Search results for: POI extraction method
19674 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 51419673 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 18819672 KCBA, A Method for Feature Extraction of Colonoscopy Images
Authors: Vahid Bayrami Rad
Abstract:
In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature
Procedia PDF Downloads 5719671 An EEG-Based Scale for Comatose Patients' Vigilance State
Authors: Bechir Hbibi, Lamine Mili
Abstract:
Understanding the condition of comatose patients can be difficult, but it is crucial to their optimal treatment. Consequently, numerous scoring systems have been developed around the world to categorize patient states based on physiological assessments. Although validated and widely adopted by medical communities, these scores still present numerous limitations and obstacles. Even with the addition of additional tests and extensions, these scoring systems have not been able to overcome certain limitations, and it appears unlikely that they will be able to do so in the future. On the other hand, physiological tests are not the only way to extract ideas about comatose patients. EEG signal analysis has helped extensively to understand the human brain and human consciousness and has been used by researchers in the classification of different levels of disease. The use of EEG in the ICU has become an urgent matter in several cases and has been recommended by medical organizations. In this field, the EEG is used to investigate epilepsy, dementia, brain injuries, and many other neurological disorders. It has recently also been used to detect pain activity in some regions of the brain, for the detection of stress levels, and to evaluate sleep quality. In our recent findings, our aim was to use multifractal analysis, a very successful method of handling multifractal signals and feature extraction, to establish a state of awareness scale for comatose patients based on their electrical brain activity. The results show that this score could be instantaneous and could overcome many limitations with which the physiological scales stock. On the contrary, multifractal analysis stands out as a highly effective tool for characterizing non-stationary and self-similar signals. It demonstrates strong performance in extracting the properties of fractal and multifractal data, including signals and images. As such, we leverage this method, along with other features derived from EEG signal recordings from comatose patients, to develop a scale. This scale aims to accurately depict the vigilance state of patients in intensive care units and to address many of the limitations inherent in physiological scales such as the Glasgow Coma Scale (GCS) and the FOUR score. The results of applying version V0 of this approach to 30 patients with known GCS showed that the EEG-based score similarly describes the states of vigilance but distinguishes between the states of 8 sedated patients where the GCS could not be applied. Therefore, our approach could show promising results with patients with disabilities, injected with painkillers, and other categories where physiological scores could not be applied.Keywords: coma, vigilance state, EEG, multifractal analysis, feature extraction
Procedia PDF Downloads 7619670 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials
Authors: D. Kliaugaitė, J. K, Staniškis
Abstract:
In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate
Procedia PDF Downloads 36219669 Measuring Text-Based Semantics Relatedness Using WordNet
Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed
Abstract:
Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.Keywords: Graphviz representation, semantic relatedness, similarity measurement, WordNet similarity
Procedia PDF Downloads 23919668 Exploration of in-situ Product Extraction to Increase Triterpenoid Production in Saccharomyces Cerevisiae
Authors: Mariam Dianat Sabet Gilani, Lars M. Blank, Birgitta E. Ebert
Abstract:
Plant-derived lupane-type, pentacyclic triterpenoids are biologically active compounds that are highly interesting for applications in medical, pharmaceutical, and cosmetic industries. Due to the low abundance of these valuable compounds in their natural sources, and the environmentally harmful downstream process, alternative production methods, such as microbial cell factories, are investigated. Engineered Saccharomyces cerevisiae strains, harboring the heterologous genes for betulinic acid synthesis, can produce up to 2 g L-1 triterpenoids, showing high potential for large-scale production of triterpenoids. One limitation of the microbial synthesis is the intracellular product accumulation. It not only makes cell disruption a necessary step in the downstream processing but also limits productivity and product yield per cell. To overcome these restrictions, the aim of this study is to develop an in-situ extraction method, which extracts triterpenoids into a second organic phase. Such