Search results for: heart rate BPM
8769 Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring
Authors: Murtadha Kareem, Oliver Faust
Abstract:
Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre.Keywords: Wearable sensor, Heart rate, Internet of things, Chronic heart disease
Procedia PDF Downloads 1618768 Percentile Norms of Heart Rate Variability (HRV) of Indian Sportspersons Withdrawn from Competitive Games and Sports
Authors: Pawan Kumar, Dhananjoy Shaw
Abstract:
Heart rate variability (HRV) is the physiological phenomenon of variation in the time interval between heartbeats and is alterable with fitness, age and different medical conditions including withdrawal/retirement from games/sports. Objectives of the study were to develop (a) percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity (b) percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity. The study was conducted on 430 males. Ages of the sample ranged from 30 to 35 years of same socio-economic status. Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with percentile from one to hundred. The finding showed that the percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely, NN50 count (ranged from 1 to 189 score as percentile range). pNN50 count (ranged from .24 to 60.80 score as percentile range). SDNN (ranged from 17.34 to 167.29 score as percentile range). SDSD (ranged from 11.14 to 120.46 score as percentile range). RMMSD (ranged from 11.19 to 120.24 score as percentile range) and SDANN (ranged from 4.02 to 88.75 score as percentile range). The percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely Low Frequency (Normalized Power) ranged from 20.68 to 90.49 score as percentile range. High Frequency (Normalized Power) ranged from 14.37 to 81.60 score as percentile range. LF/ HF ratio(ranged from 0.26 to 9.52 score as percentile range). LF (Absolute Power) ranged from 146.79 to 5669.33 score as percentile range. HF (Absolute Power) ranged from 102.85 to 10735.71 score as percentile range and Total Power (Absolute Power) ranged from 471.45 to 25879.23 score as percentile range. Conclusion: The analysis documented percentile norms for time domain analysis and frequency domain analysis for versatile use and evaluation.Keywords: RMSSD, Percentile, SDANN, HF, LF
Procedia PDF Downloads 4208767 Wharton's Jelly-Derived Mesenchymal Stem Cells Modulate Heart Rate Variability and Improve Baroreflex Sensitivity in Septic Rats
Authors: Cóndor C. José, Rodrigues E. Camila, Noronha L. Irene, Dos Santos Fernando, Irigoyen M. Claudia, Andrade Lúcia
Abstract:
Sepsis induces alterations in hemodynamics and autonomic nervous system (ASN). The autonomic activity can be calculated by measuring heart rate variability (HRV) that represents the complex interplay between ASN and cardiac pacemaker cells. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors involved in neuroprotective and immunological effects, also to improve the survival in experimental septic animals. We hypothesized, that WJ-MSCs present an important role in the autonomic activity and in the hemodynamic effects in a cecal ligation and puncture (CLP) model of sepsis. Methods: We used flow cytometry to evaluate WJ-MSCs phenotypes. We divided Wistar rats into groups: sham (shamoperated); CLP; and CLP+MSC (106 WJ-MSCs, i.p., 6 h after CLP). At 24 h post-CLP, we recorded the systolic arterial pressure (SAP) and heart rate (HR) over 20 min. The spectral analysis of HR and SAP; also the spontaneous baroreflex sensitivity (measure by bradycardic and tachycardic responses) were evaluated after recording. The one-way ANOVA and the post hoc Student– Newman– Keuls tests (P< 0.05) were used to data comparison Results: WJ-MSCs were negative for CD3, CD34, CD45 and HLA-DR, whereas they were positive for CD73, CD90 and CD105. The CLP group showed a reduction in variance of overall variability and in high-frequency power of HR (heart parasympathetic activity); furthermore, there is a low-frequency reduction of SAP (blood vessels sympathetic activity). The treatment with WJ-MSCs improved the autonomic activity by increasing the high and lowfrequency power; and restore the baroreflex sensitive. Conclusions: WJ-MSCs attenuate the impairment of autonomic control of the heart and vessels and might therefore play a protective role in sepsis. (Supported by FAPESP).Keywords: baroreflex response, heart rate variability, sepsis, wharton’s jelly-derived mesenchymal stem cells
Procedia PDF Downloads 3028766 Sunshine Hour as a Factor to Maintain the Circadian Rhythm of Heart Rate: Analysis of Ambulatory ECG and Weather Big Data
Authors: Emi Yuda, Yutaka Yoshida, Junichiro Hayano
Abstract:
