Search results for: CT aorta scans
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 244

Search results for: CT aorta scans

214 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans

Authors: Rene Hellmuth

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.

Keywords: building information modeling, digital factory model, factory planning, restructuring

Procedia PDF Downloads 111
213 Contribution of mTOR to Oxidative/Nitrosative Stress via NADPH Oxidase System Activation in Zymosan-Induced Systemic Inflammation in Rats

Authors: Seyhan Sahan-Firat, Meryem Temiz-Resitoglu, Demet Sinem Guden, Sefika Pinar Kucukkavruk, Bahar Tunctan, Ayse Nihal Sari, Zumrut Kocak

Abstract:

We hypothesized that mTOR inhibition may prevent the multiple organ failures following severe multiple tissue injury associated with increased NADPH oxidase system activity occur in zymosan-induced systemic inflammation. Therefore, we investigated the role of mTOR in oxidative/nitrosative stress associated with increase in NADPH oxidase activity in zymosan-induced systemic inflammation model in rats. Male Wistar rats received saline (4 ml/kg, i.p.) and zymosan (500 mg/kg, i.p.) at time 0. Saline, or zymosan-treated rats were given rapamycin (1 mg/kg, i.p.) 1 h after saline or zymosan injections. Rats were sacrified 4 h after zymosan challenge and kidney, heart, thoracic aorta, and superior mesenteric artery were collected. NADPH oxidase activity, p22phox, gp91phox, and p47phox protein expression and nitrotyrosine levels were measured in tissue samples. Zymosan administration caused an increase in NADPH oxidase activity, p22phox, gp91phox, and p47phox protein expression and nitrotyrosine levels in kidney, heart, thoracic aorta, and superior mesenteric artery. These changes caused by zymosan reversed by rapamycin, a selective mTOR inhibitor. Rapamycin alone had no effect on the parameters measured. Our results demonstrated that zymosan-induced oxidative/nitrosative stress presumably due to enhanced activity of NADPH oxidase, expression of p22phox, gp91phox, and p47phox and production of peroxynitrite were mediated by mTOR. [This work was financially supported by Research Foundation of Mersin University (2016-2-AP3-1900)].

Keywords: oxidative stress, mTOR, nitrosative stress, zymosan

Procedia PDF Downloads 313
212 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation

Authors: Djallel Bouamama, Yasser R. Haddadi

Abstract:

Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.

Keywords: brain tumor classification, image segmentation, CNN, U-NET

Procedia PDF Downloads 27
211 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 85
210 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter

Procedia PDF Downloads 144
209 Effect of Helical Flow on Separation Delay in the Aortic Arch for Different Mechanical Heart Valve Prostheses by Time-Resolved Particle Image Velocimetry

Authors: Qianhui Li, Christoph H. Bruecker

Abstract:

Atherosclerotic plaques are typically found where flow separation and variations of shear stress occur. Although helical flow patterns and flow separations have been recorded in the aorta, their relation has not been clearly clarified and especially in the condition of artificial heart valve prostheses. Therefore, an experimental study is performed to investigate the hemodynamic performance of different mechanical heart valves (MHVs), i.e. the SJM Regent bileaflet mechanical heart valve (BMHV) and the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV), in a transparent model of the human aorta under a physiological pulsatile right-hand helical flow condition. A typical systolic flow profile is applied in the pulse-duplicator to generate a physiological pulsatile flow which thereafter flows past an axial turbine blade structure to imitate the right-hand helical flow induced in the left ventricle. High-speed particle image velocimetry (PIV) measurements are used to map the flow evolution. A circular open orifice nozzle inserted in the valve plane as the reference configuration initially replaces the valve under investigation to understand the hemodynamic effects of the entered helical flow structure on the flow evolution in the aortic arch. Flow field analysis of the open orifice nozzle configuration illuminates the helical flow effectively delays the flow separation at the inner radius wall of the aortic arch. The comparison of the flow evolution for different MHVs shows that the BMHV works like a flow straightener which re-configures the helical flow pattern into three parallel jets (two side-orifice jets and the central orifice jet) while the TMHV preserves the helical flow structure and therefore prevent the flow separation at the inner radius wall of the aortic arch. Therefore the TMHV is of better hemodynamic performance and reduces the pressure loss.

