Search results for: plant disease identification
9535 Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth
Authors: Kiran Nawaz, Waheed Anwar, Sehrish Iftikhar, Muhammad Nasir Subhani, Ahmad Ali Shahid
Abstract:
Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity.Keywords: rhizobacteria, chili, phytophthora, root rot
Procedia PDF Downloads 2639534 Plant as an Alternative for Anti Depressant Drugs St John's Wort
Authors: Mahdi Akhbardeh
Abstract:
St John's wort plant can help to treat depression disease through decreasing this disease symptom, due to having some similar features of Prozac (Fluoxetine Hcl) pill. People suffering from slight depression who have fear of using antidepressants side effects can use St John's wort drops under doctor observation. This method of treatment is proposed specially to those women who are spending menopause or depression resulted from this period. St John's wort plant have proposed traditional and plant medicine as newest researches in treating mood disorders compared to Prozac (Fluoxetine Hcl) drug in treating depression disease which is being administrated in clinic research center of Washington. Objective: the aim of this study is to find an alternative treatment method in people suffering from depression which are treated with Prozac (Fluoxetine Hcl). Almost 70 percent of treatment failures with Prozac (Fluoxetine Hcl) drug in patients suffering from slight to normal depression is due to intensive side effects including: decrease in blood pressure, reduce in sexual desire and 30 percent of it is due to this drug affectless in treatment procedure which leads to leaving treatment. Results of Hypercuim plant function are exactly similar to antidepressants. Increase in serotonin amount in brain synopsis terminal end causes increase in existence time of this material in this part. In fact these two drugs have similar function. Though side effects of Hypercuim plant(St John's wort) including headache and slight nausea tolerable. Results: St John's wort plant can be used lonely in slight to normal depressions in which patients are avoiding Prozac (Fluoxetine Hcl) drug due to it's side effects. In intensive depressions through which general patients don’t indicate positive response to drug, it is probably expected relative or even complete treatment through combining antidepressants drugs with this plant. This treatment method has been investigated and confirmed in clinical tests and researches.Keywords: depression, St John's wort, Prozac, antidepressant
Procedia PDF Downloads 4879533 Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil
Authors: M. Imran Hamid, Muzammil Hussain, Yunpeng Wu, Meichun Xiang, Xingzhong Liu
Abstract:
The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils.Keywords: disease suppressive soil, high-throughput sequencing, rhizosphere microbiome, soybean cyst nematode
Procedia PDF Downloads 1539532 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 1039531 Trichoderma spp Consortium and Its Efficacy as Biological Control Agent of Ganoderma Disease of Oil Palm (Elaies guineensis Jacquin)
Authors: Habu Musa, Nusaibah Binti Syd Ali
Abstract:
Oil palm industries particularly in Malaysia and Indonesia are being devastated by Ganoderma disease caused by Ganoderma spp. To date, this disease has been causing serious oil palm yield losses and collapse of oil palm trees, thus affecting its contribution to the producer’s economy. Research on sustainable and eco-friendly remedy to counter Ganoderma disease is on the upsurge to avoid the current control measures via synthetic fungicides. Trichoderma species have been the most studied and valued microbes as biological control agents in an effort to combat a wide range of plant diseases sustainably. Therefore, in this current study, the potential of Trichoderma spp. (Trichoderma asperellum, Trichoderma harzianum, and Trichoderma virens) as a consortium approach was evaluated as biological control agents against Ganoderma disease on oil palm. The consortium of Trichoderma spp. applied found to be the most effective treatment in suppressing Ganoderma disease with 83.03% and 89.16% from the foliar and bole symptoms respectively. Besides, it exhibited tremendous enhancement in the oil palm seedling vegetative growth parameters. Also, it had highly induced significant activity of peroxidase, polyphenol oxidase and total phenolic content was recorded in the consortium treatment compared to the control treatment. Disease development was slower in the seedlings treated with consortium of Trichoderma spp. compared to the positive control, which exhibited with the highest percentage of disease severity.Keywords: biological control, ganoderma disease, trichoderma, disease severity
