Search results for: electroless deposition process
15792 Droplet Entrainment and Deposition in Horizontal Stratified Two-Phase Flow
Authors: Joshua Kim Schimpf, Kyun Doo Kim, Jaseok Heo
Abstract:
In this study, the droplet behavior of under horizontal stratified flow regime for air and water flow in horizontal pipe experiments from a 0.24 m, 0.095 m, and 0.0486 m size diameter pipe are examined. The effects of gravity, pipe diameter, and turbulent diffusion on droplet deposition are considered. Models for droplet entrainment and deposition are proposed that considers developing length. Validation for experimental data dedicated from the REGARD, CEA and Williams, University of Illinois, experiment were performed using SPACE (Safety and Performance Analysis Code for Nuclear Power Plants).Keywords: droplet, entrainment, deposition, horizontal
Procedia PDF Downloads 37715791 Characteristics of the Particle Size Distribution and Exposure Concentrations of Nanoparticles Generated from the Laser Metal Deposition Process
Authors: Yu-Hsuan Liu, Ying-Fang Wang
Abstract:
The objectives of the present study are to characterize nanoparticles generated from the laser metal deposition (LMD) process and to estimate particle concentrations deposited in the head (H), that the tracheobronchial (TB) and alveolar (A) regions, respectively. The studied LMD chamber (3.6m × 3.8m × 2.9m) is installed with a robot laser metal deposition machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling inside the chamber for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L / min, respectively. The resultant size distributions were used to predict depositions of nanoparticles at the H, TB, and A regions of the respiratory tract using the UK National Radiological Protection Board’s (NRPB’s) LUDEP Software. Result that the number concentrations of nanoparticles in indoor background and LMD chamber were 4.8×10³ and 4.3×10⁵ # / cm³, respectively. However, the nanoparticles emitted from the LMD process was in the form of the uni-modal with number median diameter (NMD) and geometric standard deviation (GSD) as 142nm and 1.86, respectively. The fractions of the nanoparticles deposited on the alveolar region (A: 69.8%) were higher than the other two regions of the head region (H: 10.9%), tracheobronchial region (TB: 19.3%). This study conducted static sampling to measure the nanoparticles in the LMD process, and the results show that the fraction of particles deposited on the A region was higher than the other two regions. Therefore, applying the characteristics of nanoparticles emitted from LMD process could be provided valuable scientific-based evidence for exposure assessments in the future.Keywords: exposure assessment, laser metal deposition process, nanoparticle, respiratory region
Procedia PDF Downloads 28415790 Preparation of n-type Bi2Te3 Films by Electrophoretic Deposition
Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya
Abstract:
A high quality crack-free film of Bi2Te3 material has been deposited for the first time using electrophoretic deposition (EPD) and microstructures of various films have been investigated. One of the most important thermoelectric (TE) applications is Bi2Te3 to manufacture TE generators (TEG) which can convert waste heat into electricity targeting the global warming issue. However, the high cost of the manufacturing process of TEGs keeps them expensive and out of reach for commercialization. Therefore, utilizing EPD as a simple and cost-effective method will open new opportunities for TEG’s commercialization. This method has been recently used for advanced materials such as microelectronics and has attracted a lot of attention from both scientists and industry. In this study, the effect of media of suspensions has been investigated on the quality of the deposited films as well as their microstructure. In summary, finding an appropriate suspension is a critical step for a successful EPD process and has an important effect on both the film’s quality and its future properties.Keywords: Bi2Te3, electrical conductivity, electrophoretic deposition, thermoelectric materials, thick films
Procedia PDF Downloads 25315789 Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition
Authors: Siri Marthe Arbo, Afaf Saai, Sture Sørli, Mette Nedreberg
Abstract:
This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels.Keywords: duplex stainless steel, laser metal deposition, process optimization, microstructure, mechanical properties
Procedia PDF Downloads 21815788 Fabrication of Wearable Antennas through Thermal Deposition
Authors: Jeff Letcher, Dennis Tierney, Haider Raad
Abstract:
Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.Keywords: thermal deposition, wearable antennas, bluetooth technology, flexible electronics