Keywords: flow separation, helical aortic flow, mechanical heart valve, particle image velocimetry

Procedia PDF Downloads 173
208 Atherosclerosis Prevalence Within Populations of the Southeastern United States

Authors: Samuel P. Prahlow, Anthony Sciuva, Katherine Bombly, Emily Wilson, Shiv Dhiman, Savita Arya

Abstract:

A prevalence cohort study of atherosclerotic lesions within cadavers was performed to better understand and characterize the prevalence of atherosclerosis among Georgia residents within body donors in the Philadelphia College of Osteopathic Medicine (PCOM) - Georgia body donor program. We procured specimens from cadavers used for medical students, physical therapy students, and biomedical science students cadaveric anatomical dissection at PCOM - South Georgia and PCOM - Georgia. Tissues were prepared using hematoxylin and eosin (H&E) stainas histological slides by Colquitt Regional Medical Center Laboratory Services. One section from each of the following arteries was taken after cadaveric dissection at the site of most calcification palpated grossly (if present): left anterior descending coronary artery, left internal carotid artery, abdominal aorta, splenic artery, and hepatic artery. All specimens were graded and categorized according to the American Heart Association’s Modified and Conventional Standards for Atherosclerotic Lesions using x4, x10, x40 microscopic magnification. Our study cohort included 22 cadavers, with 16 females and 6 males. The average age was 72.54, and the median age was 72, with a range of 52 to 90 years old. The cause of death determination listing vascular and/or cardiovascular causes was present on 6 of the 22 death certificates. 19 of 22 (86%) cadavers had at least a single artery grading > 5. Of the cadavers with at least a single artery graded at greater than 5, only 5 of 19 (26%) cadavers had a vascular or cardiovascular cause of death reported. Malignancy was listed as a cause of death on 7 (32%) death certificates. The average atherosclerosis grading of the common hepatic, splenic and left internal carotid arteries (2.15, 3.05, and 3.36 respectively) were lower than the left anterior descending artery and the abdominal aorta (5.16 and 5.86 respectively). This prevalence study characterizes atherosclerosis found in five medium and large systemic arteries within cadavers from the state of Georgia.

Keywords: pathology, atherosclerosis, histology, cardiovascular

Procedia PDF Downloads 214
207 Role of DatScan in the Diagnosis of Parkinson's Disease

Authors: Shraddha Gopal, Jayam Lazarus

Abstract:

Aims: To study the referral practice and impact of DAT-scan in the diagnosis or exclusion of Parkinson’s disease. Settings and Designs: A retrospective study Materials and methods: A retrospective study of the results of 60 patients who were referred for a DAT scan over a period of 2 years from the Department of Neurology at Northern Lincolnshire and Goole NHS trust. The reason for DAT scan referral was noted under 5 categories against Parkinson’s disease; drug-induced Parkinson’s, essential tremors, diagnostic dilemma, not responding to Parkinson’s treatment, and others. We assessed the number of patients who were diagnosed with Parkinson’s disease against the number of patients in whom Parkinson’s disease was excluded or an alternative diagnosis was made. Statistical methods: Microsoft Excel was used for data collection and statistical analysis, Results: 30 of the 60 scans were performed to confirm the diagnosis of early Parkinson’s disease, 13 were done to differentiate essential tremors from Parkinsonism, 6 were performed to exclude drug-induced Parkinsonism, 5 were done to look for alternative diagnosis as the patients were not responding to anti-Parkinson medication and 6 indications were outside the recommended guidelines. 55% of cases were confirmed with a diagnosis of Parkinson’s disease. 43.33% had Parkinson’s disease excluded. 33 of the 60 scans showed bilateral abnormalities and confirmed the clinical diagnosis of Parkinson’s disease. Conclusion: DAT scan provides valuable information in confirming Parkinson’s disease in 55% of patients along with excluding the diagnosis in 43.33% of patients aiding an alternative diagnosis.

Keywords: DATSCAN, Parkinson's disease, diagnosis, essential tremors

Procedia PDF Downloads 230
206 Dialysis Rehabilitation and Muscle Hypertrophy

Authors: Itsuo Yokoyama, Rika Kikuti, Naoko Watabe

Abstract:

Introduction: It has been known that chronic kidney disease (CKD) patients can benefit from physical exercise during dialysis therapy improving aerobic capacity, muscle function, cardiovascular function, and overall health-related quality of life. This study aimed to evaluate the effectiveness of dialysis rehabilitation. Materials and Methods: A total of 55 patients underwent two-hour resistance exercise training during each hemodialysis session for three consecutive months. Various routine clinical data were collected, including the calculation of the planar dimension of the muscle area in both upper legs at the level of the ischial bone. This area calculation was possible in 26 patients who had yearly plain abdominal computed tomography (CT) scans. DICOM files from the CT scans were used with 3D Slicer software for area calculation. An age and sex-matched group of 26 patients without dialysis rehabilitation also had yearly CT scans during the study period for comparison. Clinical data were compared between the two groups: Group A (rehabilitation) and Group B (non-rehabilitation). Results: There were no differences in basic laboratory data between the two groups. The average muscle area before and after rehabilitation in Group A was 212 cm² and 216 cm², respectively. In Group B, the average areas were 230.0 cm² and 225.8 cm². While there was no significant difference in absolute values, the average percentage increase in muscle area was +1.2% (ranging from -7.6% to 6.54%) for Group A and -2.0% (ranging from -12.1% to 4.9%) for Group B, which was statistically significant. In Group A, 9 of 26 were diabetic (DM), and 13 of 26 in Group B were non-DM. The increase in muscle area for DM patients was 4.9% compared to -0.7% for non-DM patients, which was significantly different. There were no significant differences between the two groups in terms of nutritional assessment, Kt/V, or incidence of clinical complications such as cardiovascular events. Considerations: Dialysis rehabilitation has been reported to prevent muscle atrophy by increasing muscle fibers and capillaries. This study demonstrated that muscle volume increased after dialysis exercise, as evidenced by the increased muscle area in the thighs. Notably, diabetic patients seemed to benefit more from dialysis exercise than non-diabetics. Although this study is preliminary due to its relatively small sample size, it suggests that intradialytic physical training may improve insulin utilization in muscle fiber cells, particularly in type II diabetic patients where insulin receptor function and signaling are altered. Further studies are needed to investigate the detailed mechanisms underlying the muscle hypertrophic effects of dialysis exercise.

Keywords: dialysis, excercise, muscle, hypertrophy, diabetes, insulin

Procedia PDF Downloads 16
205 Possibilities of Postmortem CT to Detection of Gas Accumulations in the Vessels of Dead Newborns with Congenital Sepsis

Authors: Uliana N. Tumanova, Viacheslav M. Lyapin, Vladimir G. Bychenko, Alexandr I. Shchegolev, Gennady T. Sukhikh

Abstract:

It is well known that the gas formed as a result of postmortem decomposition of tissues can be detected already 24-48 hours after death. In addition, the conditions of keeping and storage of the corpse (temperature and humidity of the environment) significantly determine the rate of occurrence and development of posthumous changes. The presence of sepsis is accompanied by faster postmortem decomposition and decay of the organs and tissues of the body. The presence of gas in the vessels and cavities can be revealed fully at postmortem CT. Radiologists must certainly report on the detection of intraorganic or intravascular gas, wich was detected at postmortem CT, to forensic experts or pathologists before the autopsy. This gas can not be detected during autopsy, but it can be very important for establishing a diagnosis. To explore the possibility of postmortem CT for the evaluation of gas accumulations in the newborns' vessels, who died from congenital sepsis. Researched of 44 newborns bodies (25 male and 19 female sex, at the age from 6 hours to 27 days) after 6 - 12 hours of death. The bodies were stored in the refrigerator at a temperature of +4°C in the supine position. Grouped 12 bodies of newborns that died from congenital sepsis. The control group consisted of 32 bodies of newborns that died without signs of sepsis. Postmortem CT examination was performed at the GEMINI TF TOF16 device, before the autopsy. The localizations of gas accumulations in the vessels were determined on the CT tomograms. The sepsis diagnosis was on the basis of clinical and laboratory data and autopsy results. Gases in the vessels were detected in 33.3% of cases in the group with sepsis, and in the control group - in 34.4%. A group with sepsis most often the gas localized in the heart and liver vessels - 50% each, of observations number with the detected gas in the vessels. In the heart cavities, aorta and mesenteric vessels - 25% each. In control most often gas was detected in the liver (63.6%) and abdominal cavity (54.5%) vessels. In 45.5% the gas localized in the cavities, and in 36.4% in the vessels of the heart. In the cerebral vessels and in the aorta gas was detected in 27.3% and 9.1%, respectively. Postmortem CT has high diagnostic capabilities to detect free gas in vessels. Postmortem changes in newborns that died from sepsis do not affect intravascular gas production within 6-12 hours. Radiation methods should be used as a supplement to the autopsy, including as a kind of ‘guide’, with the indication to the forensic medical expert of certain changes identified during CT studies, for better definition of pathological processes during the autopsy. Postmortem CT can be recommend as a first stage of autopsy.