Distinct circadian rhythm of activity, i.e., high activity during the day and deep rest at night are a typical feature of a healthy lifestyle. Exposure to the skylight is thought to be an important factor to increase arousal level and maintain normal circadian rhythm. To examine whether sunshine hours influence the day-night contract of activity, we analyzed the relationship between 24-hour heart rate (HR) and weather data of the recording day. We analyzed data in 36,500 males and 49,854 females of Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) database in Japan. Median (IQR) sunshine duration was 5.3 (2.8-7.9) hr. While sunshine hours had only modest effects of increasing 24-hour average HR in either gender (P=0.0282 and 0.0248 for male and female) and no significant effects on nighttime HR in either gender, it increased daytime HR (P = 0.0007 and 0.0015) and day-night HF difference in both genders (P < 0.0001 for both) even after adjusting for the effects of average temperature, atmospheric pressure, and humidity. Our observations support for the hypothesis that longer sunshine hours enhance circadian rhythm of activity.Keywords: big data, circadian rhythm, heart rate, sunshine
Procedia PDF Downloads 1658765 Heart Rate Variability Responses Pre-, during, and Post-Exercise among Special Olympics Athletes
Authors: Kearney Dover, Viviene Temple, Lynneth Stuart-Hill
Abstract:
Heart Rate Variability (HRV) is the beat-to-beat variation in adjacent heartbeats. HRV is a non-invasive measure of the autonomic nervous system (ANS) and provides information about the sympathetic (SNS) and parasympathetic (PNS) nervous systems. The HRV of a well-conditioned heart is generally high at rest, whereas low HRV has been associated with adverse outcomes/conditions, including congestive heart failure, diabetic neuropathy, depression, and hospital admissions. HRV has received very little research attention among individuals with intellectual disabilities in general or Special Olympic athletes. Purpose: 1) Having a longer post-exercise rest and recovery time to establish how long it takes for the athletes’ HRV components to return to pre-exercise levels, 2) To determine if greater familiarization with the testing processes influences HRV. Participants: Two separate samples of 10 adult Special Olympics athletes will be recruited for 2 separate studies. Athletes will be between 18 and 50 years of age and will be members of Special Olympics BC. Anticipated Findings: To answer why the Special Olympics athletes display poor cardiac responsiveness to changes in autonomic modulation during exercise. By testing the cortisol levels in the athletes, we can determine their stress levels which will then explain their measured HRV.Keywords: 6MWT, autonomic modulation, cortisol levels, intellectual disability
Procedia PDF Downloads 3088764 Acute Effect of Street Dance Exercise on Blood Pressure, Heart Rate, Oxygen Saturation and Physical Fitness in Sedentary Subjects: A Pilot Study
Authors: Taweesak Janyacharoen, Lalita Pradubgool, Lalita Wongsorn, Pitchayapa Janyacharoen
Abstract:
Street dance is a form of exercise that is classified as aerobic and is very suitable for teenagers. Street dance is a dance that can create new dance moves all the time. It often incorporates elements from gymnastics and is accompanied by fast-paced music that emphasizes excitement and energy. It is a combination of high-intensity and low-intensity activities. Few studies have looked at the effects of street dance on cardiovascular endurance, and previous studies have long-term effects. However, no research study in Thailand has studied acute effects before. This study was to investigate the acute effect of street dance exercise on blood pressure, heart rate, oxygen saturation and physical fitness in sedentary subjects. Subjects were divided into 2 groups: the control group (n=15) received health education and rest, and the experimental group (n=15) received street dance exercise. Both groups will measure their blood pressure (BP), mean arterial pressure (MAP), heart rate (HR), oxygen saturation (SpO₂) and six-minute walk test (6MWT) before and after completing the program. The results found that both groups had significantly different HR when comparing before and after the program (p<0.05). MAP, HR and SpO₂ had significantly different (p<0.05) when compared between groups. This study concluded that the acute effect of street dance exercise could be increased in HR while the SpO₂ decreased. In clinical, it was seen that the values that were changed are still within the range that is considered normal. Therefore, street dance exercises can be used as one choice of alternative exercise.Keywords: street dance, exercise, blood pressure, heart rate, oxygen saturation
