Search results for: building damage inspection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6552

Search results for: building damage inspection

5982 A Novel Rapid Well Control Technique Modelled in Computational Fluid Dynamics Software

Authors: Michael Williams

Abstract:

The ability to control a flowing well is of the utmost important. During the kill phase, heavy weight kill mud is circulated around the well. While increasing bottom hole pressure near wellbore formation, the damage is increased. The addition of high density spherical objects has the potential to minimise this near wellbore damage, increase bottom hole pressure and reduce operational time to kill the well. This operational time saving is seen in the rapid deployment of high density spherical objects instead of building high density drilling fluid. The research aims to model the well kill process using a Computational Fluid Dynamics software. A model has been created as a proof of concept to analyse the flow of micron sized spherical objects in the drilling fluid. Initial results show that this new methodology of spherical objects in drilling fluid agrees with traditional stream lines seen in non-particle flow. Additional models have been created to demonstrate that areas of higher flow rate around the bit can lead to increased probability of wash out of formations but do not affect the flow of micron sized spherical objects. Interestingly, areas that experience dimensional changes such as tool joints and various BHA components do not appear at this initial stage to experience increased velocity or create areas of turbulent flow, which could lead to further borehole stability. In conclusion, the initial models of this novel well control methodology have not demonstrated any adverse flow patterns, which would conclude that this model may be viable under field conditions.

Keywords: well control, fluid mechanics, safety, environment

Procedia PDF Downloads 169
5981 Qualitative Review of Seismic Response of Vertically Irregular Building Frames

Authors: Abdelhammid Chibane

Abstract:

This study summarizes state-of-the-art knowledge in the seismic response of vertically irregular building frames. Criteria defining vertical irregularity as per the current building codes have been discussed. A review of studies on the seismic behaviour of vertically irregular structures along with their findings has been presented. It is observed that building codes provide criteria to classify the vertically irregular structures and suggest dynamic analysis to arrive at design lateral forces. Most of the studies agree on the increase in drift demand in the tower portion of set-back structures and on the increase in seismic demand for buildings with discontinuous distributions in mass, stiffness, and strength. The largest seismic demand is found for the combined-stiffness-and-strength irregularity.

Keywords: mass irregularity, set-back structure, stiffness irregularity, strength irregularity, vertical irregularity

Procedia PDF Downloads 258
5980 Building on Local People Capacities as Key Resources in Making Livable Environments

Authors: Ouassim Chemrouk, Naima Chabbi-Chemrouk

Abstract:

Contemporary settlements and urban places are becoming increasingly complex involving technologically advanced building materials, and mechanical systems for controlling environmental quality such as thermal comfort, lighting, acoustics and other building performances. These systems, which rely exclusively on the utilization of nonrenewable energy are often expensive and environment pollutants. The proposed paper illustrates the important role of traditional knowledge and practice and what is sometimes called intangible cultural heritage assume in the design of the built environment. It shows that some traditional “ways of doing” that are transmitted at local scales from generation to generation could be built upon to become key resources for more livable urban places. Based on evidence from documentary sources and field surveys, it also shows how different attempts were made to translate some traditional practices and local know-how in the proposal of new urban schemes.

Keywords: key resource, know-how, local people, capacity building, liveable built environments

Procedia PDF Downloads 208
5979 Fractional Calculus into Structural Dynamics

Authors: Jorge Lopez

Abstract:

In this work, we introduce fractional calculus in order to study the dynamics of a damped multistory building with some symmetry. Initially we make a review of the dynamics of a free and damped multistory building. Then we introduce those concepts of fractional calculus that will be involved in our study. It has been noticed that fractional calculus provides models with less parameters than those based on classical calculus. In particular, a damped classical oscilator is more naturally described by using fractional derivatives. Accordingly, we model our multistory building as a set of coupled fractional oscillators and compare its dynamics with the results coming from traditional methods.