Keywords: congenital sepsis, gas, newborn, postmortem CT

Procedia PDF Downloads 144
204 Hounsfield-Based Automatic Evaluation of Volumetric Breast Density on Radiotherapy CT-Scans

Authors: E. M. D. Akuoko, Eliana Vasquez Osorio, Marcel Van Herk, Marianne Aznar

Abstract:

Radiotherapy is an integral part of treatment for many patients with breast cancer. However, side effects can occur, e.g., fibrosis or erythema. If patients at higher risks of radiation-induced side effects could be identified before treatment, they could be given more individual information about the risks and benefits of radiotherapy. We hypothesize that breast density is correlated with the risk of side effects and present a novel method for automatic evaluation based on radiotherapy planning CT scans. Methods: 799 supine CT scans of breast radiotherapy patients were available from the REQUITE dataset. The methodology was first established in a subset of 114 patients (cohort 1) before being applied to the whole dataset (cohort 2). All patients were scanned in the supine position, with arms up, and the treated breast (ipsilateral) was identified. Manual experts contour available in 96 patients for both the ipsilateral and contralateral breast in cohort 1. Breast tissue was segmented using atlas-based automatic contouring software, ADMIRE® v3.4 (Elekta AB, Sweden). Once validated, the automatic segmentation method was applied to cohort 2. Breast density was then investigated by thresholding voxels within the contours, using Otsu threshold and pixel intensity ranges based on Hounsfield units (-200 to -100 for fatty tissue, and -99 to +100 for fibro-glandular tissue). Volumetric breast density (VBD) was defined as the volume of fibro-glandular tissue / (volume of fibro-glandular tissue + volume of fatty tissue). A sensitivity analysis was performed to verify whether calculated VBD was affected by the choice of breast contour. In addition, we investigated the correlation between volumetric breast density (VBD) and patient age and breast size. VBD values were compared between ipsilateral and contralateral breast contours. Results: Estimated VBD values were 0.40 (range 0.17-0.91) in cohort 1, and 0.43 (0.096-0.99) in cohort 2. We observed ipsilateral breasts to be denser than contralateral breasts. Breast density was negatively associated with breast volume (Spearman: R=-0.5, p-value < 2.2e-16) and age (Spearman: R=-0.24, p-value = 4.6e-10). Conclusion: VBD estimates could be obtained automatically on a large CT dataset. Patients’ age or breast volume may not be the only variables that explain breast density. Future work will focus on assessing the usefulness of VBD as a predictive variable for radiation-induced side effects.

Keywords: breast cancer, automatic image segmentation, radiotherapy, big data, breast density, medical imaging

Procedia PDF Downloads 131
203 Incidental Findings in the Maxillofacial Region Detected on Cone Beam Computed Tomography

Authors: Zeena Dcosta, Junaid Ahmed, Ceena Denny, Nandita Shenoy

Abstract:

In the field of dentistry, there are many conditions which warrant the requirement of three-dimensional imaging that can aid in diagnosis and therapeutic management. Cone beam computed tomography (CBCT) is considered highly accurate in producing a three-dimensional image of an object and provides a complete insight of various findings in the captured volume. But, most of the clinicians focus primarily on the teeth and jaws and numerous unanticipated clinically significant incidental findings may be missed out. Rapid integration of CBCT into the practice of dentistry has led to the detection of various incidental findings. However, the prevalence of these incidental findings is still unknown. Thus, the study aimed to discern the reason for referral and to identify incidental findings on the referred CBCT scans. Patient’s demographic data such as age and gender was noted. CBCT scans of multiple fields of views (FOV) were considered. The referral for CBCT scans was broadly classified into two major categories: diagnostic scan and treatment planning scan. Any finding on the CBCT volumes, other than the area of concern was recorded as incidental finding which was noted under airway, developmental, pathological, endodontics, TMJ, bone, soft tissue calcifications and others. Few of the incidental findings noted under airway were deviated nasal septum, nasal turbinate hypertrophy, mucosal thickening and pneumatization of sinus. Developmental incidental findings included dilaceration, impaction, pulp stone and gubernacular canal. Resorption of teeth and periapical pathologies were noted under pathological incidental findings. Root fracture along with over and under obturation was noted under endodontics. Incidental findings under TMJ were flattening, erosion and bifid condyle. Enostosis and exostosis were noted under bone lesions. Tonsillolth, sialolith and calcified styloid ligament were noted under soft tissue calcifications. Incidental findings under others included foreign body, fused C1- C2 vertebrae, nutrient canals, and pneumatocyst. Maxillofacial radiologists should be aware of possible incidental findings and should be vigilant about comprehensively evaluating the entire captured volume, which can help in early diagnosis of any potential pathologies that may go undetected. Interpretation of CBCT is truly an art and with the experience, we can unravel the secrets hidden in the grey shades of the radiographic image.

