Search results for: microbial diversity
2596 Tenure Security, Agricultural Diversity and Food Security
Authors: Amanuel Hadera Gebreyesus
Abstract:
In the literature, the study of tenure and food security has largely involved separate lines of inquiry. In effect, the nexus among these has received little attention; and the underinvestment in research related to the relationship between tenure and food security deters generation of tenure-related knowledge and policy guidance for improving food and nutrition security. Drawing from this motivation, we study the relationship among tenure security, agricultural diversity and food security and dietary diversity. We employ IV approaches to examine the effect of tenure security and agricultural diversity on food security and dietary diversity. We find tenure security is inversely related with food insecurity as shown by its negative association with hunger scale, hunger index and hunger category. On the other hand, results suggest that tenure security improves minimum dietary diversity of women while we find no association with child dietary diversity. Moreover, agricultural diversity is positively related with minimum dietary diversity of women, which may point to higher accessibility and consumption of dietary food groups by women. Also, findings suggest that farmers use their human (knowledge and skills) and resource (land) endowments to improve food security and dietary diversity. An implication from this is the importance of not only improving access to land but also long-term tenure security to promote agricultural diversity, food security and dietary diversity.Keywords: tenure security, food security, agricultural diversity, dietary diversity, women
Procedia PDF Downloads 2172595 Microbial Contamination of Haemolymph of Honeybee (Apis mellifera intermissa) Parasitized by Varroa Destructor
Authors: Messaouda Belaid, Salima Kebbouche-Gana
Abstract:
The negative effect of the Varroa bee colony is very important. They cause morphological and physiological changes, causing a decrease in performance of individuals and long-term death of the colony. Indirectly, they weaken the bees become much more sensitive to the different pathogenic organisms naturally present in the colony. This work aims to research secondary infections of microbial origin occurred in the worker bee nurse due to parasitism by Varroa destructor. The feeding behaviour of Varroa may causes damaging host integument. The results show that the microbial contamination enable to be transmitted into honeybee heamocoel are Bacillus sp, Pseudomonas sp, Enterobacter, Aspergillus.Keywords: honeybee, Apis mellifera intermissa, microbial contamination, Varroa destructor
Procedia PDF Downloads 4012594 Microbial Biogeography of Greek Olive Varieties Assessed by Amplicon-Based Metagenomics Analysis
Authors: Lena Payati, Maria Kazou, Effie Tsakalidou
Abstract:
Table olives are one of the most popular fermented vegetables worldwide, which along with olive oil, have a crucial role in the world economy. They are highly appreciated by the consumers for their characteristic taste and pleasant aromas, while several health and nutritional benefits have been reported as well. Until recently, microbial biogeography, i.e., the study of microbial diversity over time and space, has been mainly associated with wine. However, nowadays, the term 'terroir' has been extended to other crops and food products so as to link the geographical origin and environmental conditions to quality aspects of fermented foods. Taking the above into consideration, the present study focuses on the microbial fingerprinting of the most important olive varieties of Greece with the state-of-the-art amplicon-based metagenomics analysis. Towards this, in 2019, 61 samples from 38 different olive varieties were collected at the final stage of ripening from 13 well spread geographical regions in Greece. For the metagenomics analysis, total DNA was extracted from the olive samples, and the 16S rRNA gene and ITS DNA region were sequenced and analyzed using bioinformatics tools for the identification of bacterial and yeasts/fungal diversity, respectively. Furthermore, principal component analysis (PCA) was also performed for data clustering based on the average microbial composition of all samples from each region of origin. According to the composition, results obtained, when samples were analyzed separately, the majority of both bacteria (such as Pantoea, Enterobacter, Roserbergiella, and Pseudomonas) and yeasts/fungi (such as Aureobasidium, Debaromyces, Candida, and Cladosporium) genera identified were found in all 61 samples. Even though interesting differences were observed at the relative abundance level of the identified genera, the bacterial genus Pantoea and the yeast/fungi genus Aureobasidium were the dominant ones in 35 and 40 samples, respectively. Of note, olive samples collected from the same region had similar fingerprint (genera identified and relative abundance level) regardless of the variety, indicating a potential association between the relative abundance of certain taxa and the geographical region. When samples were grouped by region of origin, distinct bacterial profiles per region were observed, which was also evident from the PCA analysis. This was not the case for the yeast/fungi profiles since 10 out of the 13 regions were grouped together mainly due to the dominance of the genus Aureobasidium. A second cluster was formed for the islands Crete and Rhodes, both of which are located in the Southeast Aegean Sea. These two regions clustered together mainly due to the identification of the genus Toxicocladosporium in relatively high abundances. Finally, the Agrinio region was separated from the others as it showed a completely different microbial fingerprinting. However, due to the limited number of olive samples from some regions, a subsequent PCA analysis with more samples from these regions is expected to yield in a more clear clustering. The present study is part of a bigger project, the first of its kind in Greece, with the ultimate goal to analyze a larger set of olive samples of different varieties and from different regions in Greece in order to have a reliable olives’ microbial biogeography.Keywords: amplicon-based metagenomics analysis, bacteria, microbial biogeography, olive microbiota, yeasts/fungi