Keywords: coupled oscillators, fractional calculus, fractional oscillator, structural dynamics

Procedia PDF Downloads 239
5978 Genistein Suppresses Doxorubicin Associated Genotoxicity in Human Lymphocytes

Authors: Tanveer Beg, Yasir H. Siddique, Gulshan Ara, Asfar S. Azmi, Mohammad Afzal

Abstract:

Doxorubicin is a well-known DNA intercalating chemotherapy drug that is widely used for treatment of different cancers. Its clinical utility is limited due to the observed genotoxic side effects on healthy cells suggesting that newer combination and genoprotective regimens are urgently needed for the management of doxorubicin chemotherapy. Some dietary phytochemicals are well known for their protective mechanism of action and genistein from soy is recognized as an anti-oxidant with similar properties. Therefore, the present study investigates the effect of genistein against the genotoxic doses of doxorubicin by assessing chromosomal aberrations, sister chromatid exchanges, cell cycle kinetics, cell viability, apoptosis, and DNA damage markers in cultured human lymphocytes. Our results reveal that genistein treatment significantly suppresses genotoxic damage induced by doxorubicin. It is concluded that genistein has the potential to reduce the genotoxicity induced by anti-cancer drugs, thereby reducing the chances of developing secondary tumors during the therapy.

Keywords: apoptosis, DNA damage markers, doxorubicin, genistein, genotoxicity, human lymphocyte culture

Procedia PDF Downloads 356
5977 Effect of Mineral Admixtures on Transport Properties of SCCs Composites: Influence of Mechanical Damage

Authors: Davood Niknezhad, Siham Kamali-Bernard

Abstract:

Concrete durability is one of the most important considerations in the design of new structures in aggressive environments. It is now common knowledge that the transport properties of a concrete, i.e; permeability and chloride diffusion coefficient are important indicators of its durability. The development of microcracking in concrete structures leads to significant permeability and to durability problems as a result. The main objective of the study presented in this paper is to investigate the influence of mineral admixtures and impact of compressive cracks by mechanical uniaxial compression up to 80% of the ultimate strength on transport properties of self-compacting concrete (SCC) manufactured with the eco-materials (metakaolin, fly ash, slag HF). The chloride resistance and binding capacity of the different SCCs produced with the different admixtures in damaged and undamaged state are measured using a chloride migration test accelerated by an external applied electrical field. Intrinsic permeability is measured using the helium gas and one permeameter at constant load. Klinkenberg approach is used for the determination of the intrinsic permeability. Based on the findings of this study, the use of mineral admixtures increases the resistance of SCC to chloride ingress and reduces their permeability. From the impact of mechanical damage, we show that the Gas permeability is more sensitive of concrete damaged than chloride diffusion. A correlation is obtained between the intrinsic permeability and chloride migration coefficient according to the damage variable for the four studied mixtures.

Keywords: SCC, concrete durability, transport properties, gas permeability, chloride diffusion, mechanical damage, mineral admixtures

Procedia PDF Downloads 225
5976 Desert Houses of the Past: Green Buildings of Today

Authors: Baharak Shakeri, Seyed Hashem Hosseini

Abstract:

The weather in deserts is hot and dry in summers, and cold and dry in winters, and difference of temperature of nights and days sometimes reaches to 28°C. People of deserts have reached some solutions to cope with this climatic condition and to decrease its annoying features. Among these solutions are: constructing houses adjacent to each other, making tall walls, using mud brick and thatch cover, constructing domical arches, cellar, and wind catcher, which are together the devices to control the adversity of hot weather in summers and cold weather in winters. Using these solutions, the people of deserts have succeeded to make the best use with the least energy consumption, and to minimize the damage on the nature and environment, and in short, they are friends of the nature, which is a step toward the objectives of green buildings.

Keywords: desert house, green building, Iran, nature

Procedia PDF Downloads 335
5975 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty

Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)

Abstract:

In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.

Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator

Procedia PDF Downloads 84
5974 Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China

Authors: Chanjuan Sun, Shijie Hong, Jialing Zhang, Yuchao Guo, Zhijun Zou, Chen Huang

Abstract:

Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children.

Keywords: air temperature, extreme air temperature, air temperature difference, respiratory diseases, children

Procedia PDF Downloads 166
5973 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk

Authors: Moses Jenkins

Abstract:

Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.

