Search results for: neural style transfer
5328 Unveiling Coaching Style of PE Teachers: A Convergent Parallel Approach
Authors: Arazan Jane V., Badiang, Ronesito Jr. R., Clavesillas Cristine Joy H., Belleza Saramie S.
Abstract:
This study examined the coaching style among the PE Teachers in terms of Autonomy, Supportive style, and Controlling Style. On the other hand, gives opportunities to an athlete to be independent, task-oriented, and acknowledge their feelings and perspective of each individual. A controlling coaching style is also portrayed by the rises and falls over an athlete's training development; when this variance is identified, it might harm training. The selection of the respondents of the study will use a random sample of High School PE teachers of the Division of Davao del Norte with a total of 78 High School PE teachers, which can be broken down into 70 High School PE Teachers for Quantitative data for the survey questionnaire and 8 PE Teachers for Qualitative data (IDI). In the quantitative phase, a set of survey questionnaires will be used to gather data from the participants—the extent of the Implementation Questionnaire. The tool will be a researcher-made questionnaire based on the Coaching Styles of selected High School PE teachers of Davao Del Norte. In the qualitative phase, an interview guide questionnaire will be used. Focus group discussions will be conducted to determine themes and patterns or participants' experiences and insights. The researchers conclude that the degree of coaching style among PE Teachers from the Division of Davao del Norte is high, as seen by the findings of this study, and that coaching style among these teachers is highly noticeable.Keywords: supportive autonomy style, controlling style, live experiences, exemplified
Procedia PDF Downloads 965327 Solving the Quadratic Programming Problem Using a Recurrent Neural Network
Authors: A. A. Behroozpoor, M. M. Mazarei
Abstract:
In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed.Keywords: REFERENCES [1] Xia, Y, A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks, 7(6), 1996, pp.1544–1548. [2] Xia, Y., & Wang, J, A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks, 16(2), 2005, pp. 379–386. [3] Xia, Y., H, Leung, & J, Wang, A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I, 49(4), 2002, pp.447–458.B. [4] Q. Liu, Z. Guo, J. Wang, A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks, 26, 2012, pp. 99-109.
Procedia PDF Downloads 6445326 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.Keywords: low light image enhancement, deep learning, convolutional neural network, image processing
Procedia PDF Downloads 805325 Maternal Parenting Style and Moral Development of Primary School Students: Evidence from Pakistan
Authors: Ghulam Zahra
Abstract:
Parenting style affects the morality of their children. There is plenty of evidence to support the effect of parenting styles on the morality of their children. Therefore, this research is considered essential and suitable. Thus, the main objective of this study was to assess the correlation between the parenting style of mothers and the moral development of primary school students. The population consisted of all primary school students enrolled in the province of Punjab. The sample was comprised of twelve hundred thirty-nine primary school students. One questionnaire was adapted to explore the parenting styles of mothers and to assess the level of students’ level of morality; a moral development scale was adopted. The conclusions showed that there was a significant correlation exist among authoritarian parenting style, permissive parenting, and moral developments. Based on findings, it is recommended that parents should follow a warm style of parenting for the sake of the moral development of their children.Keywords: maternal parenting style, moral development, authoritative parenting, authoritarian parenting, permissive parenting
Procedia PDF Downloads 1095324 Pose Normalization Network for Object Classification
Authors: Bingquan Shen
Abstract:
Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant
Procedia PDF Downloads 3525323 Examining the Relationship between Preferred Leadership Style and Motivation of Female Volleyball Players in Ethiopian Primer League Clubs
Authors: Meseret Mulugeta, Alemmebrat Kiflu, Belaynehchikle
Abstract:
The purpose of the present study was to examine the preferred leadership style and motivation of premier league volleyball players. The sample encompassed 46 female premier league volleyball players whose ages ranged between 15 and 35 years. The data were collected using standardized questionnaires. The questionnaires were distributed to 46 female players from five volleyball clubs in the Premier League. To evaluate the motivational level of the players, the Sports Motivation Scale (SMS-6) was used. The leadership scale for sport was used to evaluate leadership. Descriptive statistics and the person correlation coefficient (P <0.05) were used to validate the relationship between leadership style and motivation. The result showed that there is a meaningful and significant relationship between leadership style and motivation. Concerning preferred coaching styles, the most preferred style was training and instruction, with a mean score of 4.10, and the least preferred style was autocratic, with a mean score of 3.37. The result of the Pearson correlation coefficient showed that the correlation between motivation types and leadership styles showed that motivation was significantly and positively correlated with all independent variables except autocratic leadership style, which is negatively correlated with motivation. This study’s nobility is to provide evidence for the most effective coaching to practice the training and instruction behaviour and social support behaviour leadership styles and refrain from using the autocratic leadership style.Keywords: autocratic, training and instruction, motivation, leadership style
Procedia PDF Downloads 835322 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 1395321 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions
Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju
Abstract:
Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism
Procedia PDF Downloads 1655320 The Experience of Head Nurse: Phenomenological Research of Implementing Islamic Leadership Style in Syarif Hidayatullah Hospital
Authors: Jamaludin Tarkim, Yoga Teguh Guntara, Maftuhah
Abstract:
Islamic leadership style is model of leadership style applied by the Prophet Muhammad SAW. Islamic leadership style is applied, namely Syura (deliberation), ‘Adl bil qisth (justice, with equality), and Hurriyyah al-kalam (freedom of expression) and along with the values of Islam in the Islamic leadership style. This research aims to gain an overview of the experience of Head Nurse in the implementation of Islamic leadership style. This research is a qualitative one with descriptive phenomenology design through in-depth interviews. Participants were occupied as Head Nurse at the Hospital room Syarif Hidayatullah, set directly (purposive) with the principle of suitability (appropriateness) and sufficiency (adequacy). Retrieval of data and research conducted during the month of June 2014. Data collected in the form of recording in-depth interviews and analysis with Collazi method. This research identified four themes Syura (deliberation);‘Adl bil qisth (justice, with equality); Hurriyyah al-kalam (freedom of expression) and along with the values of Islam in the Islamic leadership style. The results of this research can provide a review of the Head Room experience in the application of Islamic leadership style at Syarif Hidayatullah Hospital already skilled leadership during the process, but the application is still not maximized. Required further research on in-depth exploration of how to get more comprehensive results from room Head Nurse experience in the application of Islamic leadership style, as well as subsequent researchers can choose a wider scope and complex so get more complete data.Keywords: experience, Islamic leadership style, head nurse, nursing management
Procedia PDF Downloads 1715319 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 6265318 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models
Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi
Abstract:
In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function
Procedia PDF Downloads 5665317 Mediated and Moderated Effects of Insecure Attachment Style and Depressions
Authors: Li-Ting Chen, Chih-Tao Cheng, I-Ping Huang, Jen-Ho Chang, Nien-Tzu Chang, Fei-Hsiu Hsiao
Abstract:
Background: Insecurity adult attachment style may be triggered by cancer threat, which in turn influences depression symptoms. Dispositional mindfulness may have benefits of insecure attachment on depression for colorectal patient transfer to survivor. Objective: This study examined the mediating and moderating effects of quality of life (QOL) and dispositional mindfulness on the relationship between insecure attachment style and depression symptoms. Methods: A cross-sectional study design was used. Data were collected using the QOL functional and symptoms (EORTC-C30 and EORTC CR29), dispositional mindfulness (FFMQ), Short form of Experience in Close Relationships Revised Questionnaire (SF-ECRRQ), and depressive symptoms (BDI-II scale). Results: Of the 90 CRC survivors who participated, the indirect effect of both ECR anxiety (β=0.23, CI=0.05-0.44) and ECR avoidance (β=0.12, CI=0.02-0.24) on depression were significantly mediated through EORTC-C29 colorectal symptoms. Three components of dispositional mindfulness (i.e., acting of awareness, non-judging, non-reactivity) as the moderator in the relationship between ECR anxiety and depressive symptoms. Acting of awareness was a moderator in the relationship between ECR avoidance and depressive symptoms. Conclusions: There are two pathways from insecure attachment to depression: through the mediator of colorectal symptoms and the moderator of dispositional mindfulness. Cancer symptom management and mindfulness practices could improve the impact of insecure attachment on depression among CRC patients in a post-treatment transition period.Keywords: acting of awareness, attachment style, colorectal cancer, disposisitonal mindfulness, depression
