell industry. The installation of these systems involves design, permitting, procurement of long-lead electrical equipment, and construction involving multiple utilities. The installation of each fuel cell system requires the same amount of coordination as the construction of a new structure requiring a foundation, gas, water, and electricity. Each of these components provide variables that can delay and possibly eliminate a new project. As the manufacturing process and efficiency of fuel cell systems improves, so must the installation methods to prevent a ‘bottle-neck’ in the installation phase of the deployment. Installation methodologies to install the systems vary among companies and this paper will examine the methodologies, describe the benefits and drawbacks for each, and provide guideline for the industry to improve overall installation efficiency.

Keywords: construction, installation, methodology, procurement

Procedia PDF Downloads 183
10925 Effect of Vanadium Addition to Aluminum Grain Refined by Ti or Ti + B on Its Microstructure, Mechanical Behavior, Fatigue Strength and Life

Authors: Adnan I. O. Zaid

Abstract:

As aluminum solidifies in columnar structure with large grain size which reduces its surface quality and mechanical strength; therefore it is normally grain refined either by titanium or titanium + boron (Ti or Ti + B). In this paper, the effect of addition of either Ti or Ti + B to commercially pure aluminum on its grain size, Vickers hardness, mechanical strength and fatigue strength and life is presented and discussed. Similarly, the effect of vanadium addition to Al grain refined by Ti or Ti+ B is presented and discussed. Two binary master alloys Al-Ti and Al-Vi were laboratory prepared from which five different micro-alloys in addition to the commercially pure aluminum namely Al-Ti, Al-Ti-B, Al-V, Al-Ti-V and Al-Ti-B-V were prepared for the investigation. Finally, the effect of their addition on the fatigue cracks initiation and propagation, using scanning electron microscope, SEM, is also presented and discussed. Photomirographs and photoscans are included in the paper.

Keywords: aluminum, fatigue, grain refinement, titanium, titanium+boron, vanadium

Procedia PDF Downloads 475
10924 Eco-Efficient Cementitious Materials for Construction Applications in Ireland

Authors: Eva Ujaczki, Rama Krishna Chinnam, Ronan Courtney, Syed A. M. Tofail, Lisa O'Donoghue

Abstract:

Concrete is the second most widely used material in the world and is made of cement, sand, and aggregates. Cement is a hydraulic binder which reacts with water to form a solid material. In the cement manufacturing process, the right mix of minerals from mined natural rocks, e.g., limestone is melted in a kiln at 1450 °C to form a new compound, clinker. In the final stage, the clinker is milled into a fine cement powder. The principal cement types manufactured in Ireland are: 1) CEM I – Portland cement; 2) CEM II/A – Portland-fly ash cement; 3) CEM II/A – Portland-limestone cement and 4) CEM III/A – Portland-round granulated blast furnace slag (GGBS). The production of eco-efficient, blended cement (CEM II, CEM III) reduces CO₂ emission and improves energy efficiency compared to traditional cements. Blended cements are produced locally in Ireland and more than 80% of produced cement is blended. These eco-efficient, blended cements are a relatively new class of construction materials and a kind of geopolymer binders. From a terminological point of view, geopolymer cement is a binding system that is able to harden at room temperature. Geopolymers do not require calcium-silicate-hydrate gel but utilize the polycondensation of SiO₂ and Al₂O₃ precursors to achieve a superior strength level. Geopolymer materials are usually synthesized using an aluminosilicate raw material and an activating solution which is mainly composed of NaOH or KOH and Na₂SiO₃. Cement is the essential ingredient in concrete which is vital for economic growth of countries. The challenge for the global cement industry is to reach to increasing demand at the same time recognize the need for sustainable usage of resources. Therefore, in this research, we investigated the potential for Irish wastes to be used in geopolymer cement type applications through a national stakeholder workshop with the Irish construction sector and relevant stakeholders. This paper aims at summarizing Irish stakeholder’s perspective for introducing new secondary raw materials, e.g., bauxite residue or increasing the fly ash addition into cement for eco-efficient cement production.