Keywords: cone beam computed tomography, incidental findings, maxillofacial region, radiologist

Procedia PDF Downloads 205
202 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 151
201 Developing a Virtual Reality System to Assist in Anatomy Teaching and Evaluating the Effectiveness of That System

Authors: Tarek Abdelkader, Suresh Selvaraj, Prasad Iyer, Yong Mun Hin, Hajmath Begum, P. Gopalakrishnakone

Abstract:

Nowadays, more and more educational institutes, as well as students, rely on 3D anatomy programs as an important tool that helps students correlate the actual locations of anatomical structures in a 3D dimension. Lately, virtual reality (VR) is gaining more favor from the younger generations due to its higher interactive mode. As a result, using virtual reality as a gamified learning platform for anatomy became the current goal. We present a model where a Virtual Human Anatomy Program (VHAP) was developed to assist with the anatomy learning experience of students. The anatomy module has been built, mostly, from real patient CT scans. Segmentation and surface rendering were used to create the 3D model by direct segmentation of CT scans for each organ individually and exporting that model as a 3D file. After acquiring the 3D files for all needed organs, all the files were introduced into a Virtual Reality environment as a complete body anatomy model. In this ongoing experiment, students from different Allied Health orientations are testing the VHAP. Specifically, the cardiovascular system has been selected as the focus system of study since all of our students finished learning about it in the 1st trimester. The initial results suggest that the VHAP system is adding value to the learning process of our students, encouraging them to get more involved and to ask more questions. Involved students comments show that they are excited about the VHAP system with comments about its interactivity as well as the ability to use it solo as a self-learning aid in combination with the lectures. Some students also experienced minor side effects like dizziness.

Keywords: 3D construction, health sciences, teaching pedagogy, virtual reality

Procedia PDF Downloads 154
200 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 66
199 Role of Radiologic Technologist Specialist in Plain Image Interpretation of Adults in the Middle East: A Radiologist’s Perspective

Authors: Awad Mohamed Elkhadir, Rajab M. Ben Yousef

Abstract:

Background/Aim: Radiological technologists are medical professionals who perform diagnostic imaging tests such as X-rays, magnetic resonance imaging (MRI) scans, and computer tomography (CT) scans. Despite the recognition of image interpretation by British radiologists, it is still considered a problem in the Arab world. This study evaluates the perceptions of radiologists in the Middle East concerning the plain image interpretation of adults by radiologic technologist specialists. Methods: This is a cross-sectional study that follows a quantitative approach. A close-ended questionnaire was distributed among 103 participants who were radiologists by profession from various hospitals in Saudi Arabia and Sudan. The gathered data was then analyzed through Statistical Package for Social Sciences (SPSS). Results: The results showed that 29% recognized the Radiologic Technologist Specialist (RTS) role of writing image reports, while 61% did not. A total of 38% of participants believed that RTS image interpretation would help diagnose unreported radiographs. 47% of the sample responded that the workload and stress on radiologists would reduce by allowing reporting for RTS, while 37% did not. Lastly, 43% believe that image interpretation by RTS can be introduced into the Middle East in the future. Conclusion: The study's findings reveal that the combination of image reporting and radiography improves the care of the patients. The study's outcomes also show that the burden of the medical practitioners reduces due to image reporting of the radiographers. Further researches need to be conducted in the Arab World to obtain and measure the associated factors of the desired criteria.