Keywords: insulation, condensation, masonry, historic

Procedia PDF Downloads 167
5972 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 96
5971 A Methodology for Seismic Performance Enhancement of RC Structures Equipped with Friction Energy Dissipation Devices

Authors: Neda Nabid

Abstract:

Friction-based supplemental devices have been extensively used for seismic protection and strengthening of structures, however, the conventional use of these dampers may not necessarily lead to an efficient structural performance. Conventionally designed friction dampers follow a uniform height-wise distribution pattern of slip load values for more practical simplicity. This can lead to localizing structural damage in certain story levels, while the other stories accommodate a negligible amount of relative displacement demand. A practical performance-based optimization methodology is developed to tackle with structural damage localization of RC frame buildings with friction energy dissipation devices under severe earthquakes. The proposed methodology is based on the concept of uniform damage distribution theory. According to this theory, the slip load values of the friction dampers redistribute and shift from stories with lower relative displacement demand to the stories with higher inter-story drifts to narrow down the discrepancy between the structural damage levels in different stories. In this study, the efficacy of the proposed design methodology is evaluated through the seismic performance of five different low to high-rise RC frames equipped with friction wall dampers under six real spectrum-compatible design earthquakes. The results indicate that compared to the conventional design, using the suggested methodology to design friction wall systems can lead to, by average, up to 40% reduction of maximum inter-story drift; and incredibly more uniform height-wise distribution of relative displacement demands under the design earthquakes.

Keywords: friction damper, nonlinear dynamic analysis, RC structures, seismic performance, structural damage

Procedia PDF Downloads 223
5970 Maintenance Work Order Management Tool (Desktop & Mobile Solution)

Authors: Haitham Al Rawahi

Abstract:

Oman Electricity Transmission Company (OETC) has implemented Computerized Maintenance Management System (CMMS), which is based on Oracle enterprise asset management model e-AM. This was implemented with cooperation of Nama Shared Services (NSS). CMMS is mainly used to create maintenance work orders with a preconfigured workflow of defined maintenance schedules/plans, required resources, and materials, obtaining shutdown approvals, completing maintenance activities, and closing the work orders. Furthermore, CMMS is also configured with asset failure classifications, asset hierarchy, asset maintenance activities, integration with spare inventories, etc. Since the year 2017, site engineer is working on CMMS by filling-in manually all related maintenance and inspection records on paper forms and then scanning and attaching it in CMMS for further analysis. Site engineer will finalize all paper works at site and then goes back to office to scan and attach it to work order in CMMS. This creates sub tasks for site engineer and makes it very difficult and lengthy process. Also, there is a significant risk for missing or deleted important fields on the paper due to usage of pen to fill the paper. In addition to that, site engineer may take time and days working outside of the office. therefore, OETC has decided to digitize these inspection and maintenance forms in one platform in CMMS, and it can be opened with both functionalities online and offline. The ArcGIS product formats or web-enabled solutions which has ability to access from mobile and desktop devices via arc map modules will be used too. The purpose of interlinking is to setup for maintenance and inspection forms to work orders in e-AM, which the site engineer has daily interactions with. This ArcGIS environment or tool is designed to link with e-AM, so when site engineer opens this application from the site and a window will take him through same ArcGIS. This window opens the maintenance forms and shows the required fields to fill-in and save the work through his mobile application. After saving his work with the availability of network (Off/In) line, notification will trigger to his line manager to review and take further actions (approve/reject/request more information). In this function, the user can see the assigned work orders to his departments as well as chart of all work orders with status. The approver has ability to see the statistics of all work.

Keywords: e-AM, GIS, CMMS, integration

Procedia PDF Downloads 90
5969 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 98
5968 A Policy Strategy for Building Energy Data Management in India

Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan

Abstract:

The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.