Procedia PDF Downloads 2769530 Exergy Analysis and Evaluation of the Different Flowsheeting Configurations for CO₂ Capture Plant Using 2-Amino-2-Methyl-1-Propanol
Authors: Ebuwa Osagie, Vasilije Manovic
Abstract:
Exergy analysis provides the identification of the location, sources of thermodynamic inefficiencies, and magnitude in a thermal system. Thus, both the qualitative and quantitative assessment can be evaluated with exergy, unlike energy which is based on quantitative assessment only. The main purpose of exergy analysis is to identify where exergy is destroyed. Thus, reduction of the exergy destruction and losses associated with the capture plant systems can improve work potential. Furthermore, thermodynamic analysis of different configurations of the process helps to identify opportunities for reducing the steam requirements for each of the configurations. This paper presents steady-state simulation and exergy analysis of the 2-amino-2-methyl-1-propanol (AMP)-based post-combustion capture (PCC) plant. Exergy analysis performed for the AMP-based plant and the different configurations revealed that the rich split with intercooling configuration gave the highest exergy efficiency of 73.6%, while that of the intercooling and the reference AMP-based plant were 57.3% and 55.8% respectively.Keywords: 2-amino-2-methyl-1-propanol, modelling, and simulation, post-combustion capture plant, exergy analysis, flowsheeting configurations
Procedia PDF Downloads 1649529 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases
Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal
Abstract:
Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN
Procedia PDF Downloads 649528 The Conservation of the Botanical Collar of Tutankhamun
Authors: Safwat Mohamed Sayed Ali, Hussein Kamal
Abstract:
This paper discusses the conservation procedures of the botanical collar of King Tutankhamun. It dates back to the new Kingdom. This collar was kept in a box but found in bad condition. Many parts of the collar were separated. The collar suffered from dryness and dust, so it needed to be cleaned mechanically and recollected together. Japanese paper was used to collect the separated parts of the collar on a linen thread. The linen thread was dyed with organic dye to match the color of the plant material. The guidance in collecting the different parts of the plant collar is the original photograph captured at the discovery of the tomb. Also, the optical microscope was used in collecting fractured parts. The weak parts of the collar were treated with a suitable consolidation material. Klucel G dissolved in Ethyl Alcohol 0.5% was used in the treatment and gave convenient results. Some investigations were executed in order to identify the plant types used in making the botanical collar. Scanning Electron microscope and optical microscope were used in plant identification.Keywords: sustainable, consolidation, plant, investigation
Procedia PDF Downloads 809527 Comparative Efficacy of Benomyl and Three Plant Extracts in the Control of Cowpea Anthracnose Caused by Colletotrichum lindemuthianum Sensu Lato
Authors: M. J. Falade
Abstract:
Field experiment was conducted to compare the efficacy of hot water extracts of three plants (Ricinus communis, Jatropha gossypifolia and Datura stramonium) with benomyl in the control of cowpea anthracnose disease. Three concentrations of the extracts (65, 50 and 30%) were used in the study. Result from the experiment shows that all the extracts at the tested concentration reduced the incidence and severity of the disease. D. stramonium at 65% concentration compares favourably with that of benomyl fungicide in reducing incidence and severity of infection. At 65% concentration of D. stramonium, incidence of the disease was 22% on pooled mean basis, and this was not significantly different from that of benomyl (21%). Similarly, the percentage of normal seeds recorded at this same concentration of the extract was 85% and was not significantly different from that of benomyl (86%). In terms of disease severity trace infections were observed on the cowpea plants at this concentration of the extract and that of benomyl. However, at lower concentrations of all the extracts, significant variations were observed on incidence of disease and percentage of normal seeds such that values obtained from use of benomyl were higher than those obtained from the use of the extracts. The study, therefore, shows that extracts of these indigenous plants can be used as a substitute for the benomyl fungicide in the management of anthracnose disease.Keywords: benomyl, C. lindemuthianum, disease incidence, disease severity