Procedia PDF Downloads 1152593 Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System
Authors: O. A. Babalola, A. F Adekunle, F. Oladeji, A. T. Osungbade, O. A. Akinlaja
Abstract:
Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1.Keywords: compost, microbial activities, microbial contribution, tomato growth and yield
Procedia PDF Downloads 2652592 Plant Microbiota of Coastal Halophyte Salicornia Ramossisima
Authors: Isabel N. Sierra-Garcia, Maria J. Ferreira, Sandro Figuereido, Newton Gomes, Helena Silva, Angela Cunha
Abstract:
Plant-associated microbial communities are considered crucial in the adaptation of halophytes to coastal environments. The plant microbiota can be horizontally acquired from the environment or vertically transmitted from generation to generation via seeds. Recruiting of the microbial communities by the plant is affected by geographical location, soil source, host genotype, and cultivation practice. There is limited knowledge reported on the microbial communities in halophytes the influence of biotic and abiotic factors. In this work, the microbiota associated with the halophyte Salicornia ramosissima was investigated to determine whether the structure of bacterial communities is influenced by host genotype or soil source. For this purpose, two contrasting sites where S. ramosissima is established in the estuarine system of the Ria de Aveiro were investigated. One site corresponds to a natural salt marsh where S. ramosissima plants are present (wild plants), and the other site is a former salt pan that nowadays are subjected to intensive crop production of S. ramosissima (crop plants). Bacterial communities from the rhizosphere, seeds and root endosphere of S. ramossisima from both sites were investigated by sequencing bacterial 16S rRNA gene using the Illumina MiSeq platform. The analysis of the sequences showed that the three plant-associated compartments, rhizosphere, root endosphere, and seed endosphere, harbor distinct microbiomes. However, bacterial richness and diversity were higher in seeds of wild plants, followed by rhizosphere in both sites, while seeds in the crop site had the lowest diversity. Beta diversity measures indicated that bacterial communities in root endosphere and seeds were more similar in both wild and crop plants in contrast to rhizospheres that differed by local, indicating that the recruitment of the similar bacterial communities by the plant genotype is active in regard to the site. Moreover, bacterial communities from the root endosphere and rhizosphere were phylogenetically more similar in both sites, but the phylogenetic composition of seeds in wild and crop sites was distinct. These results indicate that cultivation practices affect the seed microbiome. However, minimal vertical transmission of bacteria from seeds to adult plants is expected. Seeds from the crop site showed higher abundances of Kushneria and Zunongwangia genera. Bacterial members of the classes Alphaprotebacteria and Bacteroidia were the most ubiquitous across sites and compartments and might encompass members of the core microbiome. These findings indicate that bacterial communities associated with S. ramosissima are more influenced by host genotype rather than local abiotic factors or cultivation practices. This study provides a better understanding of the composition of the plant microbiota in S. ramosissima , which is essential to predict the interactions between plant and associated microbial communities and their effects on plant health. This knowledge is useful to the manipulations of these microbial communities to enhance the health and productivity of this commercially important plant.Keywords: halophytes, plant microbiome, Salicornia ramosissima, agriculture
Procedia PDF Downloads 1692591 Metagenomic Identification of Cave Microorganisms in Lascaux and Other Périgord Caves
Authors: Lise Alonso, Audrey Dubost, Patricia Luis, Thomas Pommier, Yvan Moënne-Loccoz
Abstract:
The Lascaux Cave in South-Est France is an archeological landmark renowned for its Paleolithic paintings dating back c.18.000 years. Extensive touristic frequenting and repeated chemical treatments have resulted in the development of microbial stains on cave walls, which is a major issue in terms of art conservation. Therefore, it is of prime importance to better understand the microbiology specific to the Lascaux Cave, in comparison to regional situations. To this end, we compared the microbial community (i.e. both prokaryotic and eukaryotic microbial populations) of Lascaux Cave with three other anthropized Périgord caves as well as three pristine caves from the same area. We used state-of-the-art metagenomic analyses of cave wall samples to obtain a global view of the composition of the microbial community colonizing cave walls. We measured the relative abundance and diversity of four DNA markers targeting different fractions of the ribosomal genes of bacteria (i.e. eubacteria), archaea (i.e. archeobacteria), fungi and other micro-eukaryotes. All groups were highly abundant and diverse in all Périgord caves, as several hundred genera of microorganisms were identified in each. However, Lascaux Cave displayed a specify microbial community, which differed from those of both pristine and anthropized caves. Comparison of stains versus non-stained