Keywords: energy data, energy policy, energy efficiency, buildings

Procedia PDF Downloads 182
5967 Evaluating Habitat Manipulation as a Strategy for Rodent Control in Agricultural Ecosystems of Pothwar Region, Pakistan

Authors: Nadeem Munawar, Tariq Mahmood

Abstract:

Habitat manipulation is an important technique that can be used for controlling rodent damage in agricultural ecosystems. It involves intentionally manipulation of vegetation cover in adjacent habitats around the active burrows of rodents to reduce shelter, food availability and to increase predation pressure. The current study was conducted in the Pothwar Plateau during the respective non-crop period of wheat-groundnut (post-harvested and un-ploughed/non-crop fallow lands) with the aim to assess the impact of the reduction in vegetation height of adjacent habitats (field borders) on rodent’s richness and abundance. The study area was divided into two sites viz. treated and non-treated. At the treated sites, habitat manipulation was carried out by removing crop cache, and non-crop vegetation’s over 10 cm in height to a distance of approximately 20 m from the fields. The trapping sessions carried out at both treated and non-treated sites adjacent to wheat-groundnut fields were significantly different (F 2, 6 = 13.2, P = 0.001) from each other, which revealed that a maximum number of rodents were captured from non-treated sites. There was a significant difference in the overall abundance of rodents (P < 0.05) between crop stages and between treatments in both crops. The manipulation effect was significantly observed on damage to crops, and yield production resulted in the reduction of damage within the associated croplands (P < 0.05). The outcomes of this study indicated a significant reduction of rodent population at treated sites due to changes in vegetation height and cover which affect important components, i.e., food, shelter, movements and increased risk sensitivity in their feeding behavior; therefore, they were unable to reach levels where they cause significant crop damage. This method is recommended for being a cost-effective and easy application.

Keywords: agricultural ecosystems, crop damage, habitat manipulation, rodents, trapping

Procedia PDF Downloads 158
5966 The Effect of Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity

Authors: Jessica Maiuolo, Irene Bava, Micaela Gliozzi, Vincenzo Mollace

Abstract:

Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Polyphenols have a wide range of beneficial properties, and particular importance is given to Oleuropein, one of the main polyphenolic compounds of olive oil. The biological mechanisms involved and the role of the endoplasmic reticulum were examined. Olive oil extract and Oleuropein were able to decrease the damage induced by exposure to doxorubicin. In particular, this natural compound was found to reduce cell mortality and oxidative damage, increase lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin. The protection afforded by pre-treatment with the natural compound of interest, following the early damage induced by DOXO, provided valuable information regarding the potential use of these substances along with chemotherapy treatment.

Keywords: Olea europea L., oleuropein, doxorubicin, endoplasmic reticulum, nutraceutical support

Procedia PDF Downloads 108
5965 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique

Authors: Jaturong Som-ard

Abstract:

The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.

Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings

Procedia PDF Downloads 187
5964 BEATRICE: A Low-Cost Manipulator Arm for an Educational Planetary Rover

Authors: T. Pakulski, L. Kryza, A. Linossier

Abstract:

The BEar Articulated TeleRobotic Inspection and Clasping Extremity is a lightweight, 5 DoF robotic manipulator for the Berlin Educational Assistant Rover (BEAR). BEAR is one of the educational planetary rovers developed under the Space Rover projects at the Chair of Space Technology of the Technische Universität Berlin. The projects serve to conduct research and train engineers by developing rovers for competitions like the European Rover Challenge and the DLR SpaceBot Cup. BEATRICE is the result of a cost-driven design process to deliver a simple but capable platform for a variety of competition tasks: object grasping and manipulation, inspection, instrument wielding and more. The manipulator’s simple mechatronic design, based on a combination of servomotors and stepper motors with planetary gearboxes, also makes it a practical tool for developing embedded control systems. The platform’s initial implementation relies on tele-operated control but is fully instrumented for future autonomous functionality. This paper describes BEATRICE’s development from its preliminary link model to its structural and mechatronic design, embedded control and AI and T. In parallel, it examines the influence of budget constraints and high personnel turnover commonly associated with student teams on the manipulator’s design. Finally, it comments on the utility of robot design projects for educating future engineers.