Procedia PDF Downloads 2839526 Rejuvenation of Peanut Seedling from Collar Rot Disease by Azotobacter sp. RA2
Authors: Ravi R. Patel, Vasudev R. Thakkar
Abstract:
Use of plant growth-promoting rhizobacteria (PGPR) to increase the production and decrees disease occurrence is a recent method in agriculture. An RA2 rhizospheric culture was isolated from peanut rhizosphere from Junagadh region of Gujarat, India and showed different direct and indirect plant growth promoting activity like indole acetic acid, gibberellic acid, siderophore, hydrogen cyanide, Ammonia and (1-Aminocyclopropane-1-Carboxylate) deaminase production, N2 fixation, phosphate and potassium solubilization in vitro. RA2 was able to protect peanut germinating seedling from A. niger infection and reduce collar rot disease incidence 60-35% to 72-41% and increase germination percentage from 70-82% to 75-97% in two varieties GG20 and GG2 of peanut. RA2 was found to induce resistance in A. hypogaea L. seedlings via induction of different defense-related enzymes like phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, lipoxygenase and pathogenesis related protein like chitinase, ß – 1,3- glucanase. Jasmonic acid one of the major signaling molecules of inducing systemic resistance was also found to induced due to RA2 treatments. RA2 bacterium was also promoting peanut growth and reduce A. niger infection in pot studies. 16S rDNA sequence of RA2 showed 99 % homology to Azotobacter species.Keywords: plant growth promoting rhizobacteria, peanut, aspergillus niger, induce systemic resistance
Procedia PDF Downloads 2429525 Urban and Rural Children’s Knowledge on Biodiversity in Bizkaia: Tree Identification Skills and Animal and Plant Listing
Authors: Joserra Díez, Ainhoa Meñika, Iñaki Sanz-Azkue, Arritokieta Ortuzar
Abstract:
Biodiversity provides humans with a great range of ecosystemic services; it is therefore an indispensable resource and a legacy to coming generations. However, in the last decades, the increasing exploitation of the Planet has caused a great loss of biodiversity and its acquaintance has decreased remarkably; especially in urbanized areas, due to the decreasing attachment of humans to nature. Yet, the Primary Education curriculum primes the identification of flora and fauna to guarantee the knowledge of children on their surroundings, so that they care for the environment as well as for themselves. In order to produce effective didactic material that meets the needs of both teachers and pupils, it is fundamental to diagnose the current situation. In the present work, the knowledge on biodiversity of 3rd cycle Primary Education students in Biscay (n=98) and its relation to the size of the town/city of their school is discussed. Two tests have been used with such aim: one for tree identification and the other one so that the students enumerated the species of trees and animals they knew. Results reveal that knowledge of students on tree identification is scarce regardless the size of the city/town and of their school. On the other hand, animal species are better known than tree species.Keywords: biodiversity, population, tree identification, animal identification
Procedia PDF Downloads 1979524 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease
Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta
Abstract:
Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.Keywords: parkinson, gait, feature selection, bat algorithm
Procedia PDF Downloads 5459523 Application of a Synthetic DNA Reference Material for Optimisation of DNA Extraction and Purification for Molecular Identification of Medicinal Plants
Authors: Mina Kalantarzadeh, Claire Lockie-Williams, Caroline Howard
Abstract:
DNA barcoding is increasingly used for identification of medicinal plants worldwide. In the last decade, a large number of DNA barcodes have been generated, and their application in species identification explored. The success of DNA barcoding process relies on the accuracy of the results from polymerase chain reaction (PCR) amplification step which could be negatively affected due to a presence of inhibitors or degraded DNA in herbal samples. An established DNA reference material can be used to support molecular characterisation protocols and prove system suitability, for fast and accurate identification of plant species. The present study describes the use of a novel reference material, the trnH-psbA British Pharmacopoeia Nucleic Acid Reference Material (trnH-psbA BPNARM), which was produced to aid in the identification of Ocimum tenuiflorum L., a widely used herb. During DNA barcoding of O. tenuiflorum, PCR amplifications of isolated DNA produced inconsistent results, suggesting an issue with either the method or DNA quality of the tested samples. The trnH-psbA BPNARM was produced and tested to check for the issues caused during PCR amplification. It was added to the plant material as control DNA before extraction and was co-extracted and amplified by PCR. PCR analyses revealed that the amplification was not as successful as expected which suggested that the amplification is affected by presence of inhibitors co-extracted from plant materials. Various potential issues were assessed during DNA extraction and optimisations were made accordingly. A DNA barcoding protocol for O. tenuiflorum was published in the British Pharmacopoeia 2016, which included the reference sequence. The trnH-psbA BPNARM accelerated degradation test which investigates the stability of the reference material over time demonstrated that it has been stable when stored at 56 °C for a year. Using this protocol and trnH-psbA reference material provides a fast and accurate method for identification of O. tenuiflorum. The optimisations of the DNA extraction using the trnH-psbA BPNARM provided a signposting method which can assist in overcoming common problems encountered when using molecular methods with medicinal plants.Keywords: degradation, DNA extraction, nucleic acid reference material, trnH-psbA
Procedia PDF Downloads 1999522 Ultrasound/Microwave Assisted Extraction Recovery and Identification of Bioactive Compounds (Polyphenols) from Tarbush (Fluorensia cernua)
Authors: Marisol Rodriguez-Duarte, Aide Saenz-Galindo, Carolina Flores-Gallegos, Raul Rodriguez-Herrera, Juan Ascacio-Valdes
Abstract:
The plant known as tarbush (Fluorensia cernua) is a plant originating in northern Mexico, mainly in the states of Coahuila, Durango, San Luis Potosí, Zacatecas and Chihuahua. It is a branched shrub that belongs to the family Asteraceae, has oval leaves of 6 to 11 cm in length and also has small yellow flowers. In Mexico, the tarbush is a very appreciated plant because it has been used as a traditional medicinal agent, for the treatment of gastrointestinal diseases, skin infections and as a healing agent. This plant has been used mainly as an infusion. Due to its traditional use, the content and type of phytochemicals present in the plant are currently unknown and are responsible for its biological properties, so its recovery and identification is very important because the compounds that it contains have relevant applications in the field of food, pharmaceuticals and medicine. The objective of this work was to determine the best extraction condition of phytochemical compounds (mainly polyphenolic compounds) from the leaf using ultrasound/microwave assisted extraction (U/M-AE). To reach the objective, U/M-AE extractions were performed evaluating three mass/volume ratios (1:8, 1:12, 1:16), three ethanol/water solvent concentrations (0%, 30% and 70%), ultrasound extraction time of 20 min and 5 min at 70°C of microwave treatment. All experiments were performed using a fractional factorial experimental design. Once the best extraction condition was defined, the compounds were recovered by liquid column chromatography using Amberlite XAD-16, the polyphenolic fraction was recovered with ethanol and then evaporated. The recovered polyphenolic compounds were quantified by spectrophotometric techniques and identified by HPLC/ESI/MS. The results obtained showed that the best extraction condition of the compounds was using a mass/volume ratio of 1:8 and solvent ethanol/water concentration of 70%. The concentration obtained from polyphenolic compounds using this condition was 22.74 mg/g and finally, 16 compounds of polyphenolic origin were identified. The results obtained in this work allow us to postulate the Mexican plant known as tarbush as a relevant source of bioactive polyphenolic compounds of food, pharmaceutical and medicinal interest.Keywords: U/M-AE, tarbush, polyphenols, identification
Procedia PDF Downloads 1639521 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning
Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.