Keywords: eco-efficient, cement, geopolymer, blending

Procedia PDF Downloads 151
10923 Improving the Constructability of Highway Design Plans

Authors: R. Edward Minchin Jr.

Abstract:

The U.S. Federal Highway Administration (FHWA) Every Day Counts Program (EDC) has resulted in state DOTs putting evermore emphasis on speeding up the delivery of highway and bridge construction projects for use by the driving public. This has resulted in an increase in the use of alternative construction delivery systems such as design-build (D-B), construction manager at-risk (CMR) or construction manager/general contractor (CM/GC), and adding alternative technical concepts (ATCs) to traditional design-bid-build (DBB) contracts. ATCs have exhibited great potential for delivering substantial benefits like cost savings, increased constructability, and quicker project delivery. Previous research has found that knowledge of project constructability was lacking in state Department of Transportation (DOT) planning, programming, and environmental staffs. Many agencies have therefore relied on a set of ‘acceptable’ design solutions over the years of working with their local resource agencies. The result is that the permitting process for several government agencies has become increasingly restrictive with the result that the DOTs and their industry partners lose the ability to innovate after a permit is approved. The intent of this paper is to report on the research team’s progress in this ongoing effort furnish the United States government with a uniform set of guidelines for the application of constructability reviews during all phases of project development and delivery. The research uses surveys and interviews to determine which states have implemented formal programs to ensure that the constructor is furnished with a set of contract documents that affords said constructor with the best possible opportunity to successfully construct the project with the highest quality standards, within the contract duration and without exceeding the construction budget. Once these states are identified, workshops are held all over the nation, resulting in the team learning the best current practices and giving the team the ability to recommend new practices that will improve the process. The plan is for the FHWA to encourage or require state DOTs to use these practices on all federally funded highway and bridge construction projects. The project deliverable is a Guidebook for FHWA to use in disseminating the recommended practices to the states.

Keywords: alternative construction delivery, alternative technical concepts, constructability, construction design plans

Procedia PDF Downloads 197
10922 Identifying Strategies and Techniques for the Egyptian Medium and Large Size Contractors to Respond to Economic Hardship

Authors: Michael Salib, Samer Ezeldin, Ahmed Waly

Abstract:

There are numerous challenges and problems facing the construction industry in several countries in the Middle East, as a result of numerous economic and political effects. As an example in Egypt, several construction companies have shut down and left the market since 2016. The closure of these companies occurred, as they did not respond with the suitable techniques and strategies that will enable them to survive during this economic turmoil period. A research is conducted in order to identify adequate strategies to be implemented by the Egyptian contractors that could allow them survive and keep competing during such economic hardship period. Two different techniques were used in order to identify these startegies. First, a deep research were conducted on the companies located in countries that suffered similar economic harship to identify the strategies they used in order to survive. Second, interviews were conducted with experts in the construction field in order to list the effective strategies they used that allowed them to survive. Moreover, at the end of each interview, the experts were asked to rate the applicability of the previously identified strategies used in the foreign countries, then the efficiency of each strategy if used in Egypt. A framework model is developed in order to assist the construction companies in choosing the suitable techniques to their company size, through identifying the top ranked strategies and techniques that should be adopted by the company based on the parameters given to the model. In order to verify this framework, the financial statements of two leading companies in the Egyptian construction market were studied. The first Contractor has applied nearly all the top ranked strategies identified in this paper, while the other contractor has applied only few of the identified top ranked strategies. Finally, another expert interviews were conducted in order to validate the framework. These experts were asked to test the model and rate through a questionnaire its applicability and effectiveness.

Keywords: construction management, economic hardship, recession, survive

Procedia PDF Downloads 116
10921 Structural Insulated Panels

Authors: R. Padmini, G. V. Manoj Kumar

Abstract:

Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.

Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources

Procedia PDF Downloads 428
10920 Prevalence and Factors Associated to Work Accidents in the Construction Sector in Benin: Cases of CFIR – Consulting

Authors: Antoine Vikkey Hinson, Menonli Adjobimey, Gemayel Ahmed Biokou, Rose Mikponhoue

Abstract:

Introduction: Construction industry is a critical concern with regard to Health and Safety Service worldwide. World health Organization revealed that work-related disease and trauma were held responsible for the death of one million nine hundred thousand people in 2016. The aim of this study it was to determine the prevalence and factors associated with the occurrence of work accidents in a construction industry in Benin. Method: It was a descriptive cross-sectional and analytical study. Data analysis was performed with R software 4.1.1. In multivariate analysis, we performed a binary logistic regression. OR adjusted (ORa) association measures and their 95% confidence interval [CI95%] were presented for the explanatory variables used in the final model. The significance threshold for all tests selected was 5% (p < 0.05) Result: In this study, 472 workers were included, and, of these, 452 (95.7%) were men corresponding to a sex ratio of 22.6. The average age of the workers was 33 years ± 8.8 years. Workers were mostly laborers (84.7%), and had declared having inadequate personal protective equipment (50.6%, n=239). The prevalence of work accidents is 50.8%. Collision with a rolling stock (25.8%), cut (16.2%), and stumbling (16.2%) were the main types of work accidents on the construction site. Four factors were associated with contributing to work accidents. Fatigue or exhaustion (ORa : 1.53[1.03 ; 2.28]); The use of dangerous tools (ORa : 1.81 [1.22 ; 2.71]); The various laborers’ jobs (ORa : 4.78 [2.62 ; 9.21]); and seniority in the company ≥ 4 years (ORa : 2.00 [1.35 ; 2.96]). Conclusion: This study allowed us to identify the associated factors. It is imperative to implement a rigorous policy of occupational health and security mostly the continuing training for workers safe, the supply of appropriate work tools and protective

Keywords: prevalence, work accident, associated factors, construction, benin

Procedia PDF Downloads 44
10919 Value Engineering Change Proposal Application in Construction of Road-Building Projects

Authors: Mohammad Mahdi Hajiali

Abstract:

Many of construction projects estimated in Iran have been influenced by the limitations of financial resources. As for Iran, a country that is developing, and to follow this development-oriented approach which many numbers of projects each year run in, if we can reduce the cost of projects by applying a method we will help greatly to minimize the cost of major construction projects and therefore projects will finish faster and more efficiently. One of the components of transportation infrastructure are roads that are considered to have a considerable share of the country budget. In addition, major budget of the related ministry is spending to repair, improve and maintain roads. Value Engineering is a simple and powerful methodology over the past six decades that has been successful in reducing the cost of many projects. Specific solution for using value engineering in the stage of project implementation is called value engineering change proposal (VECP). It was tried in this research to apply VECP in one of the road-building projects in Iran in order to enhance the value of this kind of projects and reduce their cost. In this case study after applying VECP, an idea was raised. It was about use of concrete pavement instead of hot mixed asphalt (HMA) and also using fiber in order to improve concrete pavement performance. VE group team made a decision that for choosing the best alternatives, get expert’s opinions in pavement systems and use Fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) for ranking opinions of the experts. Finally, Jointed Plain Concrete Pavement (JPCP) was selected. Group also experimented concrete samples with available fibers in Iran and the results of experiments showed a significant increment in concrete specifications such as flexural strength. In the end, it was shown that by using of fiber-reinforced concrete pavement instead of asphalt pavement, we can achieve a significant saving in cost, time and also increment in quality, durability, and longevity.