Keywords: education, low-cost, manipulator, robotics, rover

Procedia PDF Downloads 250
5963 Effect of Sowing Dates on Incidence of Sorghum Head Bug Eurystylus Sp (Hemiptera; Miridae) at Rainfed Sector, Blue Nile State, Sudan

Authors: Eisa Y. Adam, Anas A. Fadlelmula, Ali E. Ali

Abstract:

Sorghum head bug is a key insect pest of sorghum, and it is important to pay attention to the peak time of the pest abundance. The objective of this study was to study the effect of planting date on head bugs population. Field experiment was conducted during 2007/08 – 2008/09 and 2013/14 - 2014/15 cropping seasons at the Damazine Research Station Farm, Blue Nile State to determine sorghum head bugs incidence and abundance through the sowing date. Different sowing dates (early, mid and late sowing) and a susceptible sorghum variety known as Wad Ahmed variety were used the experiment. The experimental design used was randomized complete block design (RCBD). Data were collected on the number of head bug adults and nymphs/panicle, damage percent, coloration and a puncture due to bug feeding and oviposition, 1000 seeds weight and yield. The results showed that significantly (P<0.05) higher number of bugs and damage percent were recorded on the late sowing date for the four seasons followed by the mid sowing, while the early sowing gave low number of bugs, damage percent and high1000 weight. There were significant differences between protected and unprotected heads. The late sowing (August) is a critical sorghum planting time because it coincided with highest numbers of the head bugs.

Keywords: abundance, damage, headbugs, panicle

Procedia PDF Downloads 258
5962 Slope Stability Considering the Top Building Load

Authors: Micke Didit, Xiwen Zhang, Weidong Zhu

Abstract:

Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. Therefore, it is of great importance to study the relationship between the load and the stability of the slope. This study aims to analyze the influence of the building load applied on the top of the slope and deduces its effect on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (fos) increases with the increase of the distance between the top-loading and the slope shoulder, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.

Keywords: building load, finite-difference analysis, FLAC3D software, slope factor of safety, slope stability

Procedia PDF Downloads 169
5961 Assessment of Agricultural Damage under Different Simulated Flood Conditions

Authors: M. N. Kadir, M. M. H. Oliver, T. Naher

Abstract:

The study assesses the areal extent of riverine flood in the flood-prone area of Faridpur District of Bangladesh using hydrological model and Geographic Information System (GIS). In the context of preparing the inundation map, flood frequency analysis was carried out to assess flooding for different flood magnitudes. Flood inundation maps were prepared based on DEM, and discharge at the river using Delft-3D model. LANDSAT satellite images have been used to develop a land cover map in the study area. The land cover map was used for mapping of cropland area. By incorporating the inundation maps on the land cover map, agricultural damage was assessed. Present monetary values of crop damage were collected through field survey from actual flood of the study area. Two different inundation maps were produced from the model for the year 2000 and 2016. In the year 2000, the floods began in the month of July, whereas in the case of the year 2016 is started in August. Under both cases, most of the areas were found to have been flooded in the month of September followed by flood recession. In order to prepare the land cover maps, four categories of LCs were considered viz., cropland, water body, trees, and rivers. Among the 755791 acres area of Faridpur District, the croplands were categorized to be 334,589 acres, followed by water bodies (279900 acres), trees (101930 acres) and rivers 39372 (acres). Damage assessment data revealed that 40% of the total cropland area had been affected by the flood in the year 2000, whereas only 19% area was affected by the 2016 flood. The study concluded that September is the critical month for cropland protection since the highest flood is expected at this time of the year in Faridpur. The northwestern and the southwestern part of the district was categorized as most vulnerable to flooding.

Keywords: agricultural damage, Delft-3d, flood management, land cover map

Procedia PDF Downloads 99
5960 Seismic Performance Point of RC Frame Buildings Using ATC-40, FEMA 356 and FEMA 440 Guidelines

Authors: Gram Y. Rivas Sanchez

Abstract:

The seismic design codes in the world allow the analysis of structures considering an elastic-linear behavior; however, against earthquakes, the structures exhibit non-linear behaviors that induce damage to their elements. For this reason, it is necessary to use non-linear methods to analyze these structures, being the dynamic methods that provide more reliable results but require a lot of computational costs; on the other hand, non-linear static methods do not have this disadvantage and are being used more and more. In the present work, the nonlinear static analysis (pushover) of RC frame buildings of three, five, and seven stories is carried out considering models of concentrated plasticity using plastic hinges; and the seismic performance points are determined using ATC-40, FEMA 356, and FEMA 440 guidelines. Using this last standard, the highest inelastic displacements and basal shears are obtained, providing designs that are more conservative.