Abstract:
Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.Keywords: image processing, python, convolution neural network (CNN), machine learning
Procedia PDF Downloads 769520 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization
Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu
Abstract:
Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up
Procedia PDF Downloads 3209519 Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant
Authors: Cigdem Safak Saglam
Abstract:
Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant.Keywords: thermal power plant, lignite coal, pretreatment, demineralization, electrodialysis, recycling, ash dampening
Procedia PDF Downloads 4829518 Use of Different Plant Extracts in Fungal Disease Management of Onion (Allium cepa. L)
Authors: Shobha U. Jadhav
Abstract:
Onion is most important vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but these fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil-borne pathogens of onion. Effect of three different plant extracts (Ocimum sanctum L., Xanthium strumarium B. and H. Withania somnifera Dunal)at five different concentration Viz, 10, 25, 50, 75, and 100 percentage on these pathogens was studied by food poisoning technique. Ocimum sanctum gave 84.21% growth of Alternaria porri at 10% extract concentration and 10.52% growth in 100% extract concentration. As compared to Fusarium oxysporium and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Xanthium strumarium B. and H. at 10% extract concentration 46.42% growth and at 100% extract concentration 28.57% growth of Fusarium oxysporum was observed. Fusarium oxysporum give good inhibitory response as compared to Alternaria porri and Stemphylium vesicarium. In Withania somnifera Dunal in 10% extract concentration 84.21% growth and in 100% extract concentration 21.05% growth of Stemphylium vesicarium was recorded. Stemphylium vesicarium give good inhibitory response as compared to Alternaria porri and Fusarium oxysporum.Keywords: pathogen, onion, plant, extract
Procedia PDF Downloads 3809517 Biological Control of Sclerotium rolfsii, Damping-off Disease on Centella asiatica
Authors: K. Sunitra, T. Srisuda
Abstract:
Centella asiatica, asiatic pennywort is a medicinal herb plant used widely which held in herbal health care group. The problem of asiatic pennywort production is the outbreak of Sclerotium rolfsii causing a damp-off disease which caused plant stem turn yellowish, finally they begin to die and result in extremely damaging to growers. Therefore, the studies were caried out to control damping off with Trichoderma sp., Bacillus subtilis and fermented banana as compared to the control to suppress with bi-culture under the laboratory condition. It was found that Trichoderma harzianum showed the highest percentage of inbihition, 69.44%. The pot experiments in greenhouse condition showed that chemical had minimum of damping-off (31.54%) and highest yield (1.20 tons/rai) and following by Trichoderma harzianum and Bacillus subtilis treatment. Due to the chemical usage leaving toxic residues on plants and affect the human bodies. Trichoderma harzianum and Bacillus subtilis should be considered as alternatives which have percent of damp-off disease and yields as follows: 45.50 and 43.75%, and 1.12 and 1.09 tons/rai, respectively. These two products are known that they have no health risk for growers and consumers in the future.Keywords: Centella asiatica, Sclerotium rolfsii, Trichoderma harzianum, Bacillus subtilis
Procedia PDF Downloads 3019516 Influence of Agricultural Utilization of Sewage Sludge Vermicompost on Plant Growth
Authors: Meiyan Xing, Cenran Li, Liang Xiang
Abstract:
Impacts of excess sludge vermicompost on the germination and early growth of plant were tested. The better effect of cow dung vermicompost (CV) on seed germination and seedling growth proved that cow dung was indeed the preferred additive in sludge vermicomposting as reported by plentiful researchers worldwide. The effects and the best amount of application of CV were further discussed. Results demonstrated that seed germination and seedling growth (seedlings number, plant height, stem diameter) were the best and heavy metal (Zn, Pb, Cr and As) contents of plant were the lowest when soil amended with CV by 15%. Additionally, CV fostered higher contents of chlorophyll a and chlorophyll b compared to the control when concentration ranged from 5 to 15%, thereafter a slight increase in chlorophyll content was observed form 15% to 25%. Thus, CV at the optimum proportion of 15% could serve as a feasible and satisfactory way of sludge agricultural utilization of sewage sludge. In summary, sewage sludge can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby not only providing a means of sewage sludge treatment and disposal, but also stimulating the growth of plant and the ability to resist disease.Keywords: cow dung vermicompost, seed germination, seedling growth, sludge utilization
Procedia PDF Downloads 2629515 Potyviruses Genomic Analysis and Complete Evaluation
Authors: Narin Salehiyan, Ramin Ghasemi Shayan
Abstract:
The largest genus of plant viruses, the potyvirus, is responsible for significant crop losses. Potyviruses are aphid sent in a nonpersistent way, and some of them are likewise seed communicated. As significant microorganisms, potyviruses are substantially more examined than other plant infections having a place with different genera, and their review covers numerous parts of plant virology, like utilitarian portrayal of viral proteins, sub-atomic communication with hosts and vectors, structure, scientific classification, development, the study of disease transmission, and determination. Biotechnological utilizations of potyviruses are likewise being investigated. During this last ten years, significant advances have been made in the comprehension of the sub-atomic science of these infections and the elements of their different proteins. Potyvirus multiplication, movement, and transmission, as well as potyvirus/plant compatible interactions, including pathogenicity and symptom determinants, are updated following a general overview of the family Potyviridae and the potyviral proteins. it end the survey giving data on biotechnological uses of potyviruses.Keywords: virology, poty, virus, genome, genetic
Procedia PDF Downloads 739514 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks
Authors: Muneeb Ullah, Daishihan, Xiadong Young
Abstract:
Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.Keywords: classification, deep learning, medical images, CXR, GAN.