Keywords: road-building projects, value engineering change proposal (VECP), Jointed Plain Concrete Pavement (JPCP), Fuzzy TOPSIS, fiber-reinforced concrete

Procedia PDF Downloads 183
10918 Visual Construction of Youth in Czechoslovak Press Photographs: 1959-1989

Authors: Jana Teplá

Abstract:

This text focuses on the visual construction of youth in press photographs in socialist Czechoslovakia. It deals with photographs in a magazine for young readers, Mladý svět, published by the Socialist Union of Youth of Czechoslovakia. The aim of this study was to develop a methodological tool for uncovering the values and the ideological messages in the strategies used in the visual construction of reality in the socialist press. Two methods of visual analysis were applied to the photographs, a quantitative content analysis and a social semiotic analysis. The social semiotic analysis focused on images representing youth in their free time. The study shows that the meaning of a socialist press photograph is a result of a struggle for ideological power between formal and informal ideologies. This struggle takes place within the process of production of the photograph and also within the process of interpretation of the photograph.

Keywords: ideology, press photography, socialist regime, social semiotics, youth

Procedia PDF Downloads 268
10917 Analyzing Competition in Public Construction Projects

Authors: Khaled Hesham Hyari, Amjad Almani

Abstract:

Construction projects in the public sector are commonly awarded through competitive bidding. In the last decade, the Construction projects environment in the Middle East went through many changes. These changes have been caused by different factors including the economic crisis, delays in monthly payments, international competition and reduced number of projects. These factors had a great impact on the bidding behaviors of contractors and their pricing strategies. This paper examines the competition characteristics in public construction projects through an analysis of bidding results of contractors in public construction projects over a period of 6 years (2006-2011) in Jordan. The analyzed projects include all categories of projects such as infrastructure, buildings, transportation and engineering services (design and supervision contracts). Data for the projects were obtained from the General Tender’s Directorate in Jordan and includes 462 projects. The analysis performed in this projects includes, studying the bid spread in all projects as it is an indication of the level of competition in the analyzed bids. The analysis studied the factors that affect bid spread such as number of bidders, Value of the project, Project category and years. It also studying the “Signal to Noise Ratio” in all projects as it is an indication of the accuracy of cost estimating performed by competing bidders and bidder´s evaluation of project risks. The analysis performed includes the relationship between signal to noise ratio and different parameters such as project category, number of bidders and changes over years. Moreover, the analysis includes determining the bidder´s aggressiveness in bidding as it is an indication of competition level in such projects. This was performed by determining the pack price which can be considered as the true value of the project and comparing it with the lowest bid submitted for each project to determine the level of aggressiveness in submitted bids. The analysis performed in this project should prove to be useful to owners in understanding bidding behaviors of contractors and pointing out areas that needs improvement in preparing bidding documents. Also the project should be useful to contractors in understanding the competitive bidding environment and should help them to improve their bidding strategies to maximize the success rate in obtaining contracts.

Keywords: construction projects, competitive bidding, public construction, competition

Procedia PDF Downloads 322
10916 Evaluation of Eco Cement as a Stabilizer of Clayey Sand

Authors: Jeeja Menon, M. S. Ravikumar

Abstract:

With the advent of green technology and the concept of zero energy buildings, there is an emerging trend in the utilization of indigenous materials like soil as a construction material. However, fine soils like clays and sand have undesirable properties and stabilization of these soils is essential before it is used to develop a building unit. Eco cement or Ground Granulated Blast Furnace Slag (GGBS), a waste byproduct formed during the manufacture of iron has cementitious properties and has the potential of replacing cement which is the most common stabilizer used for improving the geotechnical properties of soil. This paper highlights the salient observations obtained by the investigations into the effect of GGBS as a stabilizer for clayey sand. The index and engineering properties of the soil on the addition of different percentages (0%, 2%, 4%, 5% & 6% of the dry weight of the soil) of GGBS are tested to arrive at the optimum binder content. The criteria chosen for evaluation are the unconfined compressive strength values of different soil- binder composition. The test results indicate that there are significant strength improvements by the addition of GGBS in the soil, and the optimum GGBS content was determined as 5%. Moreover, utilizing waste binders for developing an ecofriendly, less energy induced building units as well as for stabilizing soil will also contribute to the solid waste management, which is the current environmental crisis of the world.