Keywords: pushover, nonlinear, RC building, FEMA 440, ATC 40

Procedia PDF Downloads 144
5959 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials

Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi

Abstract:

Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.

Keywords: building materials, heat transfer, moisture diffusion, numerical solution

Procedia PDF Downloads 287
5958 The Impact of Co-Administration of Phosphodiesterase-5 Inhibitor and Sodium Selenite on Ischemia/Reperfusion Injury in a Rat Ovary Model: Biochemical and Histopathologic Evaluation

Authors: Waleed Aly Sayed Ahmed, Eman Kishk, Tahani Shams

Abstract:

Aim: To study the effects of co-administration of phosphodiesterase-5 inhibitor (PDE-5) and sodium selenite against the damage induced by ovarian ischemia-reperfusion in rats. Materials and Methods: A total of forty-two sexually mature, virgin, female rats were divided randomly into six groups of seven each: sham group (C), ischemia group (I), ischemia/reperfusion group (I/R), ischemia/reperfusion plus 1.4mg/kg sildenafil (I/R+S) group, ischemia/reperfusion plus 0.2mg/kg selenium (I/R+Se) group and ischemia/reperfusion plus combination of sildenafil and selenium (I/R+S+Se) group. In ischemia group (I), rats were exposed to ischemia for 3 hours (h). In ischemia/reperfusion group (I/R), rats were exposed to ischemia for 3 h followed by 6 h of reperfusion. Treated groups received 1.4mg/kg sildenafil or 0.2 mg/kg selenium or both 30 min before reperfusion. Both ovaries were surgically removed carefully. One ovary was examined for histopathological changes and the other was subject to biochemical analysis including malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx). Results: Assessment of ovarian tissue damage using a scoring system showed marked vascular congestion, interstitial edema, leukocyte infiltration, hemorrhage, and follicular degeneration in ischemia and ischemia/reperfusion groups. Tissue damage score for I, IR and all treated groups were significantly higher than those of the sham group (p<0.001), while tissue damage score decreased significantly in I/R+S and I/R+Se groups compared to I/R group (p<0.05), and notably, the difference was highly significant in I/R+S+Se group (p<0.001). There was significant increase in MDA levels and reduction in activities of CAT and GPx in I/R group compared to the sham group (p < 0.05). In I/R+S and I/R+Se groups, MDA was significantly decreased compared to the I/R group (p<0.05) and the difference was highly significant with co-administration of sildenafil and selenium (p<0.001). CAT and GPx were higher in all treated groups compared to I/R group (p<0.05). Conclusion: The co-administration of sildenafil citrate and selenium are highly protective against damage induced by ovarian ischemia/reperfusion in rats.

Keywords: phosphodiesterase-5 inhibitor, sildenafil, antioxidant, selenium, ovarian ischemia

Procedia PDF Downloads 310
5957 Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials

Authors: Sang Wook Park, Se Woon Choi, Yousok Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building.

Keywords: retrofit, FRP bracings, reinforced concrete frame with infill wall, seismic performance evaluation, NSGA-II

Procedia PDF Downloads 433
5956 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.

Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system

Procedia PDF Downloads 101
5955 Identification of Factors Influencing Costs in Green Projects

Authors: Nazirah Zainul Abidin, Nurul Zahirah Mokhtar Azizi

Abstract:

Cost has always been the leading concern in green building development. The perception that construction cost for green building is higher than conventional buildings has only made the discussion of green building cost more difficult. Understanding the factors that will influence the cost of green construction is expected to shed light into what makes green construction more or at par with conventional projects, or perhaps, where cost can be optimised. This paper identifies the elements of cost before shifting the attention to the influencing factors. Findings from past studies uncovered various factors related to cost which are grouped into five focal themes i.e. awareness, knowledge, financial, technical, and government support. A conceptual framework is produced in a form of a flower diagram indicating the cost influencing factors of green building development. These factors were found to be both physical and non-physical aspects of a project. The framework provides ground for the next stage of research that is to further explore how these factors influence the project cost and decision making.