Procedia PDF Downloads 969513 Cardiovascular Disease Prediction Using Machine Learning Approaches
Abstract:
It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree
Procedia PDF Downloads 1539512 Suppression Subtractive Hybridization Technique for Identification of the Differentially Expressed Genes
Authors: Tuhina-khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Aktar-uz-Zaman, Mahbod Sahebi
Abstract:
Suppression subtractive hybridization (SSH) method is valuable tool for identifying differentially regulated genes in disease specific or tissue specific genes important for cellular growth and differentiation. It is a widely used method for separating DNA molecules that distinguish two closely related DNA samples. SSH is one of the most powerful and popular methods for generating subtracted cDNA or genomic DNA libraries. It is based primarily on a suppression polymerase chain reaction (PCR) technique and combines normalization and subtraction in a solitary procedure. The normalization step equalizes the abundance of DNA fragments within the target population, and the subtraction step excludes sequences that are common to the populations being compared. This dramatically increases the probability of obtaining low-abundance differentially expressed cDNAs or genomic DNA fragments and simplifies analysis of the subtracted library. SSH technique is applicable to many comparative and functional genetic studies for the identification of disease, developmental, tissue specific, or other differentially expressed genes, as well as for the recovery of genomic DNA fragments distinguishing the samples under comparison.Keywords: suppression subtractive hybridization, differentially expressed genes, disease specific genes, tissue specific genes
Procedia PDF Downloads 4339511 Normalized Difference Vegetation Index and Hyperspectral: Plant Health Assessment
Authors: Srushti R. Joshi, Ujjwal Rakesh, Spoorthi Sripad
Abstract:
The rapid advancement of remote sensing technologies has revolutionized plant health monitoring, offering valuable insights for precision agriculture and environmental management. This paper presents a comprehensive comparative analysis between the widely employed normalized difference vegetation index (NDVI) and state-of-the-art hyperspectral sensors in the context of plant health assessment. The study aims to elucidate the weigh ups of spectral resolution. Employing a diverse range of vegetative environments, the research utilizes simulated datasets to evaluate the performance of NDVI and hyperspectral sensors in detecting subtle variations indicative of plant stress, disease, and overall vitality. Through meticulous data analysis and statistical validation, this study highlights the superior performance of hyperspectral sensors across the parameters used.Keywords: normalized difference vegetation index, hyperspectral sensor, spectral resolution, infrared
Procedia PDF Downloads 659510 Phenotypical and Genotypical Assessment Techniques for Identification of Some Contagious Mastitis Pathogens
Authors: Ayman El Behiry, Rasha Nabil Zahran, Reda Tarabees, Eman Marzouk, Musaad Al-Dubaib
Abstract:
Mastitis is one of the most economic disease affecting dairy cows worldwide. Its classic diagnosis using bacterial culture and biochemical findings is a difficult and prolonged method. In this research, using of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) permitted identification of different microorganisms with high accuracy and rapidity (only 24 hours for microbial growth and analysis). During the application of MALDI-TOF MS, one hundred twenty strains of Staphylococcus and Streptococcus species isolated from milk of cows affected by clinical and subclinical mastitis were identified, and the results were compared with those obtained by traditional methods as API and VITEK 2 Systems. 37 of totality 39 strains (~95%) of Staphylococcus aureus (S. aureus) were exactly detected by MALDI TOF MS and then confirmed by a nuc-based PCR technique, whereas accurate identification was observed in 100% (50 isolates) of the coagulase negative staphylococci (CNS) and Streptococcus agalactiae (31 isolates). In brief, our results demonstrated that MALDI-TOF MS is a fast and truthful technique which has the capability to replace conventional identification of several bacterial strains usually isolated in clinical laboratories of microbiology.Keywords: identification, mastitis pathogens, mass spectral, phenotypical
Procedia PDF Downloads 3329509 Toxicity Identification and Evaluation for the Effluent from Seawater Desalination Facility in Korea Using D. magna and V. fischeri
Authors: Sung Jong Lee, Hong Joo Ha, Chun Sang Hong
Abstract:
In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a Seawater desalination facility in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (24,215 ~ 29,562 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach, and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Acknowledgement: This research was supported by a grant (16IFIP-B089911-03) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.Keywords: TIE, D. magna, V. fischeri, seawater desalination facility