samples from the Passage area of the Lascaux Cave indicated that a few taxa (e.g. the Sordiaromycetes amongst fungi) were more prevalent within than outside stains, yet the main difference was in the relative proportion of the different microbial taxonomic groups and genera, which supposedly supports the biological origin of the stains. Overall, metagenomic sequencing of cave wall samples was effective to evidence the large colonization of caves by a diversified range of microorganisms. It also showed that Lascaux Cave represented a very particular situation in comparison with neighboring caves, probably in relation to the extent of disturbance it had undergone. Our results provide key baseline information to guide conservation efforts in anthropized caves such as Lascaux and pave the way to modern monitoring of ornamented caves.Keywords: cave conservation, Lascaux cave, microbes, paleolithic paintings
Procedia PDF Downloads 2442590 Impact of Environmental Stressors on Microbial Community Dynamics and Ecosystem Functioning: Implications for Bioremediation and Restoration Strategies
Authors: Nazanin Nikanmajd
Abstract:
Microorganisms are essential for influencing environmental processes, such as nutrient cycling, pollutant breakdown, and ecosystem well-being. Recent developments in high-throughput sequencing technologies and metagenomic methods have given us fresh understandings about the range and capabilities of microorganisms in different settings. This research examines how environmental stressors like climate change, pollution, and habitat degradation affect the composition and roles of microbial communities in soil and water ecosystems. We show that human-caused disruptions change the makeup of microbial communities, causing changes in important metabolic pathways for biogeochemical processes. More precisely, we pinpoint important microbial groups that show resistance or susceptibility to certain stress factors, emphasizing their possible uses in bioremediation and ecosystem rehabilitation. The results highlight the importance of adopting a holistic approach to comprehend microbial changes in evolving environments, impacting sustainable environmental conservation and management strategies. This research helps develop new solutions to reduce the impacts of environmental degradation on microbial ecosystem services by understanding the intricate relationships between microorganisms and their surroundings.Keywords: environmental microbiology, microbial communities, climate change, pollution, bioremediation, metagenomics, ecosystem services, ecosystem restoration
Procedia PDF Downloads 62589 Managing Diversity in MNCS: A Literature Review of Existing Strategic Models for Managing Diversity and a Roadmap to Transfer Them to the Subsidiaries
Authors: Debora Gottardello, Mireia Valverde Aparicio, Juan Llopis Taverner
Abstract:
Globalization has given rise to a great diversity in the composition of people in organizations. Diversity management is therefore key to create growth in today’s competitive global marketplace. This work develops a literature review related to the existing models for managing diversity covering the period from 1980 until 2014. Furthermore, it identifies limitations in previous models. More specifically, the literature review reveals that there is a lack of information about how these models can be adapted from the headquarters to the subsidiaries. Therefore, the contribution of this paper is to suggest how the models should be adapted when they are directed to host countries. Our aim is to highlight the limitations of the developed models with regards to the translation of the diversity management practices to the subsidiaries. Accordingly, a model that will enable MNCs to ensure a global strategy is suggested. Taking advantage of the potential incorporated in a culturally diverse work team should be at the top of every international company’s aims. Executives from headquarters need to use different attitudes when transferring diversity practices towards their subsidiaries. Further studies should reassess local practices of diversity management to find out how this universal management model is translated.Keywords: culture diversity, diversity management, human resources management, MNCs, subsidiaries, workforce diversity
Procedia PDF Downloads 2552588 High-Throughput Screening and Selection of Electrogenic Microbial Communities Using Single Chamber Microbial Fuel Cells Based on 96-Well Plate Array
Authors: Lukasz Szydlowski, Jiri Ehlich, Igor Goryanin
Abstract:
We demonstrate a single chamber, 96-well-plated based Microbial Fuel Cell (MFC) with printed, electronic components. This invention is aimed at robust selection of electrogenic microbial community under specific conditions, e.g., electrode potential, pH, nutrient concentration, salt concentration that can be altered within the 96 well plate array. This invention enables robust selection of electrogenic microbial community under the homogeneous reactor, with multiple conditions that can be altered to allow comparative analysis. It can be used as a standalone technique or in conjunction with other selective processes, e.g., flow cytometry, microfluidic-based dielectrophoretic trapping. Mobile conductive elements, like carbon paper, carbon sponge, activated charcoal granules, metal mesh, can be inserted inside to increase the anode surface area in order to collect electrogenic microorganisms and to transfer them into new reactors or for other analytical works. An array of 96-well plate allows this device to be operated by automated pipetting stations.Keywords: bioengineering, electrochemistry, electromicrobiology, microbial fuel cell
Procedia PDF Downloads 1492587 Development of an in vitro Fermentation Chicken Ileum Microbiota Model
Authors: Bello Gonzalez, Setten Van M., Brouwer M.