Keywords: green project, factors influencing cost, hard cost, soft cost

Procedia PDF Downloads 339
5954 Sustainability Innovation Capacity Building Framework for UN Sustainable Development Goals

Authors: C. Park, H. Lee, Y-J. Lee

Abstract:

Aim: This study aims to present the Sustainability Innovation Capacity Building Framework (SICBF) to enable the wider public to achieve UN Sustainable Development Goals (UN SDGs) for a sustainable future. The intrinsically interwoven nature of sustainability requires systematic approaches to attain. However, there is a lack of an effective framework for capacity building that enables a systematic implementation approach for UN SDGs. The SICBF illustrates the six core components and their dynamics: 1. Momentum creation; 2. Exposure to diverse worldviews; 3. Serendipity/Eureka moment; 4. Creative problem solving; 5. Individual empowerment; 6. Systems thinking. Method: First, a structured literature review was used to synthesise existing sustainability competencies studies and generic innovation competencies. Secondly, the conceptual framework based on literature findings was tested with the participants' survey and interview data collected from four sets of MAKEathon events. The interview analysis and event observation data were used to further refine and validate the conceptual framework. Contributions: The scientific contribution of this study is to pave the way for SDGs specific capacity building framework that caters to the need for systematic approaches to allow the wider public aspiring to tackle the seemingly intractable sustainable development goals. The framework will aid sustainable development academics, educators, and practitioners in understanding the dynamics of how capacity building can be facilitated.

Keywords: capacity building, sustainability innovation, sustainable development, systems thinking, UN SDGs

Procedia PDF Downloads 78
5953 Minimizing Unscheduled Maintenance from an Aircraft and Rolling Stock Maintenance Perspective: Preventive Maintenance Model

Authors: Adel A. Ghobbar, Varun Raman

Abstract:

The Corrective maintenance of components and systems is a problem plaguing almost every industry in the world today. Train operators’ and the maintenance repair and overhaul subsidiary of the Dutch railway company is also facing this problem. A considerable portion of the maintenance activities carried out by the company are unscheduled. This, in turn, severely stresses and stretches the workforce and resources available. One possible solution is to have a robust preventive maintenance plan. The other possible solution is to plan maintenance based on real-time data obtained from sensor-based ‘Health and Usage Monitoring Systems.’ The former has been investigated in this paper. The preventive maintenance model developed for train operator will subsequently be extended, to tackle the unscheduled maintenance problem also affecting the aerospace industry. The extension of the model to the aerospace sector will be dealt with in the second part of the research, and it would, in turn, validate the soundness of the model developed. Thus, there are distinct areas that will be addressed in this paper, including the mathematical modelling of preventive maintenance and optimization based on cost and system availability. The results of this research will help an organization to choose the right maintenance strategy, allowing it to save considerable sums of money as opposed to overspending under the guise of maintaining high asset availability. The concept of delay time modelling was used to address the practical problem of unscheduled maintenance in this paper. The delay time modelling can be used to help with support planning for a given asset. The model was run using MATLAB, and the results are shown that the ideal inspection intervals computed using the extended from a minimal cost perspective were 29 days, and from a minimum downtime, perspective was 14 days. Risk matrix integration was constructed to represent the risk in terms of the probability of a fault leading to breakdown maintenance and its consequences in terms of maintenance cost. Thus, the choice of an optimal inspection interval of 29 days, resulted in a cost of approximately 50 Euros and the corresponding value of b(T) was 0.011. These values ensure that the risk associated with component X being maintained at an inspection interval of 29 days is more than acceptable. Thus, a switch in maintenance frequency from 90 days to 29 days would be optimal from the point of view of cost, downtime and risk.

Keywords: delay time modelling, unscheduled maintenance, reliability, maintainability, availability

Procedia PDF Downloads 130