Procedia PDF Downloads 2599508 Alzheimer’s Disease Measured in Work Organizations
Authors: Katherine Denise Queri
Abstract:
The effects of sick workers have an impact in administration of labor. This study aims to provide knowledge on the disease that is Alzheimer’s while presenting an answer to the research question of when and how is the disease considered as a disaster inside the workplace. The study has the following as its research objectives: 1. Define Alzheimer’s disease, 2. Evaluate the effects and consequences of an employee suffering from Alzheimer’s disease, 3. Determine the concept of organizational effectiveness in the area of Human Resources, and 4. Identify common figures associated with Alzheimer’s disease. The researcher gathered important data from books, video presentations, and interviews of workers suffering from Alzheimer’s disease and from the internet. After using all the relevant data collection instruments mentioned, the following data emerged: 1. Alzheimer’s disease has certain consequences inside the workplace, 2. The occurrence of Alzheimer’s Disease in an employee’s life greatly affects the company where the worker is employed, and 3. The concept of workplace efficiency suggests that an employer must prepare for such disasters that Alzheimer’s disease may bring to the company where one is employed. Alzheimer’s disease can present disaster in any workplace.Keywords: administration, Alzheimer's disease, conflict, disaster, employment
Procedia PDF Downloads 4459507 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1289506 Sustainable Biostimulant and Bioprotective Compound for the Control of Fungal Diseases in Agricultural Crops
Authors: Geisa Lima Mesquita Zambrosi, Maisa Ciampi Guillardi, Flávia Rodrigues Patrício, Oliveiro Guerreiro Filho
Abstract:
Certified agricultural products are important components of the food industry. However, certifiers have been expanding the list of restricted or prohibited pesticides, limiting the options of products for phytosanitary control of plant diseases, but without offering alternatives to the farmers. Soybean and coffee leaf rust, brown eye spots, and Phoma leaf spots are the main fungal diseases that pose a serious threat to soybean and coffee cultivation worldwide. In conventional farming systems, these diseases are controlled by using synthetic fungicides, which, in addition to intensifying the occurrence of fungal resistance, are highly toxic to the environment, farmers, and consumers. In organic, agroecological, or regenerative farming systems, product options for plant protection are limited, being available only copper-based compounds, and biodefensivesornon-standard homemade products. Therefore, there is a growing demand for effective bioprotectors with low environmental impact for adoption in more sustainable agricultural systems. Then, to contribute to covering such a gap, we have developed a compound based on plant extracts and metallic elements for foliar application. This product has both biostimulant and bioprotective action, which promotes sustainable disease control, increases productivity as well as reduces damage to the environment. The product's components have complementary mechanisms that promote protection against the disease by directly acting on the pathogens and activating the plant's natural defense system. The protective ability of the product against three coffee diseases (coffee leaf rust, brown eye spot, and Phoma leaf spot) and against soybean rust disease was evaluated, in addition to its ability to promote plant growth. Our goal is to offer an effective alternative to control the main coffee fungal diseases and soybean fungal diseases, with a biostimulant effect and low toxicity. The proposed product can also be part of the integrated management of coffee and soybean diseases in conventional farming associated with chemical and biological pesticides, offering the market a sustainable coffee and soybean with high added value and low residue content. Experiments were carried out under controlled conditions to evaluate the effectiveness of the product in controlling rust, phoma, and cercosporiosis in comparison to control-inoculated plants that did not receive the product. The in vitro and in vivo effects of the product on the pathogen were evaluated using light microscopy and scanning electron microscopy, respectively. The fungistatic action of the product was demonstrated by a reduction of 85% and 95% in spore germination and disease symptoms severity on the leaves of coffee plants, respectively. The formulation had both a protective effect, acting to prevent infection by coffee leaf rust, and a curative effect, reducing the rust symptoms after its establishment.Keywords: plant disease, natural fungicide, plant health, sustainability, alternative disease management
Procedia PDF Downloads 42