Procedia PDF Downloads 398763 Assessment of Heart Rate, Blood Pressure and Percentage Oxygen Saturation in Young Habitual Shisha Smokers in Kano, Nigeria
Authors: B. I. Waziri, M. A. Yahaya
Abstract:
Background: Practice of shisha smoking involves the use of a multi-stemmed instrument to smoke tobacco or non-tobacco herbal mixture where the smoke is designed to pass through water or other liquid before reaching the smoker. The presence of tobacco content and the use of charcoal when burning the ingredients in this popular practice necessitate for investigation of many physiological parameters of habitual shisha smokers in our environment. Methods: 103 young shisha smokers, regular in the practice for more than three years living in Nasarawa, Kano state, Nigeria, were recruited for the study. The controls were 100 university students (nonsmokers) match for age (18 - 30 years), sex and BMI (20 - 24) with the smokers. Participants with known history of cigarette smoking, cardiovascular or respiratory diseases were excluded. Ethical approval was obtained from the Ministry of Health, Kano Nigeria. Hear rate, blood pressure and percentage oxygen saturation (SPO₂) were measured using stethoscope, sphygmomanometer and pulse oximeter respectively. Data were analyzed using IBM SPSS version 20 and mean values of the measured parameters were compared between the smokers and controls using independent sample t-test. P-values < 0.05 were considered significant. Results: The mean Heart rate was found to be significantly higher (p = 0.01) in the shisha smokers (91.32 ± 0.84) compared to controls (79.19 ± 1.18). Systolic and diastolic blood pressure was also higher (p = 0.00) in the shisha smokers (128.75 ± 1.11 and 85.85 ± 0.78 respectively) compared to controls with the systolic and diastolic pressure of 116.64 ± 0.82 and 80.39 ± 0.83 respectively. SPO₂ was significantly lower (p = 0.00) in the shisha smokers (91.98% ± 0.42%) compared to the controls (97.98 ± 0.18). Conclusion: Habitual Shisha Smoking caused a significant increase in Heart rate, both systolic and diastolic blood pressure and a significant decrease in SPO2 among youth in Kano State, Nigeria.Keywords: blood pressure, heart rate, shisha, youth
Procedia PDF Downloads 1478762 The Relationship between Self-Care Behaviour and Quality of Life Among Heart Failure Patients in Jakarta, Indonesia
Authors: Shedy Maharani Nariswari, Prima Agustia Nova, I. Made Kariasa
Abstract:
Background. Heart Failure (HF) is a chronic and progressive condition associated with significant morbidity, mortality, health care expenditures, and a high readmission rate over the years. Self‐care is essential to manage chronic heart failure in the long term, and it is related to better outcomes and can enhance the quality of life. Objective. The aims of this study were to describe the relationship between self-care behavior and quality of life among heart failure patients in East Jakarta, Indonesia. Methods. This study used a correlational-descriptive design with a cross-sectional study, the sampling method used purposive sampling method. Self-care was measured using Self-care Heart Failure Index version 6.2, and quality of life was measured using The Minnesota Living with Heart Failure. Pearson correlation and Spearman-rho correlations are used to analyze the data. Results. We recruited 103 patients with HF in both outpatient and inpatient ward: mean age 59.26 ± 11.643 years, 63.1% male. Patients with higher levels of education were associated with higher self-care maintenance (p= 0.007). The patient's average quality of life is quite high, with a score of 72,07 ± 16,89. There were a significant relationship among self-care maintenance (r=0,305, p=0,001), self-care management (r=0,330, p=0,001), and self-care confidence (r=0,335, p=0,001) towards the quality of life. Most participants have inadequate self-care maintenance, self-care management, and self-care confidence (score < 70), while the score of quality of life is categorized as poor. Conclusion. The self-care behaviors were limited among patients living with HF in Indonesia yet was associated with better quality of life. It is necessary to promote health related to knowledge and adherence to self-care behavior so that it can improve the quality of life of heart failure patients. This study can be used as a reference to promote self-care among patients with heart failure, it can help to enhance their quality of life.Keywords: heart failure, self-care maintenance, self-care management, self-care confidence, quality of life
Procedia PDF Downloads 1068761 Simulation of Human Heart Activation Based on Diffusion Tensor Imaging
Authors: Ihab Elaff
Abstract:
Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature.Keywords: diffusion tensor, DTI, heart, conduction network, excitation propagation
Procedia PDF Downloads 2668760 Chest Pain as a Predictor for Heart Issues in Geriatrics
Authors: Leila Kargar, Homa Abri, Golsa Safai
Abstract:
The occurrence of chest pain among geriatrics could be considered as a predictor of heart issues. There is a need for attention to this pain among this population. This review paper has tried to collect the recent data with attention to the chest pain among geriatrics. This review paper has focused on specific keywords, including chest pain, heart issues, and geriatrics, among published papers from 2015 till 2020. To collect data for this purpose, Scopus, Web of Sciences, and PubMed were used. After inserting related papers to the Endnote, an independent researcher checked the abstract, and papers with unclear methods or non-English language were excluded. Finally, 7-papers were included in this review paper. The findings of those papers showed that chest pain could be a predictor for heart issues, and also, there is a direct relationship between chest pain and heart issues among geriatrics. So, early detection and an accurate decision could be helpful to prevent heart issues in this population.Keywords: pain, heart issue, geriatrics, health
Procedia PDF Downloads 2188759 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1058758 The Survey of Relationship between Health Literacy and Knowledge of Heart Failure with Rehospitalization in Patients with Heart Failure Admitted to Heart Failure Clinic
Authors: Jaleh Mohammad Aliha, Rezvan Razazi, Nasim Naderi
Abstract:
Introduction: Despite the progress in new effective drugs in the treatment of heart failure, the disease still accompanied with frequent hospitalization, impaired quality of life, early mortality and significant economic burden. Patients with chronic disease and consequently patients with heart failure need the knowledge and optimal health literacy to improve the quality of life and minimize the rate of rehopitalizatio. So, considering to importance of knowledge and health literacy in this patients as well as contradictory literature, this study conducted to investigate the relationship between health literacy and Knowledge of heart failure with rehospitalization in patients with heart failure admitted to heart failure clinic in Rajai Heart center in 1394. Methods: The cross-sectional method with convenience sampling method was used in this study. After obtaining the necessary permissions from the ethics committee and the Shahid Rajai Heart center, 238 patients who were older than 18 years and had ejection fraction 35% or less with the ability to read and write and lack of psychiatric, neurological and cognitive disorders and signed the informed consent were recruited. Data collection were perfomed through demographic data questionnaire, short standard health literacy questionnaire 'Short-TOFHLA-16' and Vanderwall (2005) knowledge of heart failure questionnaire. Reliability was assessed by internal consistency method and Cronbach's alpha for both questionnaires was more than 0.7. Then data were analysed by SPSS-20 with descriptive statistic and analytical statistic such as T-test, Chi-square and ANOVA. Results: The majority of patients were male (66%), married (80%) and had age between 50 to 70 years old (42%). The majority of studied men and women have good health literacy and About half of them have adequate knowledge about heart failure. Fisher's exact test showed that there was a significant statistical correlation between health literacy and knowlegh about heart failure. In other words, higher health literacy associated with more knowledge about their condition. Also findings showed that there was no significant statistical correlation between health literacy and knowledge about heart failure and frequency of CCU and emergency admissions. Conclusion: The study results showed that the higher health literacy, associated with the greater knowledge about heart failure and patients' perception about caring recommendations and disease outcomes. Therefore, the knowledge about heart failure and factors which related to severity of the disease, is the important issue to problem identification and treatment and reduction of rehospitalization.Keywords: health literacy, heart failure, knowlegde, rehospitalization
Procedia PDF Downloads 4018757 Slovenia in the Heart of Europe
Authors: M. Žibert, T. Špindler, S. Uhan, A. Lisec
Abstract:
We can find Slovenia in the heart of Europe and has really good geographical location. With same slogan are promoted Switzerland, Montenegro, Greece and probably many others. However, from anatomic point of view, injustice is being made to someone because the heart is placed only in left part of chest cavity and there we can`t find place for the entire territory from Switzerland to the south of Balkan.Keywords: Ljubljana, logistics, Slovenia, tourism
Procedia PDF Downloads 3748756 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography
Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw
Abstract:
Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.Keywords: cardiotocography, foetus, intrapartum, hypoxia
Procedia PDF Downloads 2168755 Coconut Shells as the Alternative Equipment for Foot Reflexology
Authors: Nichanant Sermsri, Chananchida Yuktirat
Abstract:
This research was the experimental research. Its purpose was to find out how coconut shells can be adapted to be equipment for foot and calf reflexology. The sample group was 58 female street vendors in Thewet Market, Dusit District, Bangkok, selected by selection criteria and voluntary. The data collecting tool in this research was the Visual Analogue Scale. The massaging tool made from coconut shells (designed and produced by the research team) was the key equipment for this research. The duration of the research was 1 month. The research team assessed the level of exhaustion and heart rate among sample group before and after the massage, then analyzed the data by mean, standard deviation and paired sample t-test. We found out from the research that 1) The level of exhaustion decreased 4.529 levels after the massage. The standard deviation was 1.6195. The heart rates went down 11.67 times/minute. The standard deviation was 6.742. 2) The level of exhaustion and heart rate after the massage decreased with the statistically significance at 0.01.Keywords: foot reflexology, massaging plate, coconut shells, ecological sciences
Procedia PDF Downloads 1868754 The Role of Clinical Pharmacist Intervention in Collaborative Drug Therapy Management to Improve Outcomes and Decrease Hospitalization in Heart Failure Clinic
Authors: Sanaa Mekdad, Leenah Alsayed
Abstract:
Pharmacists play an important role in the CDTM in the care of patients with heart failure (HF). CDTM allows specialized, dedicated clinical pharmacists in a formal agreement in collaborative practice with physicians. Thus, the aim of this study is to investigate the role of cardiology clinical pharmacists in CDTM in decreasing hospitalization and cost. We studied patients with left ventricular systolic dysfunction in a cluster-randomized selection in a tertiary care center. We allocated 296 patients to pharmacist intervention from 1480 patients. Results: With an acceptance rate of 86%, we documented 696 interventions carried out by clinical pharmacists in cardiology. The average intervention was 2.4 patients, and the admission after interventions decreased from 0.79 to. 0.24 (p value = 0.001). Conclusions: In HF CDTM, clinical pharmacists play a crucial role in enhancing medication management, patient education, and lifestyle modification of patients with chronic heart failure. These efforts improve patients' outcomes and lower costs by reducing hospitalization and other associated expenses.Keywords: cardiology, medication management, heart failure, outpatient therapy, pharmacist-based services, chronic heart failure, heart failure recommendations, CDTM, Middle East, pharmacist-based services, quality of life, pharmacist
Procedia PDF Downloads 698753 Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals
Authors: C. C .D. Kulathilake, M. Jayatilake, T. Takahashi
Abstract:
The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.Keywords: autoradiographs, fatty acid, radiopharmaceuticals, sugar
Procedia PDF Downloads 4508752 The Use of Biofeedback to Increase Resilience and Mental Health of Supersonic Pilots
Authors: G. Kloudova, S. Kozlova, M. Stehlik
Abstract:
Pilots are operating in a high-risk environment rich in potential stressors, which negatively affect aviation safety and the mental health of pilots. In the research conducted, the pilots were offered mental training biofeedback therapy. Biofeedback is an objective tool to measure physiological responses to stress. After only six sessions, all of the pilots tested showed significant differences between their initial condition and their condition after therapy. The biggest improvement was found in decreased heart rate (in 83.3% of tested pilots) and respiration rate (66.7%), which are the best indicators of anxiety states and panic attacks. To incorporate all of the variables, we correlated the measured physiological state of the pilots with their personality traits. Surprisingly, we found a high correlation with peripheral temperature and confidence (0.98) and with heart rate and aggressiveness (0.97). A retest made after a one-year interval showed that in majority of the subjects tested their acquired self-regulation ability had been internalized.Keywords: aviation, biofeedback, mental workload, performance psychology