Abstract:
The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.Keywords: broilers, in vitro model, ileum microbiota, fermentation
Procedia PDF Downloads 572586 An Assessment of the Effects of Microbial Products on the Specific Oxygen Uptake in Submerged Membrane Bioreactor
Authors: M. F. R. Zuthi, H. H. Ngo, W. S. Guo, S. S. Chen, N. C. Nguyen, L. J. Deng, T. D. C Tran
Abstract:
Sustaining a desired rate of oxygen transfer for microbial activity is a matter of major concern for Biological Wastewater Treatment (MBR). The study reported in the paper was aimed at assessing the effects of microbial products on the Specific Oxygen Uptake Rate (SOUR) in a Conventional Membrane Bioreactor (CMBR) and that in a Sponge Submerged MBR (SSMBR). The production and progressive accumulation of Soluble Microbial Products (SMP) and Bound-Extracellular Polymeric Substances (BEPS) were found affecting the SOUR of the microorganisms which varied at different stages of operation of the MBR systems depending on the variable concentrations of the SMP/bEPS. The effect of bEPS on the SOUR was stronger in the SSMBR compared to that of the SMP, while relative high concentrations of SMP had adverse effects on the SOUR of the CMBR system. Of the different mathematical correlations analyzed in the study, logarithmic mathematical correlations could be established between SOUR and bEPS in SSMBR, and similar correlations could also be found between SOUR and SMP concentrations in the CMBR.Keywords: microbial products, microbial activity, specific oxygen uptake rate, membrane bioreactor
Procedia PDF Downloads 3082585 In silico Statistical Prediction Models for Identifying the Microbial Diversity and Interactions Due to Fixed Periodontal Appliances
Authors: Suganya Chandrababu, Dhundy Bastola
Abstract:
Like in the gut, the subgingival microbiota plays a crucial role in oral hygiene, health, and cariogenic diseases. Human activities like diet, antibiotics, and periodontal treatments alter the bacterial communities, metabolism, and functions in the oral cavity, leading to a dysbiotic state and changes in the plaques of orthodontic patients. Fixed periodontal appliances hinder oral hygiene and cause changes in the dental plaques influencing the subgingival microbiota. However, the microbial species’ diversity and complexity pose a great challenge in understanding the taxa’s community distribution patterns and their role in oral health. In this research, we analyze the subgingival microbial samples from individuals with fixed dental appliances (metal/clear) using an in silico approach. We employ exploratory hypothesis-driven multivariate and regression analysis to shed light on the microbial community and its functional fluctuations due to dental appliances used and identify risks associated with complex disease phenotypes. Our findings confirm the changes in oral microbiota composition due to the presence and type of fixed orthodontal devices. We identified seven main periodontic pathogens, including Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Firmicutes, whose abundances were significantly altered due to the presence and type of fixed appliances used. In the case of metal braces, the abundances of Bacteroidetes, Proteobacteria, Fusobacteria, Candidatus saccharibacteria, and Spirochaetes significantly increased, while the abundance of Firmicutes and Actinobacteria decreased. However, in individuals With clear braces, the abundance of Bacteroidetes and Candidatus saccharibacteria increased. The highest abundance value (P-value=0.004 < 0.05) was observed with Bacteroidetes in individuals with the metal appliance, which is associated with gingivitis, periodontitis, endodontic infections, and odontogenic abscesses. Overall, the bacterial abundances decrease with clear type and increase with metal type of braces. Regression analysis further validated the multivariate analysis of variance (MANOVA) results, supporting the hypothesis that the presence and type of the fixed oral appliances significantly alter the bacterial abundance and composition.Keywords: oral microbiota, statistical analysis, fixed or-thodontal appliances, bacterial abundance, multivariate analysis, regression analysis
Procedia PDF Downloads 1942584 The Analysis of Cultural Diversity in EFL Textbook for Senior High School in Indonesia
Authors: Soni Ariawan
Abstract:
The study aims to explore the cultural diversity highlighted in EFL textbook for Senior High School grade 10 in Indonesia. The visual images are selected as the data and qualitatively analysed using content analysis. The reason to choose visual images because images are not always neutral and they might impact teaching and learning process. In the current study, cultural diversity aspects are focused on religion (Muslim, Protestant, Catholic, Hindu, Buddhist, Confucian), gender (male, female, unclear), ethnic (Melanesian, Austronesian, Foreigner) and socioeconomic (low, middle, high, undetermined) diversity as the theoretical framework. The four aspects of cultural diversity are sufficiently representative to draw a conclusion in investigating Indonesian culture representation in EFL textbook. The finding shows that cultural diversity is not proportionally reflected in the textbook, particularly in the visual images.Keywords: EFL textbook, cultural diversity, visual images, Indonesia
Procedia PDF Downloads 3142583 Culturable Microbial Diversity and Adaptation Strategy in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica
Authors: Shiv Mohan Singh, Gwyneth Matcher
Abstract:
To understand the culturable microbial composition and diversity patterns, soil samples were collected from inland nunataks of Jutulsessen and Ahlmannryggen ranges in Dronning Maud Land, Antarctica. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of these geographical areas. The total 37 species of bacteria such as Arthrobacter agilis, Acinetobacter baumannii, Arthrobacter flavus, Arthrobacter ginsengisoli, Arthrobacter oxydans, Arthrobacter oryzae, Arthrobacter polychromogenes, Arthrobacter sulfonivorans, Bacillus altitudinis, Bacillus cereus, Bacillus paramycoides, Brevundimonas vesicularis, Brachybacterium rhamnosum, Curtobacterium luteum, Dermacoccus nishinomiyaensis, Dietzia aerolata, Janibacter indicus, Knoellia subterranean, Kocuria palustris, Kytococcus aerolatus, Lysinibacillus sphaericus, Microbacterium phyllosphaerae, Micrococcus yunnanensis, Methylobacterium rhodesianum, Moraxella osloensis, Paracoccus acridae, Pontibacter amylolyticus, Pseudomonas hunanensis, Pseudarthrobacter siccitolerans, Pseudarthrobacter phenanthrenivorans, Rhodococcus aerolatus, Rhodococcus sovatensis, Sphingomonas daechungensis, Sphingomonas sanguinis, Stenotrophomonas pavanii, Staphylococcus gallinarum, Staphylococcus arlettae and 9 species of fungi such as Candida davisiana, Cosmospora arxii, Geomyces destructans, Lecanicillium muscarium, Memnoniella humicola, Paecilomyces lilacinus, Pseudogymnoascus verrucosus, Phaeophlebiopsis ignerii and Thyronectria caraganae were recorded. Fatty acid methyl esters (FAME) analyses of representative species of each genus have shown predominance branched and unsaturated fatty acids indicate its adaptation strategy in Antarctic cold environment. To the best of our knowledge, this is the first record of culturable bacterial communities from Jutulsessen and Ahlmannryggen ranges in Western Dronning Maud Land, Antarctica.Keywords: antarctica, microbe, adaptation, polar
Procedia PDF Downloads 862582 Fabrication Methodologies for Anti-Microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-Microbial Agents
Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawaz
Abstract:
Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper, (II) chloride dihydrate (CuCl₂·₂H₂O) and (ii) non-leachable magnesium hydroxide (Mg(OH)₂) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·₂H₂O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)₂ particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl₂·2H₂O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)₂ imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing
Procedia PDF Downloads 782581 Fabrication Methodologies for Anti-microbial Polypropylene Surfaces with Leachable and Non-leachable Anti-microbial Agents
Authors: Saleh Alkarri, Dimple Sharma, Teresa M. Bergholz, Muhammad Rabnawa
Abstract:
Aims: Develop a methodology for the fabrication of anti-microbial polypropylene (PP) surfaces with (i) leachable copper (II) chloride dihydrate (CuCl2·2H2O) and (ii) non-leachable magnesium hydroxide (Mg(OH)2) biocides. Methods and Results: Two methodologies are used to develop anti-microbial PP surfaces. One method involves melt-blending and subsequent injection molding, where the biocide additives were compounded with PP and subsequently injection-molded. The other method involves the thermal embossing of anti-microbial agents on the surface of a PP substrate. The obtained biocide-bearing PP surfaces were evaluated against E. coli K-12 MG1655 for 0, 4, and 24 h to evaluate their anti-microbial properties. The injection-molded PP bearing 5% CuCl2·2H2O showed a 6-log reduction of E. coli K-12 MG1655 after 24 h, while only 1 log reduction was observed for PP bearing 5% Mg(OH)2. The thermally embossed PP surfaces bearing CuCl2·2H2O and Mg(OH)2 particles (at a concentration of 10 mg/mL) showed 3 log and 4 log reduction, respectively, against E.coli K-12 MG1655 after 24 h. Conclusion: The results clearly demonstrate that CuCl2·2H2O conferred anti-microbial properties to PP surfaces that were prepared by both injection molding as well as thermal embossing approaches owing to the presence of leachable copper ions. In contrast, the non-leachable Mg(OH)2 imparted anti-microbial properties only to the surface prepared via the thermal embossing technique. Significance and Impact of The Study: Plastics with leachable biocides are effective anti-microbial surfaces, but their toxicity is a major concern. This study provides a fabrication methodology for non-leachable PP-based anti-microbial surfaces that are potentially safer. In addition, this strategy can be extended to many other plastics substrates.Keywords: anti-microbial activity, E. coli K-12 MG1655, copper (II) chloride dihydrate, magnesium hydroxide, leachable, non-leachable, compounding, thermal embossing
Procedia PDF Downloads 832580 Blood Microbiome in Different Metabolic Types of Obesity
Authors: Irina M. Kolesnikova, Andrey M. Gaponov, Sergey A. Roumiantsev, Tatiana V. Grigoryeva, Dilyara R. Khusnutdinova, Dilyara R. Kamaldinova, Alexander V. Shestopalov
Abstract:
Background. Obese patients have unequal risks of metabolic disorders. It is accepted to distinguish between metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO). MUHO patients have a high risk of metabolic disorders, insulin resistance, and diabetes mellitus. Among the other things, the gut microbiota also contributes to the development of metabolic disorders in obesity. Obesity is accompanied by significant changes in the gut microbial community. In turn, bacterial translocation from the intestine is the basis for the blood microbiome formation. The aim was to study the features of the blood microbiome in patients with various metabolic types of obesity. Patients, materials, methods. The study included 116 healthy donors and 101 obese patients. Depending on the metabolic type of obesity, the obese patients were divided into subgroups with MHO (n=36) and MUHO (n=53). Quantitative and qualitative assessment of the blood microbiome was based on metagenomic analysis. Blood samples were used to isolate DNA and perform sequencing of the variable v3-v4 region of the 16S rRNA gene. Alpha diversity indices (Simpson index, Shannon index, Chao1 index, phylogenetic diversity, the number of