Procedia PDF Downloads 28215787 Surface Functionalization of Chemical Vapor Deposition Grown Graphene Film
Authors: Prashanta Dhoj Adhikari
Abstract:
We report the introduction of the active surface functionalization group on chemical vapor deposition (CVD) grown graphene film by wet deposition method. The activity of surface functionalized group was tested with surface modified carbon nanotubes (CNTs) and found that both materials were amalgamated by chemical bonding. The introduction of functional group on the graphene film surface and its vigorous role to bind CNTs with the present technique could provide an efficient, novel route to device fabrication.Keywords: chemical vapor deposition, graphene film, surface functionalization
Procedia PDF Downloads 46115786 Evaluation of the Environmental Risk from the Co-Deposition of Waste Rock Material and Fly Ash
Authors: A. Mavrikos, N. Petsas, E. Kaltsi, D. Kaliampakos
Abstract:
The lignite-fired power plants in the Western Macedonia Lignite Center produce more than 8 106 t of fly ash per year. Approximately 90% of this quantity is used for restoration-reclamation of exhausted open-cast lignite mines and slope stabilization of the overburden. The purpose of this work is to evaluate the environmental behavior of the mixture of waste rock and fly ash that is being used in the external deposition site of the South Field lignite mine. For this reason, a borehole was made within the site and 86 samples were taken and subjected to chemical analyses and leaching tests. The results showed very limited leaching of trace elements and heavy metals from this mixture. Moreover, when compared to the limit values set for waste acceptable in inert waste landfills, only few excesses were observed, indicating only minor risk for groundwater pollution. However, due to the complexity of both the leaching process and the contaminant pathway, more boreholes and analyses should be made in nearby locations and a systematic groundwater monitoring program should be implemented both downstream and within the external deposition site.Keywords: co-deposition, fly ash, leaching tests, lignite, waste rock
Procedia PDF Downloads 23815785 Elaboration and Characterization of CdxZn1-XS Thin Films Deposed by Chemical Bath Deposition
Authors: Zellagui Rahima, Chaumont Denis, Boughelout Abderrahman, Adnane Mohamed
Abstract:
Thin films of CdxZn1-xS were deposed by chemical bath deposition on glass substrates for photovoltaic applications. The thin films CdZnS were synthesized by chemical bath (CBD) with different deposition protocols for optimized the parameter of deposition as the temperature, time of deposition, concentrations of ion and pH. Surface morphology, optical and chemical composition properties of thin film CdZnS were investigated by SEM, EDAX, spectrophotometer. The transmittance is 80% in visible region 300 nm – 1000 nm; it has been observed in that films the grain size is between 50nm and 100nm measured by SEM image and we also note that the shape of particle is changing with the change in concentration. This result favors of application these films in solar cells; the chemical analysis with EDAX gives information about the presence of Cd, Zn and S elements and investigates the stoichiometry.Keywords: thin film, solar cells, transmition, cdzns
Procedia PDF Downloads 26015784 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition
Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla
Abstract:
This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.Keywords: characterization, DLC, mechanical properties, pulsed laser deposition
Procedia PDF Downloads 15315783 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock
Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,
Abstract:
Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure
Procedia PDF Downloads 41015782 Evaluation of the Impact of Green Infrastructure on Dispersion and Deposition of Particulate Matter in Near-Roadway Areas
Authors: Deeksha Chauhan, Kamal Jain
Abstract:
Pollutant concentration is high in near-road environments, and vegetation is an effective measure to mitigate urban air quality problems. This paper presents the influence of roadside green infrastructure in dispersion and Deposition of Particulate matter (PM) by the ENVI-met Simulations. Six green infrastructure configurations were specified (i) hedges only, (ii) trees only, (iii) a mix of trees and shrubs (iv) green barrier (v) green wall, and (vi) no tree buffer were placed on both sides of the road. The changes in concentrations at all six scenarios were estimated to identify the best barrier to reduce the dispersion and deposition of PM10 and PM2.5 in an urban environment.Keywords: barrier, concentration, dispersion, deposition, Particulate matter, pollutant
Procedia PDF Downloads 14415781 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology
Authors: Anjian Chen, Joseph C. Chen
Abstract:
This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.Keywords: additive manufacturing, fused deposition modeling, surface roughness, six-sigma, Taguchi method, 3D printing
Procedia PDF Downloads 39215780 Study of Fork Marks on Sapphire Wafers in Plasma Enhanced Chemical Vapor Deposition Tool
Authors: Qiao Pei Wen, Ng Seng Lee, Sae Tae Veera, Chiu Ah Fong, Loke Weng Onn
Abstract:
Thin film thickness uniformity is crucial to get consistent film etch rate and device yield across the wafer. In the capacitive-coupled parallel plate PECVD system; the film thickness uniformity can be affected by many factors such as the heater temperature uniformity, the spacing between top and bottom electrode, RF power, pressure, gas flows and etc. In this paper, we studied how the PECVD SiN film thickness uniformity is affected by the substrate electrical conductivity and the RF power coupling efficiency. PECVD SiN film was deposited on 150-mm sapphire wafers in 200-mm Lam Sequel tool, fork marks were observed on the wafers. On the fork marks area SiN film thickness is thinner than that on the non-fork area. The forks are the wafer handler inside the process chamber to move the wafers from one station to another. The sapphire wafers and the ceramic forks both are insulator. The high resistivity of the sapphire wafers and the forks inhibits the RF power coupling efficiency during PECVD deposition, thereby reducing the deposition rate. Comparing between the high frequency and low frequency RF power (HFRF and LFRF respectively), the LFRF power coupling effect on the sapphire wafers is more dominant than the HFRF power on the film thickness. This paper demonstrated that the SiN thickness uniformity on sapphire wafers can be improved by depositing a thin TiW layer on the wafer before the SiN deposition. The TiW layer can be on the wafer surface, bottom or any layer before SiN deposition.Keywords: PECVD SiN deposition, sapphire wafer, substrate electrical conductivity, RF power coupling, high frequency RF power, low frequency RF power, film deposition rate, thickness uniformity
Procedia PDF Downloads 37615779 Adsorption-desorption Behavior of Weak Polyelectrolytes Deposition on Aminolyzed-PLA Non-woven
Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari
Abstract:
In this study, the adsorption-desorption behavior of poly(amidoamine) (PAMAM) as a polycation and poly (acrylic acid) (PAA) as a polyanion deposited on aminolyzed-PLA nonwoven through layer-by-layer technique (lbl) was studied. The adsorption-desorption behavior was monitored by UV adsorbance spectroscopy and turbidity tests of the waste polyelectrolytes after each deposition. Also, the drying between each deposition step was performed to study the effect of drying on adsorption-desorption behavior. According to UV adsorbance spectroscopy of the waste polyelectrolyte after each deposition, it was revealed that drying has a great effect on the deposition behavior of the next layer. Regarding the deposition of the second layer, drying caused more desorption and removal of the previously deposited layer since the turbidity and the absorbance of the waste increased in comparison to pure polyelectrolyte. To deposit the third layer, the same scenario occurred and drying caused more removal of the previously deposited layer. However, the deposition of the fourth layer drying after the deposition of the third layer did not affect the adsorption-desorption behavior. Since the adsorbance and turbidity of the samples that were dried and those that were not dried were the same. As a result, it seemed that deposition of the fourth layer could be the starting point where lbl reached its constant state. The decrease in adsorbance and remaining turbidity of the waste same as a pure polyelectrolyte can indicate that most portion of the polyelectrolyte was adsorbed onto the substrate rather than complex formation in the bath as the subsequence of the previous layer removal.Keywords: Adsorption-desorption behavior, lbl technique, poly(amidoamine), poly (acrylic acid), weak polyelectrolytes
Procedia PDF Downloads 5315778 Electrospray Deposition Technique of Dye Molecules in the Vacuum
Authors: Nouf Alharbi
Abstract:
The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process.Keywords: charge, deposition, electrospray, image, ions, molecules, SIMION
Procedia PDF Downloads 13315777 Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition
Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram
Abstract:
In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.Keywords: charge carrier diffusion lengths, Methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition
Procedia PDF Downloads 45915776 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade
Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi
Abstract:
Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.Keywords: deposition, experiment, film cooling, leading edge, paraffin particles
Procedia PDF Downloads 14615775 Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-Uv and E-Beam Irradiation
Authors: Tsutomu Iwayama, Takayuki Hama
Abstract:
Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.Keywords: Ion implantation, photoluminescence, pulsed laser deposition, rapid thermal anneal, Si nanocrystals
Procedia PDF Downloads 32715774 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications
Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya
Abstract:
Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films
Procedia PDF Downloads 16615773 Hardness Properties of 3D Printed PLA Parts by Fused Deposition Modeling Process
Authors: Anis A. Ansari, M. Kamil
Abstract:
The development of 3D printing technology has allowed the manufacturing industry to create parts with a high degree of automation, increased design freedom, and improved mechanical performance. Fused deposition modelling (FDM) is a 3D printing technique in which successive layers of thermoplastic polymer are deposited and controlled to create a three-dimensional product. In this study, process parameters such as nozzle temperature and printing speed were chosen to investigate their effects on hardness properties. 3D printed specimens were fabricated by an FDM 3D printer from Polylactic acid (PLA) polymer. After analysis, it was observed that the hardness property is much influenced by print speed and nozzle temperature parameters. Maximum hardness was achieved at higher print speed which indicates that the Shore D hardness is directly proportional to the print speed. Moreover, at higher print speed, it has no significant dependence on the nozzle temperature. Hardness is also influenced by nozzle temperature, though to a lesser extent. The hardness slightly lowers when the nozzle temperature is raised from 190 to 210 oC, but due to improved bonding between each raster, a further rise in temperature increases the hardness property.Keywords: 3D printing, fused deposition modeling (FDM), polylactic acid (PLA), print speed, nozzle temperature, hardness property
Procedia PDF Downloads 9615772 Chemical Bath Deposition Technique of CdS Used in Closed Space Sublimation of CdTe Solar Cell
Authors: Z. Mahmood, F. U. Babar, S. Naz, H. U. Rehman
Abstract:
Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Ellipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here). The efficiency came out to be approximately 16.5 % and the CIGS (copper-indium–gallium-selenide) maximum efficiency is 20 %. The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).Keywords: Chemical Bath Deposition Technique (CBD), cadmium sulphide (CdS), CdTe, CSS (Closed Space Sublimation)
Procedia PDF Downloads 36415771 Quantification of Size Segregated Particulate Matter Deposition in Human Respiratory Tract and Health Risk to Residents of Glass City
Authors: Kalpana Rajouriya, Ajay Taneja
Abstract:
The objective of the present study is to investigate the regional and lobar deposition of size-segregated PM in respiratory tract of human body. PM in different fractions is monitored using the Grimm portable environmental dust monitor during winter season in Firozabad; a Glass city of India. PM10 concentration (200.817g/m³) was 4.46 and 2.0 times higher than the limits prescribed by WHO (45g/m⁻³) and NAAQS (100g/m⁻³) government agencies. PM2.5 concentration (83.538 g/m3) was 5.56 and 1.39 times higher from WHO (15g/m-3) and NAAQS (60g/m⁻³) limits. Results inferred that PM10 and PM2.5 was highest deposited in head region (0.3477-0.5622 & 0.366-0.4704) followed by pulmonary region, especially in the 9-21year old persons. The variation in deposition percentage in our study is mainly due to the airway geometry, PM size, and its deposition mechanisms. The coarse fraction, due to its large size, cannot follow the airway path and mostly gets deposited by inertial impaction in the head region and its bifurcations. The present study results inferred that Coarse and fine PM deposition was highly visualized in 9 (8.45610⁻⁴ g, 2.91110⁻⁴g) year and 3 (1.49610⁻⁴ g, 8.59310⁻⁵g) month age category. So, the 9year children and 3month infants category have high level of health risk.Keywords: particulate matter, MPPD model, regional deposition, lobar deposition, health risk
Procedia PDF Downloads 6115770 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition
Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang
Abstract:
Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model
Procedia PDF Downloads 10915769 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures
Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi
Abstract:
Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO
Procedia PDF Downloads 28915768 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition
Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos
Abstract:
Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region
Procedia PDF Downloads 20315767 Template-Assisted Synthesis of IrO2 Nanopores Membrane Electrode Assembly
Authors: Zhuo-Xin Lu, Yan Shi, Chang-Feng Yan, Ying Huang, Yuan Gan, Zhi-Da Wang
Abstract:
With TiO2 nanotube arrays (TNTA) as template, a IrO2 nanopores membrane electrode assembly (MEA) was synthesized by a novel depositi-assemble-etch strategy. By analysing the morphology of IrO2/TNTA and cyclic voltammetry (CV) curve at different deposition cycles, we proposed a reasonable scheme for the process of IrO2 electrodeposition on TNTA. The current density of IrO2/TNTA at 1.5V vs RHE reaches 5.12mA/cm2 after 55 cycles deposition, which shows promising performance for its high OER activity after template removal.Keywords: electrodeposition, IrO2 nanopores, MEA, OER
Procedia PDF Downloads 44615766 A Review of Fused Deposition Modeling Process: Parameter Optimization, Materials and Design
Authors: Elisaveta Doncheva, Jelena Djokikj, Ognen Tuteski, Bojana Hadjieva
Abstract:
In the past decade, additive manufacturing technology or 3D printing has been promoted as an efficient method for fabricating hybrid composite materials and structures with superior mechanical properties and complex shape and geometry. Fused deposition modeling (FDM) process is commonly used additive manufacturing technique for production of polymer products. Therefore, many studies and experiments are focused on investigating the possibilities for improving the obtained results on product properties as a key factor for expanding the spectrum of their application. This article provides an extensive review on recent research advances in FDM and reports on studies that cover the effects of process parameters, material, and design of the product properties. The paper conclusions provide a clear up-to date information for optimum efficiency and enhancement of the mechanical properties of 3D printed samples and recommends further research work and investigations.Keywords: additive manufacturing, critical parameters, filament, print orientation, 3D printing
Procedia PDF Downloads 19315765 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition
Authors: F. Laatar, S. Ktifa, H. Ezzaouia
Abstract:
Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties
Procedia PDF Downloads 37715764 Studies on Physico-Chemical Properties of Indium Sulfide Films Deposited under Different Deposition Conditions by Chemical Bath Deposition
Authors: S. B. Bansode, V. G. Wagh, R. S. Kapadnis, S. S. Kale, M. Pathan Habib
Abstract:
Indium sulfide films have been deposited using chemical bath deposition onto glass and indium tin oxide coated glass substrates. The influences of different deposition parameters viz. substrate and pH have been studied. The films were characterized by different techniques with respect to their crystal structure, surface morphology and compositional property by means of X-ray diffraction, scanning electron microscopy, Energy dispersive spectroscopy and optical absorption. X-ray diffraction studies revealed that amorphous nature of the films. The scanning electron microscopy of as deposited indium sulfide film on ITO coated glass substrate shows random orientation of grains where as those on glass substrates show dumbbell shape. Optical absorption study revealed that band gap varies from 2.29 to 2.79 eV for the deposited film.Keywords: chemical bath deposition, optical properties, structural property, Indium sulfide
Procedia PDF Downloads 47815763 Fabrication of Profile-Coated Rhodium X-Ray Focusing Mirror
Authors: Bing Shi, Raymond A. Conley, Jun Qian, Xianbo Shi, Steve Heald, Lahsen Assoufid
Abstract:
A pair of Kirkpatrick-Baez (KB) mirrors were designed and fabricated for experiments within a hard x-ray energy range lower than 20 kev at beamline 20-ID in a synchrotron radiation facility, Advanced Photon Source (APS). The KB mirrors were deposited with Rhodium thin films using a customized designed and self-built magnetron sputtering system. The purpose of these mirrors is to focus the x-ray beam down to 1 micron. This is the first pair of Rhodium-coated KB mirrors with elliptical shape that was fabricated using the profile coating technique. The profile coating technique is to coat the substrate with designed shape using masks during the deposition. The mirrors were equipped at the beamline and achieved the designed focusing requirement. The details of the mirror design, the fabrication process, and the customized magnetron sputtering deposition system will be discussed.Keywords: magnetron-sputtering deposition, focusing optics, x-ray, rhodium thin film
Procedia PDF Downloads 374