Procedia PDF Downloads 2488751 Synthesis of New Analogs of IPS-339, and Study of Their Cardiovascular in Dogs
Authors: Elham Zarenezhad, Ali Zarenezhad, Mehdi Mardkhoshnood
Abstract:
We described the synthesis and biological study of O-oxime ethers having a-amino acid residues as new analogs of IPS-339. In this synthesis, the reaction of fluorene O-oxime with epichlorohydrin or epibromohydrin afforded the corresponding O-oxime ether adducts. The N-alkylation of valine amino acid with O-oxime ether adducts led to the synthesis of new analogs of IPS-339. The cardiovascular properties of the compound have been studied. In this regard, six clinically healthy same sex mongrel dogs were examined. The dogs were randomly divided into 3 groups of two members. 1 groups received 2 mg kg-1 body weight of compound (2-(3-(9H-fluoren-9-ylideneaminooxy)-2- hydroxypropylamino)-3-methylbutanoic acid) intravenously, whereas group 2 and 3 received only DMSO–water (distil.) and propranolol (Inderal) (2 mg kg-1), respectively. The electrocardiograph (ECG) was recorded with lead II. The recording was run successively by 5 min time interval on each dog before, simultaneously, and after compound infusion. Data after administration were taken from normal sinus beats that were closely related to the arrhythmias whenever they occurred. In general, no detectable arrhythmia was observed in all ECG records regardless of increasing the heart rate that likely caused by stress origin from invasive procedure just after infusion. Compound diminished the heart rate during study especially at 20th minute compared to propranolol as a reference drug. Compound (2-(3-(9H-fluoren-9-ylideneaminooxy)-2- hydroxypropylamino)-3-methylbutanoic acid) was the most effective compound with remarkable ability in declining of the heart rate.Keywords: electrocardiograph (ECG), cardiovascular, IPS-339, dogs
Procedia PDF Downloads 3468750 Dissection of the Impact of Diabetes Type on Heart Failure across Age Groups: A Systematic Review of Publication Patterns on PubMed
Authors: Nazanin Ahmadi Daryakenari
Abstract:
Background: Diabetes significantly influences the risk of heart failure. The interplay between distinct types of diabetes, heart failure, and their distribution across various age groups remains an area of active exploration. This study endeavors to scrutinize the age group distribution in publications addressing Type 1 and Type 2 diabetes and heart failure on PubMed while also examining the evolving publication trends. Methods: We leveraged E-utilities and RegEx to search and extract publication data from PubMed using various mesh terms. Subsequently, we conducted descriptive statistics and t-tests to discern the differences between the two diabetes types and the distribution across age groups. Finally, we analyzed the temporal trends of publications concerning both types of diabetes and heart failure. Results: Our findings revealed a divergence in the age group distribution between Type 1 and Type 2 diabetes within heart failure publications. Publications discussing Type 2 diabetes and heart failure were more predominant among older age groups, whereas those addressing Type 1 diabetes and heart failure displayed a more balanced distribution across all age groups. The t-test revealed no significant difference in the means between the two diabetes types. However, the number of publications exploring the relationship between Type 2 diabetes and heart failure has seen a steady increase over time, suggesting an escalating interest in this area. Conclusion: The dissection of publication patterns on PubMed uncovers a pronounced association between Type 2 diabetes and heart failure within older age groups. This highlights the critical need to comprehend the distinct age group differences when examining diabetes and heart failure to inform and refine targeted prevention and treatment strategies.Keywords: Type 1 diabetes, Type 2 diabetes, heart failure, age groups, publication patterns, PubMed
Procedia PDF Downloads 958749 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 3428748 COVID-19 and Heart Failure Outcomes: Readmission Insights from the 2020 United States National Readmission Database
Authors: Induja R. Nimma, Anand Reddy Maligireddy, Artur Schneider, Melissa Lyle
Abstract:
Background: Although heart failure is one of the most common causes of hospitalization in adult patients, there is limited knowledge on outcomes following initial hospitalization for COVID-19 with heart failure (HCF-19). We felt it pertinent to analyze 30-day readmission causes and outcomes among patients with HCF-19 using the United States using real-world big data via the National readmission database. Objective: The aim is to describe the rate and causes of readmissions and morbidity of heart failure with coinciding COVID-19 (HFC-19) in the United States, using the 2020 National Readmission Database (NRD). Methods: A descriptive, retrospective study was conducted on the 2020 NRD, a nationally representative sample of all US hospitalizations. Adult (>18 years) inpatient admissions with COVID-19 with HF and readmissions in 30 days were selected based on the International Classification of Diseases-Tenth Revision, Procedure Code. Results: In 2020, 2,60,372 adult patients were hospitalized with COVID-19 and HF. The median age was 74 (IQR: 64-83), and 47% were female. The median length of stay was 7(4-13) days, and the total cost of stay was 62,025 (31,956 – 130,670) United States dollars, respectively. Among the index hospital admissions, 61,527 (23.6%) died, and 22,794 (11.5%) were readmitted within 30 days. The median age of patients readmitted in 30 days was 73 (63-82), 45% were female, and 1,962 (16%) died. The most common principal diagnosis for readmission in these patients was COVID-19= 34.8%, Sepsis= 16.5%, HF = 7.1%, AKI = 2.2%, respiratory failure with hypoxia =1.7%, and Pneumonia = 1%. Conclusion: The rate of readmission in patients with heart failure exacerbations is increasing yearly. COVID-19 was observed to be the most common principal diagnosis in patients readmitted within 30 days. Complicated hypertension, chronic pulmonary disease, complicated diabetes, renal failure, alcohol use, drug use, and peripheral vascular disorders are risk factors associated with readmission. Familiarity with the most common causes and predictors for readmission helps guide the development of initiatives to minimize adverse outcomes and the cost of medical care.Keywords: Covid-19, heart failure, national readmission database, readmission outcomes
Procedia PDF Downloads 798747 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 2628746 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 3488745 Identifying Physiological Markers That Are Sensitive to Cognitive Load in Preschoolers
Authors: Priyashri Kamlesh Sridhar, Suranga Nanayakkara
Abstract:
Current frameworks in assessment follow lesson delivery and rely heavily on test performance or teacher’s observations. This, however, neglects the underlying cognitive load during the learning process. Identifying the pivotal points when the load occurs helps design effective pedagogies and tools that respond to learners’ cognitive state. There has been limited research on quantifying cognitive load in preschoolers, real-time. In this study, we recorded electrodermal activity and heart rate variability (HRV) from 10 kindergarteners performing executive function tasks and Johnson Woodcock test of cognitive abilities. Preliminary findings suggest that there are indeed sensitive task-dependent markers in skin conductance (number of SCRs and average amplitude of SCRs) and HRV (mean heart rate and low frequency component) captured during the learning process.Keywords: early childhood, learning, methodologies, pedagogies
Procedia PDF Downloads 3208744 Characteristics of Children Heart Rhythm Regulation with Acute Respiratory Diseases
Authors: D. F. Zeynalov, T. V. Kartseva, O. V. Sorokin
Abstract:
Currently, approaches to assess cardiointervalography are based on the calculation of data variance intervals RR. However, they do not allow the evaluation of features related to a period of the cardiac cycle, so how electromechanical phenomena during cardiac subphase are characterized by differently directed changes. Therefore, we have proposed a method of subphase analysis of the cardiac cycle, developed in the department of hominal physiology Novosibirsk State Medical University to identify the features of the dispersion subphase of the cardiac cycle. In the present paper we have examined the 5-minute intervals cardiointervalography (CIG) to isolate RR-, QT-, ST-ranges in healthy children and children with acute respiratory diseases (ARD) in comparison. It is known that primary school-aged children suffer at ARD 5-7 times per year. Consequently, it is one of the most relevant problems in pediatrics. It is known that the spectral indices and indices of temporal analysis of heart rate variability are highly sensitive to the degree of intoxication during immunological process. We believe that the use of subphase analysis of heart rate will allow more thoroughly evaluate