Procedia PDF Downloads 645316 Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects
Authors: Diego De Almeida Pereira, Diana Borchenko
Abstract:
Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology.Keywords: environmental psychology, architecture, neural networks, human and social well-being
Procedia PDF Downloads 4965315 Knowledge Transfer and the Translation of Technical Texts
Authors: Ahmed Alaoui
Abstract:
This paper contributes to the ongoing debate as to the relevance of translation studies to professional practitioners. It exposes the various misconceptions permeating the links between theory and practice in the translation landscape in the Arab World. It is a thesis of this paper that specialization in translation should be redefined; taking account of the fact, that specialized knowledge alone is neither crucial nor sufficient in technical translation. It should be tested against the readability of the translated text, the appropriateness of its style and the usability of its content by end-users to carry out their intended tasks. The paper also proposes a preliminary model to establish a working link between theory and practice from the perspective of professional trainers and practitioners, calling for the latter to participate in the production of knowledge in a systematic fashion. While this proposal is driven by a rather intuitive conviction, a research line is needed to specify the methodological moves to establish the mediation strategies that would relate the components in the model of knowledge transfer proposed in this paper.Keywords: knowledge transfer, misconceptions, specialized texts, translation theory, translation practice
Procedia PDF Downloads 3935314 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 2285313 A Corpus Based Study of Eileen Chang’s Self-Translating Style: A Case Study on The Rice Sprout Song
Authors: Yi-Wei Huang
Abstract:
Eileen Chang is a well-known writer of modern Chinese literature. She is also a translator that publishes her self-translation The Rice Sprout Song. The purpose of the study is to identify the style of Eileen Chang’s self-translations by corpora, especially in the case of The Rice Sprout Song. The Rice Sprout Song is first written in English and then translated into Chinese by the author herself. The procedure of translation is complicated due to the bilingual transition by the same person. Therefore, the aim of the study is to identify Eileen Chang’s style on her self-translation by comparing her works The Old Man and the Sea, The Rice Sprout Song, and The Rouge of The North. The study uses computer-aided software like AntConc, Notepad++, StanfordCoreNLP, and Python to analyze the style of the works, especially focuses on reduplications and the composition of the sentences. Reduplications are commonly seen in Eileen Chang’s works, and they often appear with colors or onomatopoeia. With these criteria, the style of self-translating can be detected and analyzed.Keywords: corpora, Eileen Chang, reduplications, self-translation
Procedia PDF Downloads 2435312 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System
Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi
Abstract:
In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control
Procedia PDF Downloads 6705311 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms
Authors: Terence Soule, Tami Al Ghamdi
Abstract:
To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm
Procedia PDF Downloads 1325310 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1495309 Transfer Learning for Protein Structure Classification at Low Resolution
Authors: Alexander Hudson, Shaogang Gong
Abstract:
Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.Keywords: transfer learning, protein distance maps, protein structure classification, neural networks
Procedia PDF Downloads 1365308 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 715307 University-Industry Technology Transfer and Technology Transfer Offices in Emerging Economies
Authors: José Carlos Rodríguez, Mario Gómez
Abstract:
The aim of this paper is to get insight on the nature of university-industry technology transfer (UITT) and technology transfer offices (TTOs) activity at universities in the case of emerging economies. In relation to the process of transferring knowledge/technology in the case of emerging economies, knowledge/technology transfer in these economies are more reactive than in developed economies due to differences in maturity of technologies. It is assumed in this paper that knowledge/technology transfer is a complex phenomenon, and thus the paper contributes to get insight on the nature of UITT and TTOs creation in the case of emerging economies by using a system dynamics model of knowledge/technology transfer in these countries. The paper recognizes the differences between industrialized countries and emerging economies on these phenomena.Keywords: university-industry technology transfer, technology transfer offices, technology transfer models, emerging economies
Procedia PDF Downloads 2505306 Delay-Dependent Passivity Analysis for Neural Networks with Time-Varying Delays
Authors: H. Y. Jung, Jing Wang, J. H. Park, Hao Shen
Abstract:
This brief addresses the passivity problem for neural networks with time-varying delays. The aim is focus on establishing the passivity condition of the considered neural networks.Keywords: neural networks, passivity analysis, time-varying delays, linear matrix inequality
Procedia PDF Downloads 5705305 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri
Abstract:
In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.Keywords: bubble diameter, heat flux, neural network, training algorithm
Procedia PDF Downloads 4435304 Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index
Authors: Hamid Rostami Jaz, Kamran Ameri Siahooei
Abstract:
Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach.Keywords: exchange index, forecasting, perceptron neural network, Tehran stock exchange
Procedia PDF Downloads 4645303 Design of Neural Predictor for Vibration Analysis of Drilling Machine
Authors: İkbal Eski
Abstract:
This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.Keywords: artificial neural network, vibration analyses, drilling machine, robust
Procedia PDF Downloads 3925302 The Relationship Between Inspirational Leadership Style and Perceived Social Capital by Mediation of the Development of Organizational Knowledge Resources
Authors: Farhad Shafiepour Motlagh, Narges Salehi
Abstract:
The aim of the present study was to investigate the relationship between inspirational leadership style and perceived social capital through the mediation of organizational knowledge resource development. The research method was descriptive-correlational. The statistical population consisted of all 3537 secondary school teachers in Isfahan. Sample selection was based on Cochran's formula volume formula for 338 people and multi-stage random sampling. The research instruments included a researcher-made inspirational leadership style questionnaire, a perceived social capital questionnaire (Putnam, 1999), and a researcher-made questionnaire of perceived organizational knowledge resources. Kolmogorov statistical tests, Pearson correlation, stepwise multiple regression, and structural equation modeling were used to analyze the data. In general, the results showed that there is a significant relationship between inspirational leadership style and the use of perceived social capital at the level of P <0.05. Also, the development of organizational knowledge resources mediates the relationship between inspirational leadership style and the use of perceived social capital at the level of P <0.05.Keywords: inspirational leadership style, perceived social capital, perceived organizational knowledge
Procedia PDF Downloads 2075301 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 5175300 Using Gene Expression Programming in Learning Process of Rough Neural Networks
Authors: Sanaa Rashed Abdallah, Yasser F. Hassan
Abstract:
The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.Keywords: rough sets, gene expression programming, rough neural networks, classification
Procedia PDF Downloads 3835299 Jet Impingement Heat Transfer on a Rib-Roughened Flat Plate
Authors: A. H. Alenezi
Abstract:
Cooling by impingement jet is known to have a significant high local and average heat transfer coefficient which make it widely used in industrial cooling systems. The heat transfer characteristics of an impinging jet on rib-roughened flat plate has been investigated numerically. This paper was set out to investigate the effect of rib height on the heat transfer rate. Since the flow needs to have enough spacing after passing the rib to allow reattachment especially for high Reynolds numbers, this study focuses on finding the optimum rib height which would be the best to maximize the heat transfer rate downstream the plate. This investigation employs a round nozzle with hydraulic diameter (Dh) of 13.5 mm, Jet-to-target distance of (H/D) of 4, rib location=1.5D and and finally jet angels of 45˚ and 90˚ under the influence of Re =10,000.Keywords: jet impingement, CFD, turbulence model, heat transfer
Procedia PDF Downloads 351