Keywords: eco cement, GGBS, index properties, stabilization, unconfined compressive strength

Procedia PDF Downloads 123
10915 Analysis of Risks of Adopting Integrated Project Delivery: Application of Bayesian Theory

Authors: Shan Li, Qiuwen Ma

Abstract:

Integrated project delivery (IPD) is a project delivery method distinguished by a shared risk/rewards mechanism and multiparty agreement. IPD has drawn increasing attention from construction industry due to its reliability to deliver high-performing buildings. However, unavailable IPD specific insurance concerns the industry participants who are interested in IPD implementation. Even though the risk management capability can be enhanced using shared risk mechanism, some risks may occur when the partners do not commit themselves into the integrated practices in a desired manner. This is because the intense collaboration and close integration can not only create added value but bring new opportunistic behaviors and disputes. The study is aimed to investigate the risks of implementing IPD using Bayesian theory. IPD risk taxonomy is presented to identify all potential risks of implementing IPD and a risk network map is developed to capture the interdependencies between IPD risks. The conditional relations between risk occurrences and the impacts of IPD risks on project performances are evaluated and simulated based on Bayesian theory. The probability of project outcomes is predicted by simulation. In addition, it is found that some risks caused by integration are most possible occurred risks. This study can help the IPD project participants identify critical risks of adopting IPD to improve project performances. In addition, it is helpful to develop IPD specific insurance when the pertinent risks can be identified.

Keywords: Bayesian theory, integrated project delivery, project risks, project performances

Procedia PDF Downloads 287
10914 The Impact of Artificial Intelligence on Rural Life

Authors: Triza Edwar Fawzi Deif

Abstract:

In the process of urbanization in China, new rural construction is on the ascendant, which is becoming more and more popular. Under the driving effect of rural urbanization, the house pattern and tectonic methods of traditional vernacular houses have shown great differences from the family structure and values of contemporary peasant families. Therefore, it is particularly important to find a prototype, form and strategy to make a balance between the traditional memory and modern functional requirements. In order for research to combine the regional culture with modern life, under the situation of the current batch production of new rural residences, Badie village, in Zhejiang province, is taken as the case. This paper aims to put forward a prototype which can not only meet the demand of modern life but also ensure the continuation of traditional culture and historical context for the new rural dwellings design. This research not only helps to extend the local context in the construction of the new site but also contributes to the fusion of old and new rural dwellings in the old site construction. Through the study and research of this case, the research methodology and results can be drawn as reference for the new rural construction in other areas.

Keywords: steel slag, co-product, primary coating, steel aggregate capital, rural areas, rural planning, rural governance village, design strategy, new rural dwellings, regional context, regional expression

Procedia PDF Downloads 27
10913 Use of Cyber-Physical Devices for the Implementation of Virtual and Augmented Realities in Bridge Construction

Authors: Muhammmad Fawad

Abstract:

The bridge construction industry has been revolutionized by the applications of Virtual Reality (VR) and Augmented Reality (AR). In this article, the author has focused on the field applications of digital technologies in structural, especially in bridge engineering. This research analyzed the use of VR/AR for the assessment of bridge concepts. For this purpose, the author has used Cyber-Physical Devices, i.e., Oculus Quest (OQ) for the implementation of VR, Trimble Microsoft HoloLens (THL), and Trimble Site Vision (TSV) for the implementation of AR/MR by visualizing the models of bridge planned to be constructed in Poland. The visualization of the models in Extended Reality (XR) is based on the development of BIM models of the bridge, which are further uploaded to the platforms required to implement these models in XR. This research helped to implement the models in MR so a bridge with a 1:1 scale at the exact location was placed, and authorities were presented with the possibility to visualize the exact scale and location of the bridge before its construction.

Keywords: augmented reality, virtual reality, HoloLens, BIM, bridges

Procedia PDF Downloads 110