Search results for: Zhiliang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: Zhiliang

5 Study on the Model Predicting Post-Construction Settlement of Soft Ground

Authors: Pingshan Chen, Zhiliang Dong

Abstract:

In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.

Keywords: prediction, model, post-construction settlement, soft ground

Procedia PDF Downloads 425
4 Atomistic Insight into the System of Trapped Oil Droplet/ Nanofluid System in Nanochannels

Authors: Yuanhao Chang, Senbo Xiao, Zhiliang Zhang, Jianying He

Abstract:

The role of nanoparticles (NPs) in enhanced oil recovery (EOR) is being increasingly emphasized. In this study, the motion of NPs and local stress distribution of tapped oil droplet/nanofluid in nanochannels are studied with coarse-grained modeling and molecular dynamic simulations. The results illustrate three motion patterns for NPs: hydrophilic NPs are more likely to adsorb on the channel and stay near the three-phase contact areas, hydrophobic NPs move inside the oil droplet as clusters and more mixed NPs are trapped at the oil-water interface. NPs in each pattern affect the flow of fluid and the interfacial thickness to various degrees. Based on the calculation of atomistic stress, the characteristic that the higher value of stress occurs at the place where NPs aggregate can be obtained. Different occurrence patterns correspond to specific local stress distribution. Significantly, in the three-phase contact area for hydrophilic NPs, the local stress distribution close to the pattern of structural disjoining pressure is observed, which proves the existence of structural disjoining pressure in molecular dynamics simulation for the first time. Our results guide the design and screen of NPs for EOR and provide a basic understanding of nanofluid applications.

Keywords: local stress distribution, nanoparticles, enhanced oil recovery, molecular dynamics simulation, trapped oil droplet, structural disjoining pressure

Procedia PDF Downloads 134
3 Sulfur-Containing Diet Shift Hydrogen Metabolism and Reduce Methane Emission and Modulated Gut Microbiome in Goats

Authors: Tsegay Teklebrhan Gebremariam, Zhiliang, Arjan Jonker

Abstract:

The study investigated that using corn gluten (CG) instead of cornmeal (CM) increased dietary sulfur shifted H₂ metabolism from methanogenesis to alternative sink and modulated microbiome in the rumen as well as hindgut segments of goats. Ruminal fermentation, CH₄ emissions and microbial abundance in goats (n = 24). The experiment was performed using a randomized block design with two dietary treatments (CM and CG with 400 g/kg DM each). Goats in CG increased sulfur, NDF and CP intake and decreased starch intake as compared with those in CM. Goats that received CG diet had decreased dissolved hydrogen (dH₂) (P = 0.01) and dissolved methane yield and emission (dCH₄) (P = 0.001), while increased dH₂S both in the rumen and hindgut segments than those fed CM. Goats fed CG had higher (p < 0.01) gene copies of microbiota and cellulolytic bacteria, whereas starch utilizing bacterial species were less in the rumen and hindgut than those fed CM. Higher (P < 0.05) methanogenic diversity and abundances of Methanimicrococcus and Methanomicrobium were observed in goats that consumed CG, whilst containing lower Methanobrevibacter populations than those receiving CM. The study suggested that goats fed corn gluten improved the gene copies of microbiota and fibrolytic bacterial species while reducing starch utilizing species in the rumen and hindgut segments as compared with that fed cornmeal. Goats consuming corn gluten had a more enriched methanogenic diversity and reduced Methanobrevibacter, a contributor to CH₄ emissions, as compared with goats fed CM. Corn gluten could be used as an alternative feed to decrease the enteric CH₄ emission in ruminant production.

Keywords: dissolved gasses, methanogenesis, microbial community, metagenomics

Procedia PDF Downloads 157
2 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 192
1 Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂

Authors: Ingrid Snustad, Asmund Ervik, Anders Austegard, Amy Brunsvold, Jianying He, Zhiliang Zhang

Abstract:

CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂.

Keywords: CCS, dropwise condensation, low surface tension liquid, superlyophobic surfaces

Procedia PDF Downloads 276