responsiveness of the child organism during the course of ARD. The study involved 60 primary school-aged children (30 boys and 30 girls). In order to assess heart rhythm regulation, the record CIG was used on the "VNS-Micro" device of Neurosoft Company (Ivanovo) for 5 minutes in the supine position and 5 minutes during active orthostatic test. Subphase analysis of variance QT-interval and ST-segment was performed on the "KardioBOS" software Biokvant Company (Novosibirsk). In assessing the CIG in the supine position and in during orthostasis of children with acute respiratory diseases only RR-intervals are observed typical trend of general biological reactions through pressosensitive compensation mechanisms to lower blood pressure, but compared with healthy children the severity of the changes is different, of sick children are more pronounced indicators of heart rate regulation. But analysis CIG RR-intervals and analysis subphase ST-segment have yielded conflicting trends, which may be explained by the different nature of the intra- and extracardiac influences on regulatory mechanisms that implement the various phases of the cardiac cycle.Keywords: acute respiratory diseases, cardiointervalography, subphase analysis, cardiac cycle
Procedia PDF Downloads 2758743 Heart Failure Identification and Progression by Classifying Cardiac Patients
Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan
Abstract:
Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.Keywords: decision tree, heart failure, data mining, classification model
Procedia PDF Downloads 4028742 Vagal Nerve Stimulator as a Treatment Approach in CHARGE Syndrome: A Case Report
Authors: Roya Vakili, Lekaa Elhajjmoussa, Barzin Omidi-Shal, Kim Blake
Abstract:
Objective: The purpose of this case report is to highlight the successful treatment of a patient with Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness, (CHARGE syndrome) using a vagal nerve stimulator (VNS). Background: This is the first documented case report, to the authors' best knowledge, for a patient with CHARGE syndrome, epilepsy, autism, and postural orthostatic tachycardia syndrome (POTS) that was successfully treated with an implanted VNS therapeutic device. Methodology: The study is a case report. Results: This is the case of a 24-year-old female patient with CHARGE syndrome (non-random association of anomalies Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness) and several other comorbidities including refractory epilepsy, Patent Ductus Arteriosus (PDA) and POTS who had significant improvement of her symptoms after VNS implantation. She was a VNS candidate given her longstanding history of drug-resistant epilepsy and current disposition secondary to CHARGE syndrome. Prior to VNS implantation, she experienced three generalized seizures a year and daily POTS-related symptoms. She was having frequent lightheadedness and syncope spells due to a rapid heart rate and low blood pressure. The VNS device was set to detect a rapid heart rate and send appropriate stimulation anytime the heart rate exceeded 20% of the patient’s normal baseline. The VNS device demonstrated frequent elevated heart rates and concurrent VNS release every 8 minutes in addition to the programmed events. Following VNS installation, the patient became more active, alert, and communicative and was able to verbally communicate with words she was unable to say prior. Her GI symptoms also improved, as she was able to tolerate food better orally in addition to her G and J tube, likely another result of the vagal nerve stimulation. Additionally, the patient’s seizures and POTS-related cardiac events appeared to be well controlled. She had prolonged electroencephalogram (EEG) testing, showing no significant change in epileptiform activity. Improvements in the patient’s disposition are believed to be secondary to parasympathetic stimulation, adequate heart rate control, and GI stimulation, in addition to behavioral changes and other benefits via her implanted VNS. Conclusion: VNS showed promising results in improving the patient's quality of life and managing her diverse symptoms, including dysautonomia, POTs, gastrointestinal mobility, cognitive functioning as well seizure control.Keywords: autism, POTs, CHARGE, VNS
Procedia PDF Downloads 858741 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker
Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro
Abstract:
Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor
Procedia PDF Downloads 2568740 An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State
Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing
Abstract:
Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch
Procedia PDF Downloads 167