observed operational taxonomic units) were calculated. Moreover, we compared taxa (phyla, classes, orders, and families) in terms of isolation frequency and the taxon share in the total bacterial DNA pool between different patient groups. Results. In patients with MHO, the characteristics of the alpha-diversity of the blood microbiome were like those of healthy donors. However, MUHO was associated with an increase in all diversity indices. The main phyla of the blood microbiome were Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Cyanobacteria, TM7, Thermi, Verrucomicrobia, Chloroflexi, Acidobacteria, Planctomycetes, Gemmatimonadetes, and Tenericutes were found to be less significant phyla of the blood microbiome. Phyla Acidobacteria, TM7, and Verrucomicrobia were more often isolated in blood samples of patients with MUHO compared with healthy donors. Obese patients had a decrease in some taxonomic ranks (Bacilli, Caulobacteraceae, Barnesiellaceae, Rikenellaceae, Williamsiaceae). These changes appear to be related to the increased diversity of the blood microbiome observed in obesity. An increase of Lachnospiraceae, Succinivibrionaceae, Prevotellaceae, and S24-7 was noted for MUHO patients, which, apparently, is explained by a magnification in intestinal permeability. Conclusion. Blood microbiome differs in obese patients and healthy donors at class, order, and family levels. Moreover, the nature of the changes is determined by the metabolic type of obesity. MUHO linked to increased diversity of the blood microbiome. This appears to be due to increased microbial translocation from the intestine and non-intestinal sources.Keywords: blood microbiome, blood bacterial DNA, obesity, metabolically healthy obesity, metabolically unhealthy obesity
Procedia PDF Downloads 1642579 The Influence of the Normative Gender Binary in Diversity Management: A Multi-Method Study on Gender Diversity of Diversity Management
Authors: Robin C. Ladwig
Abstract:
Diversity Management, as a substantial element of Human Resource Management, aims to secure the economic benefit that assumingly comes with a diverse workforce. Consequently, diversity managers focus on the protection of employees and securing equality measurements to assure organisational gender diversity. Gender diversity as one aspect of Diversity Management seems to adhere to gender binarism and cis-normativity. Workplaces are gendered spaces which are echoing the binary gender-normativity presented in Diversity Management, sold under the label of gender diversity. While the expectation of Diversity Management implies the inclusion of a multiplicity of marginalised groups, such as trans and gender diverse people, in current literature and practice, the reality is curated by gender binarism and cis-normativity. The qualitative multi-method research showed a lack of knowledge about trans and gender diverse matters within the profession of Diversity Management and Human Resources. The semi-structured interviews with trans and gender diverse individuals from various backgrounds and occupations in Australia exposed missing considerations of trans and gender diverse experiences in the inclusivity and gender equity of various workplaces. Even if practitioners consider trans and gender diverse matters under gender diversity, the practical execution is limited to gender binary structures and cis-normative actions as the photo-elicit questionnaire with diversity managers, human resource officers, and personnel management demonstrates. Diversity Management should approach a broader source of informed practice by extending their business focus to the knowledge of humanity studies. Humanity studies could include diversity, queer, or gender studies to increase the inclusivity of marginalised groups such as trans and gender diverse employees and people. Furthermore, the definition of gender diversity should be extended beyond the gender binary and cis-normative experience. People may lose trust in Diversity Management as a supportive ally of marginalised employees if the understanding of inclusivity is limited to a gender binary and cis-normativity value system that misrepresents the richness of gender diversity.Keywords: cis-normativity, diversity management, gender binarism, trans and gender diversity
Procedia PDF Downloads 2022578 Microbial Activity and Greenhouse Gas (GHG) Emissions in Recovery Process in a Grassland of China
Authors: Qiushi Ning
Abstract:
The nitrogen (N) is an important limiting factor of various ecosystems, and the N deposition rate is increasing unprecedentedly due to anthropogenic activities. The N deposition altered the microbial growth and activity, and microbial mediated N cycling through changing soil pH, the availability of N and carbon (C). The CO2, CH4 and N2O are important greenhouse gas which threaten the sustainability and function of the ecosystem. With the prolonged and increasing N enrichment, the soil acidification and C limitation will be aggravated, and the microbial biomass will be further declined. The soil acidification and lack of C induced by N addition are argued as two important factors regulating the microbial activity and growth, and the studies combined soil acidification with lack of C on microbial community are scarce. In order to restore the ecosystem affected by chronic N loading, we determined the responses of microbial activity and GHG emssions to lime and glucose (control, 1‰ lime, 2‰ lime, glucose, 1‰ lime×glucose and 2‰ lime×glucose) addition which was used to alleviate the soil acidification and supply C resource into soils with N addition rates 0-50 g N m–2yr–1. The results showed no significant responses of soil respiration and microbial biomass (MBC and MBN) to lime addition, however, the glucose substantially improved the soil respiration and microbial biomass (MBC and MBN); the cumulative CO2 emission and microbial biomass