a continuous or sequential product removal from the biomass keeps the cells in an active state and enables extended production time or biomass recycling. After screening of twelve different solvents, selected based on product solubility, biocompatibility, as well as environmental and health impact, isopropyl myristate (IPM) was chosen as a suitable solvent for in-situ product removal from S. cerevisiae. Impedance-based single-cell analysis and off-gas measurement of carbon dioxide emission showed that cell viability and physiology were not affected by the presence of IPM. Initial experiments demonstrated that after the addition of 20 vol % IPM to cultures in the stationary phase, 40 % of the total produced triterpenoids were extracted from the cells into the organic phase. In future experiments, the application of IPM in a repeated batch process will be tested, where IPM is added at the end of each batch run to remove triterpenoids from the cells, allowing the same biocatalysts to be used in several sequential batch steps. Due to its high biocompatibility, the amount of IPM added to the culture can also be increased to more than 20 vol % to extract more than 40 % triterpenoids in the organic phase, allowing the cells to produce more triterpenoids. This highlights the potential for the development of a continuous large-scale process, which allows biocatalysts to produce intracellular products continuously without the necessity of cell disruption and without limitation of the cell capacity.Keywords: betulinic acid, biocompatible solvent, in-situ extraction, isopropyl myristate, process development, secondary metabolites, triterpenoids, yeast
Procedia PDF Downloads 15319667 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation
Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad
Abstract:
In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI
Procedia PDF Downloads 48419666 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 12819665 A Comparative Study of the Physicochemical and Structural Properties of Quinoa Protein Isolate and Yellow Squat Shrimp Byproduct Protein Isolate through pH-Shifting Modification
Authors: María José Bugueño, Natalia Jaime, Cristian Castro, Diego Naranjo, Guido Trautmann, Mario Pérez-Won, Vilbett Briones-Labarca
Abstract:
Proteins play a crucial role in various prepared foods, including dairy products, drinks, emulsions, and ready meals. These food proteins are naturally present in food waste and byproducts. The alkaline extraction and acid precipitation method is commonly used to extract proteins from plants and animals due to its product stability, cost-effectiveness, and ease of use. This study aimed to investigate the impact of pH-shifting storage at two different pH levels on the conformational changes affecting the physicochemical and functional properties of quinoa protein isolate (QPI) and yellow shrimp byproduct protein isolate (YSPI). The QPI and YSPI were extracted using the alkaline extraction-isoelectric precipitation method. The dispersions were adjusted to pH 4 or 12, stirred for 2 hours at 20°C to achieve a uniform dispersion, and then freeze-dried. Various analyses were conducted, including flexibility (F), free sulfhydryl content (Ho), emulsifying activity (EA), emulsifying capacity (EC), water holding capacity (WHC), oil holding capacity (OHC), intrinsic fluorescence, ultraviolet spectroscopy, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) to assess the properties of the protein isolates. pH-shifting at pH 11 and 12 for QPI and YSPI, respectively, significantly improved protein properties, while property modification of the samples treated under acidic conditions was less pronounced. Additionally, the pH 11 and 12 treatments significantly improved F, Ho, EA, WHC, OHC, intrinsic fluorescence, ultraviolet spectroscopy, DSC, and FTIR. The increase in Ho was due to disulfide bond disruption, which produced more protein sub-units than other treatments for both proteins. This study provides theoretical support for comprehensively elucidating the functional properties of protein isolates, promoting the application of plant proteins and marine byproducts. The pH-shifting process effectively improves the emulsifying property and stability of QPI and YSPI, which can be considered potential plant-based or marine byproduct-based emulsifiers for use in the food industry.Keywords: quinoa protein, yellow shrimp by-product protein, physicochemical properties, structural properties
Procedia PDF Downloads 4919664 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine
Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne
Abstract:
The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.Keywords: pesticide, solid-phase microextraction (SPME) methods, steady state, analytical model
Procedia PDF Downloads 49019663 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry
Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke
Abstract:
There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction
Procedia PDF Downloads 17019662 Investigation of Rifampicin and Isoniazid Resistance Mutated Genes in Mycobacterium Tuberculosis Isolated From Patients
Authors: Seyyed Mohammad Amin Mousavi Sagharchi, Alireza Mahmoudi Nasab, Tim Bakker
Abstract:
Introduction: Mycobacterium tuberculosis (MTB) is the most intelligent bacterium that existed in the world to our best knowledge. This bacterium can cause tuberculosis (TB) which is responsible for its spread speed and murder of millions of people around the world. MTB has the practical function to escape from anti-tuberculosis drugs (AT), for this purpose, it handles some mutations in the main genes and creates new patterns for inhibited genes. Method and materials: Researchers have their best tries to safely isolate MTB from the sputum specimens of 35 patients in some hospitals in the Tehran province and detect MTB by culture on Löwenstein-Jensen (LJ) medium and microscopic examination. DNA was extracted from the established bacterial colony by enzymatic extraction method. It was amplified by the polymerase chain reaction (PCR) method, reverse hybridization, and evaluation for detection of resistance genes; generally, researchers apply GenoType MTBDRplus assay. Results: Investigations of results declare us that 21 of the isolated specimens (about 60%) have mutation in rpoB gene, which resisted to rifampicin (most prevalence), and 8 of them (about 22.8%) have mutation in katG or inhA genes which resisted to isoniazid. Also, 4 of them (about 11.4%) don't have any mutation, and 2 of them (about 5.7%) have mutation in every three genes, which makes them resistant to the two drugs mentioned above. Conclusion: Rifampicin and isoniazid are two essential AT that using in the first line of treatment. Resistance in rpoB, and katG, and inhA genes related to mentioned drugs lead to ineffective treatment.Keywords: mycobacterium tuberculosis, tuberculosis, drug resistance, isoniazid, rifampicin
Procedia PDF Downloads 9719661 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 28819660 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network
Authors: P. Karthick, K. Mahesh
Abstract:
Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system
Procedia PDF Downloads 18819659 Structuring of Multilayer Aluminum Nickel by Lift-off Process Using Cheap Negative Resist
Authors: Muhammad Talal Asghar
Abstract:
The lift-off technique of the photoresist for metal patterning in integrated circuit (IC) packaging has been widely utilized in the field of microelectromechanical systems and semiconductor component manufacturing. The main advantage lies in cost-saving, reduction in complexity, and maturity of the process. The selection of photoresist depends upon many factors such as cost, the thickness of the resist, comfortable and valuable parameters extraction. In the present study, an extremely cheap dry film photoresist E8015 of thickness 38-micrometer is processed for the first time for edge profiling, according to the author's best knowledge. Successful extraction of the helpful parameter range for resist processing is performed. An undercut angle of 66 to 73 degrees is realized by parameter variation like exposure energy and development time. Finally, 10-micrometer thick metallic multilayer aluminum nickel is lifted off on the plain silicon wafer. Possible applications lie in controlled self-propagating reactions within structured metallic multilayer that may be utilized for IC packaging in the future.Keywords: lift-off, IC packaging, photoresist, multilayer
Procedia PDF Downloads 21219658 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis
Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio
Abstract:
Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction
Procedia PDF Downloads 31019657 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning
Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond
Abstract:
Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition
Procedia PDF Downloads 12319656 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 11019655 Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks
Authors: Bibha Kumari, Nigel P. Brunton, Dilip K. Rai, Brijesh K. Tiwari
Abstract:
Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented.Keywords: β-glucan, mushroom stalks, pulsed electric field (PEF), ultrasound assisted extraction (UAE)
Procedia PDF Downloads 29319654 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation
Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam
Abstract:
Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model
Procedia PDF Downloads 11219653 Optimal Configuration for Polarimetric Surface Plasmon Resonance Sensors
Authors: Ibrahim Watad, Ibrahim Abdulhalim
Abstract:
Conventional spectroscopic surface plasmon resonance (SPR) sensors are widely used, both in fundamental research and environmental monitoring as well as healthcare diagnostics. However, they still lack the low limit of detection (LOD) and there still a place for improvement. SPR conventional sensors are based on the detection of a dip in the reflectivity spectrum which is relatively wide. To improve the performance of these sensors, many techniques and methods proposed either to reduce the width of the dip or to increase the sensitivity. Together with that, profiting from the sharp jump in the phase spectrum under SPR, several works suggested the extraction of the phase of the reflected wave. However, existing phase measurement setups are in general more complicated compared to the conventional setups, require more stability and are very sensitive to external vibrations and noises. In this study, a simple polarimetric technique for phase extraction under SPR is presented, followed by a theoretical error analysis and an experimental verification. The advantages of the proposed technique upon existing techniques will be elaborated, together with conclusions regarding the best polarimetric function, and its corresponding optimal metal layer range of thicknesses to use under the conventional Kretschmann-Raether configuration.Keywords: plasmonics, polarimetry, thin films, optical sensors
Procedia PDF Downloads 40419652 Forensic Analysis of MTDNA Hypervariable Region HVII by Sanger Sequence Method in Iraq Population
Authors: H. Imad, Y. Cheah, O. Aamera
Abstract:
The aims of this research are to study the mitochondrial non-coding region by using the Sanger sequencing technique and establish the degree of variation characteristics of a fragment. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. A portion of a non-coding region encompassing positions 37 to 340 amplified in accordance with the Anderson reference sequence. PCR products purified by EZ-10 spin column then sequenced and detected by using the ABI 3730xL DNA Analyzer. New polymorphic positions 57, 63, and 101 are described may in future be suitable sources for identification purpose. The data obtained can be used to identify variable nucleotide positions characterized by frequent occurrence most promising for identification variants.Keywords: encompassing nucleotide positions 37 to 340, HVII, Iraq, mitochondrial DNA, polymorphism, frequency
Procedia PDF Downloads 76119651 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents
Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat
Abstract:
This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents
Procedia PDF Downloads 7119650 Preliminary Investigations on the Development and Production of Topical Skin Ointments
Authors: C. C. Igwe, C. E. Ogbuadike
Abstract:
Bryophyllum pinnatum is a tropical plant used by the indigenous people of South-East Nigeria as a medicinal plant for the treatment of skin ulcer and is being explored for the production of topical herbal skin ointments. This preliminary study involves the extraction and characterization of bioactive compounds from this plant for anti-skin ulcer, antimicrobial, and antioxidant activity, as well as formulating topical herbal medications for skin ulcer. Thus extraction, percentage yield, moisture content analysis, solvent-solvent fractionation and GC-MS has been carried out on processed leaves sample of B. pinnatum. GC-MS analysis revealed the presence of seven compounds, namely: 1-Octene, 3, 7-dimethyl, 1-Tridecene, E-14-Hexadecenal, 3-Eicosene (E)-, 11-Tricosene, 1-Tridecyn-4-ol and Butanamide. Standardized herbal products have been produced from B. pinnatum extracts. The products are being evaluated for safety and efficacy tests to ascertain their toxicity (if any), anti-ulcer, antibiotic and antioxidant properties. Further work is on-going to characterize the bioactive principles present in the plant extracts.Keywords: anti-microbial, bioactive compounds, bryophyllum pinnatum, skin ulcer
Procedia PDF Downloads 7919649 A Sliding Mesh Technique and Compressibility Correction Effects of Two-Equation Turbulence Models for a Pintle-Perturbed Flow Analysis
Authors: J. Y. Heo, H. G. Sung
Abstract:
Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulence models suitable for large scale separation flows perturbed by pintle strokes. In order to take into account pintle movement, a sliding mesh method was applied. The chamber pressure, mass flow rate, and thrust have been analyzed, and the response lag and sensitivity at the chamber and nozzle were estimated for a movable pintle. The nozzle performance for pintle reciprocating as its insertion and extraction processes, were analyzed to better understand the dynamic performance of the pintle nozzle.Keywords: pintle, sliding mesh, turbulent model, compressibility correction
Procedia PDF Downloads 49119648 Recovery of Value-Added Whey Proteins from Dairy Effluent Using Aqueous Two-Phase System
Authors: Perumalsamy Muthiah, Murugesan Thanapalan
Abstract:
The remains of cheese production contain nutritional value added proteins viz., α-Lactalbumin, β-Lactoglobulin representing 80- 90% of the total volume of milk entering the process. Although several possibilities for cheese-whey exploitation have been assayed, approximately half of world cheese-whey production is not treated but is discarded as effluent. It is necessary to develop an effective and environmentally benign extraction process for the recovery of value added cheese whey proteins. Recently aqueous two phase system (ATPS) have emerged as potential separation process, particularly in the field of biotechnology due to the mild conditions of the process, short processing time, and ease of scale-up. In order to design an ATPS process for the recovery of cheese whey proteins, development of phase diagram and the effect of system parameters such as pH, types and the concentrations of the phase forming components, temperature, etc., on the partitioning of proteins were addressed in order to maximize the recovery of proteins. Some of the practical problems encountered in the application of aqueous two-phase systems for the recovery of Cheese whey proteins were also discussed.Keywords: aqueous two-phase system, phase diagram, extraction, cheese whey
Procedia PDF Downloads 41119647 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products
Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet
Abstract:
All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis
Procedia PDF Downloads 18919646 Effectiveness of Computer Video Games on the Levels of Anxiety of Children Scheduled for Tooth Extraction
Authors: Marji Umil, Miane Karyle Urolaza, Ian Winston Dale Uy, John Charle Magne Valdez, Karen Elizabeth Valdez, Ervin Charles Valencia, Cheryleen Tan-Chua
Abstract:
Objective: Distraction techniques can be successful in reducing the anxiety of children during medical procedures. Dental procedures, in particular, are associated with dental anxiety which has been identified as a significant and common problem in children, however, only limited studies were conducted to address such problem. Thus, this study determined the effectiveness of computer video games on the levels of anxiety of children between 5-12 years old scheduled for tooth extraction. Methods: A pre-test post-test quasi-experimental study was conducted involving 30 randomly-assigned subjects, 15 in the experimental and 15 in the control. Subjects in the experimental group played computer video games for a maximum of 15 minutes, however, no intervention was done on the control. The modified Yale Pre-operative Anxiety Scale (m-YPAS) with a Cronbach’s alpha of 0.9 was used to assess anxiety at two different points: upon arrival in the clinic (pre-test anxiety) and 15 minutes after the first measurement (post-test anxiety). Paired t-test and ANCOVA were used to analyze the gathered data. Results: Results showed that there is a significant difference between the pre-test and post-test anxiety scores of the control group (p=0.0002) which indicates an increased anxiety. A significant difference was also noted between the pre-test and post-test anxiety scores of the experimental group (p=0.0002) which indicates decreased anxiety. Comparatively, the experimental group showed lower anxiety score (p=<0.0001) than the control. Conclusion: The use of computer video games is effective in reducing the pre-operative anxiety among children and can be an alternative non-pharmacological management in giving pre-operative care.Keywords: play therapy, preoperative anxiety, tooth extraction, video games
Procedia PDF Downloads 45319645 Genetic Association of SIX6 Gene with Pathogenesis of Glaucoma
Authors: Riffat Iqbal, Sidra Ihsan, Andleeb Batool, Maryam Mukhtar
Abstract:
Glaucoma is a gathering of optic neuropathies described by dynamic degeneration of retinal ganglionic cells. It is clinically and innately heterogenous illness containing a couple of particular forms each with various causes and severities. Primary open-angle glaucoma (POAG) is the most generally perceived kind of glaucoma. This study investigated the genetic association of single nucleotide polymorphisms (SNPs; rs10483727 and rs33912345) at the SIX1/SIX6 locus with primary open-angle glaucoma (POAG) in the Pakistani population. The SIX6 gene plays an important role in ocular development and has been associated with morphology of the optic nerve. A total of 100 patients clinically diagnosed with glaucoma and 100 control individuals of age over 40 were enrolled in the study. Genomic DNA was extracted by organic extraction method. The SNP genotyping was done by (i) PCR based restriction fragment length polymorphism (RFLP) and sequencing method. Significant genetic associations were observed for rs10483727 (risk allele T) and rs33912345 (risk allele C) with POAG. Hence, it was concluded that Six6 gene is genetically associated with pathogenesis of Glaucoma in Pakistan.Keywords: genotyping, Pakistani population, primary open-angle glaucoma, SIX6 gene
Procedia PDF Downloads 186