of lime×glucose treatments were not significantly higher than those of only glucose treatment. The glucose and lime×glucose treatments reduced the net mineralization and nitrification rate, due to inspired microbial growth via C supply incorporating more inorganic N to the biomass, and mineralization of organic N was relatively reduced. The glucose addition also increased the CH4 and N2O emissions, CH4 emissions was regulated mainly by C resource as a substrate for methanogen. However, the N2O emissions were regulated by both C resources and soil pH, the C was important energy and the increased soil pH could benefit the nitrifiers and denitrifiers which were primary producers of N2O. The soil respiration and N2O emissions increased with increasing N addition rates in all glucose treatments, as the external C resource improved microbial N utilization. Compared with alleviated soil acidification, the improved availability of C substantially increased microbial activity, therefore, the C should be the main limiting factor in long-term N loading soils. The most important, when we use the organic C fertilization to improve the production of the ecosystems, the GHG emissions and consequent warming potentials should be carefully considered.Keywords: acidification and C limitation, greenhouse gas emission, microbial activity, N deposition
Procedia PDF Downloads 3052577 Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities
Authors: Zhichao Li
Abstract:
This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently.Keywords: phenol, nitrogen heterocyclic aromatic hydrocarbons, phenol-degrading bacteria, microbial communities, biological treatment technology
Procedia PDF Downloads 2082576 Study on Microbial Pretreatment for Enhancing Enzymatic Hydrolysis of Corncob
Authors: Kessara Seneesrisakul, Erdogan Gulari, Sumaeth Chavadej
Abstract:
The complex structure of lignocellulose leads to great difficulties in converting it to fermentable sugars for the ethanol production. The major hydrolysis impediments are the crystallinity of cellulose and the lignin content. To improve the efficiency of enzymatic hydrolysis, microbial pretreatment of corncob was investigated using two bacterial strains of Bacillus subtilis A 002 and Cellulomonas sp. TISTR 784 (expected to break open the crystalline part of cellulose) and lignin-degrading fungus, Phanerochaete sordida SK7 (expected to remove lignin from lignocellulose). The microbial pretreatment was carried out with each strain under its optimum conditions. The pretreated corncob samples were further hydrolyzed to produce reducing glucose with low amounts of commercial cellulase (25 U•g-1 corncob) from Aspergillus niger. The corncob samples were determined for composition change by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). According to the results, the microbial pretreatment with fungus, P. sordida SK7 was the most effective for enhancing enzymatic hydrolysis, approximately, 40% improvement.Keywords: corncob, enzymatic hydrolysis, glucose, microbial pretreatment
Procedia PDF Downloads 5852575 Changes in the fecal Microbiome of Periparturient Dairy Cattle and Associations with the Onset of Salmonella Shedding
Authors: Lohendy Munoz-Vargas, Stephen O. Opiyo, Rose Digianantonio, Michele L. Williams, Asela Wijeratne, Gregory Habing
Abstract:
Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, to author`s best knowledge, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or structure for cows with and without the onset of Salmonella shedding. These data suggest that determinants other than the significant changes in the fecal microbiome influence the periparturient onset of Salmonella shedding in dairy cattle.Keywords: dairy cattle, microbiome, periparturient, Salmonella
Procedia PDF Downloads 1732574 Microbial Quality of Beef and Mutton in Bauchi Metropolis
Authors: Abdullahi Mohammed
Abstract:
The microbial quality of beef and mutton sold in four major markets of Bauchi metropolis was assessed in order to assist in ascertaining safety. Shops were selected from 'Muda Lawal', 'Yelwa', 'Wunti', and 'Gwallameji' markets. The total bacterial count was used as index of quality. A total of thirty two (32) samples were collected in two successive visits. The samples were packed and labelled in a sterile polythene bags for transportation to the laboratory. Microbial analysis was carried out immediately upon arrival under a septic condition, where aerobic plate was used in determining the microbial load. Result showed that beef and mutton from Gwallameji had the highest bacterial count of 9.065 X 105 cfu/ml and 8.325 X 105 cfu/ml for beef and mutton respectively followed by Wunti market (6.95 X 105 beef and 4.838 X 105 motton) and Muda Lawal (4.86 X 105 cfu/ml beef and 5.998 X 105 cfu/ml mutton). Yelwa had 5.175 X 105 and 5.30 X 105 for beef and mutton respectively. Bacterial species isolated from the samples were Escherichia coli, Salmonella spp, Streptococcus species and Staphylococcus species. However, results obtained from all markets showed that there was no significant differences between beef and mutton in terms of microbial quality.Keywords: beef, mutton, salmonella, sterile
Procedia PDF Downloads 4602573 Comparison of Rumen Microbial Analysis Pipelines Based on 16s rRNA Gene Sequencing
Authors: Xiaoxing Ye
Abstract:
To investigate complex rumen microbial communities, 16S ribosomal RNA (rRNA) sequencing is widely used. Here, we evaluated the impact of bioinformatics pipelines on the observation of OTUs and taxonomic classification of 750 cattle rumen microbial samples by comparing three commonly used pipelines (LotuS, UPARSE, and QIIME) with Usearch. In LotuS-based analyses, 189 archaeal and 3894 bacterial OTUs were observed. The observed OTUs for the Usearch analysis were significantly larger than the LotuS results. We discovered 1495 OTUs for archaea and 92665 OTUs for bacteria using Usearch analysis. In addition, taxonomic assignments were made for the rumen microbial samples. All pipelines had consistent taxonomic annotations from the phylum to the genus level. A difference in relative abundance was calculated for all microbial levels, including Bacteroidetes (QIIME: 72.2%, Usearch: 74.09%), Firmicutes (QIIME: 18.3%, Usearch: 20.20%) for the bacterial phylum, Methanobacteriales (QIIME: 64.2%, Usearch: 45.7%) for the archaeal class, Methanobacteriaceae (QIIME: 35%, Usearch: 45.7%) and Methanomassiliicoccaceae (QIIME: 35%, Usearch: 31.13%) for archaeal family. However, the most prevalent archaeal class varied between these two annotation pipelines. The Thermoplasmata was the top class according to the QIIME annotation, whereas Methanobacteria was the top class according to Usearch.Keywords: cattle rumen, rumen microbial, 16S rRNA gene sequencing, bioinformatics pipeline
Procedia PDF Downloads 882572 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom
Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou
Abstract:
The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.Keywords: microbial community, harmful algal bloom, ecological process, network
Procedia PDF Downloads 1142571 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws
Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun
Abstract:
Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment method that modifies such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.Keywords: lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology (RSM)
Procedia PDF Downloads 3982570 Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats
Authors: Tsegay Teklebrhan Gebremariam, Zhiliang, Arjan Jonker
Abstract:
The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production.Keywords: dissolved gasses, methanogenesis, microbial community, metagenomics
Procedia PDF Downloads 1582569 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation
Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath
Abstract:
Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD
Procedia PDF Downloads 5372568 Coding and Decoding versus Space Diversity for Rayleigh Fading Radio Frequency Channels
Authors: Ahmed Mahmoud Ahmed Abouelmagd
Abstract:
The diversity is the usual remedy of the transmitted signal level variations (Fading phenomena) in radio frequency channels. Diversity techniques utilize two or more copies of a signal and combine those signals to combat fading. The basic concept of diversity is to transmit the signal via several independent diversity branches to get independent signal replicas via time – frequency - space - and polarization diversity domains. Coding and decoding processes can be an alternative remedy for fading phenomena, it cannot increase the channel capacity, but it can improve the error performance. In this paper we propose the use of replication decoding with BCH code class, and Viterbi decoding algorithm with convolution coding; as examples of coding and decoding processes. The results are compared to those obtained from two optimized selection space diversity techniques. The performance of Rayleigh fading channel, as the model considered for radio frequency channels, is evaluated for each case. The evaluation results show that the coding and decoding approaches, especially the BCH coding approach with replication decoding scheme, give better performance compared to that of selection space diversity optimization approaches. Also, an approach for combining the coding and decoding diversity as well as the space diversity is considered, the main disadvantage of this approach is its complexity but it yields good performance results.Keywords: Rayleigh fading, diversity, BCH codes, Replication decoding, convolution coding, viterbi decoding, space diversity
Procedia PDF Downloads 4432567 Screening and Evaluation of Plant Growth Promoting Rhizobacteria of Wheat/Faba Bean for Increasing Productivity and Yield
Authors: Yasir Arafat, Asma Shah, Hua Shao
Abstract:
Background and Aims: Legume/cereal intercropping is used worldwide for enhancement in biomass and yield of cereal crops. However, because of intercropping, the belowground biological and chemical interactions and their effect on physiological parameters and yield of crops are limited. Methods: Wheat faba bean (WF) intercropping was designed to understand the underlying changes in the soil's chemical environment, soil microbial communities, and effect on growth and yield parameters. Experimental plots were established as having no root partition (NRP), semi-root partition (SRP), complete root partition (CRP), and their sole cropping (CK). Low molecular weight organic acids (LMWOAs) were determined by GC-MS, and high throughput sequencing of the 16S rRNA gene was carried out to screen microbial structure and composition in different root partitions of the WF intercropping system. Results: We show that intercropping induced a shift in the relative abundance of some genera of plant growth promoting rhizobacteria (PGPR) such as Allorhizobium, Neorhizobium, Pararhizobium, and Rhizobium species and resulted in better growth and yield performance of wheat. Moreover, as the plant's distance of wheat from faba beans decreased, the diversity of microbes increased, and a positive effect was observed on physiological traits and crop yield. Furthermore, an abundance and positive correlations of palmitic acid, arachidic acid, stearic acid, and 9-Octadecenoic with PGPR were recorded in the root zone of WF intercropping, which can play an important role in this facilitative mechanism of enhancing growth and yield of cereals. Conclusion: The two treatments clearly affected soil microbial and chemical composition, which can be reflected in growth and yield enhancement.Keywords: intercropping, microbial community, LMWOAs, PGPR, soil chemical environment
Procedia PDF Downloads 84