Keywords: Arab world, image interpretation, radiographer, radiologist, Saudi Arabia, Sudan

Procedia PDF Downloads 98
198 The Analysis of Personalized Low-Dose Computed Tomography Protocol Based on Cumulative Effective Radiation Dose and Cumulative Organ Dose for Patients with Breast Cancer with Regular Chest Computed Tomography Follow up

Authors: Okhee Woo

Abstract:

Purpose: The aim of this study is to evaluate 2-year cumulative effective radiation dose and cumulative organ dose on regular follow-up computed tomography (CT) scans in patients with breast cancer and to establish personalized low-dose CT protocol. Methods and Materials: A retrospective study was performed on the patients with breast cancer who were diagnosed and managed consistently on the basis of routine breast cancer follow-up protocol between 2012-01 and 2016-06. Based on ICRP (International Commission on Radiological Protection) 103, the cumulative effective radiation doses of each patient for 2-year follow-up were analyzed using the commercial radiation management software (Radimetrics, Bayer healthcare). The personalized effective doses on each organ were analyzed in detail by the software-providing Monte Carlo simulation. Results: A total of 3822 CT scans on 490 patients was evaluated (age: 52.32±10.69). The mean scan number for each patient was 7.8±4.54. Each patient was exposed 95.54±63.24 mSv of radiation for 2 years. The cumulative CT radiation dose was significantly higher in patients with lymph node metastasis (p = 0.00). The HER-2 positive patients were more exposed to radiation compared to estrogen or progesterone receptor positive patient (p = 0.00). There was no difference in the cumulative effective radiation dose with different age groups. Conclusion: To acknowledge how much radiation exposed to a patient is a starting point of management of radiation exposure for patients with long-term CT follow-up. The precise and personalized protocol, as well as iterative reconstruction, may reduce hazard from unnecessary radiation exposure.

Keywords: computed tomography, breast cancer, effective radiation dose, cumulative organ dose

Procedia PDF Downloads 195
197 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 79
196 Holographic Visualisation of 3D Point Clouds in Real-time Measurements: A Proof of Concept Study

Authors: Henrique Fernandes, Sofia Catalucci, Richard Leach, Kapil Sugand

Abstract:

Background: Holograms are 3D images formed by the interference of light beams from a laser or other coherent light source. Pepper’s ghost is a form of hologram conceptualised in the 18th century. This Holographic visualisation with metrology measuring techniques by displaying measurements taken in real-time in holographic form can assist in research and education. New structural designs such as the Plexiglass Stand and the Hologram Box can optimise the holographic experience. Method: The equipment used included: (i) Zeiss’s ATOS Core 300 optical coordinate measuring instrument that scanned real-world objects; (ii) Cloud Compare, open-source software used for point cloud processing; and (iii) Hologram Box, designed and manufactured during this research to provide the blackout environment needed to display 3D point clouds in real-time measurements in holographic format, in addition to a portability aspect to holograms. The equipment was tailored to realise the goal of displaying measurements in an innovative technique and to improve on conventional methods. Three test scans were completed before doing a holographic conversion. Results: The outcome was a precise recreation of the original object in the holographic form presented with dense point clouds and surface density features in a colour map. Conclusion: This work establishes a way to visualise data in a point cloud system. To our understanding, this is a work that has never been attempted. This achievement provides an advancement in holographic visualisation. The Hologram Box could be used as a feedback tool for measurement quality control and verification in future smart factories.

Keywords: holography, 3D scans, hologram box, metrology, point cloud

Procedia PDF Downloads 88
195 Contrast Enhanced Magnetic Resonance Angiography in Rats with Gadobenate Dimeglumine at 3T

Authors: Jao Jo-Chi, Chen Yen-Ku, Jaw Twei-Shiun, Chen Po-Chou

Abstract:

This study aimed to investigate the magnetic resonance (MR) signal enhancement ratio (ER) of contrast-enhanced MR angiography (CE-MRA) in normal rats with gadobenate dimeglumine (Gd-BOPTA) using a clinical 3T scanner and an extremity coil. The relaxivities of Gd-BOPTA with saline only and with 4.5 % human serum albumin (HSA) were also measured. Compared with Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), Gd-BOPTA had higher relaxivities. The maximum ER of Aorta (ERa), kidney, liver and muscle with Gd-BOPTA were higher than those with Gd-DTPA. The maximum ERa appeared at 1.2 min and decayed to half at 10 min after Gd-BOPTA injection. This information is helpful for the design of CE-MRA study of rats.

Keywords: contrast-enhanced magnetic resonance angiography, Gd-BOPTA, Gd-DTPA, rat

Procedia PDF Downloads 626
194 Intensive Care Unit Patient Self-Determination When Facing Cardiovascular Surgery for the First Time

Authors: Hsiao-Lin Fang

Abstract:

The Patient Self-Determination Act is based on the belief that each life is unique. The act regards each patient as an autonomous entity and explicitly protects the patient’s rights to know and make decisions and choices while ensuring that the patient’s wish for a peaceful end is granted. Even when the patient is unconscious and unable to express himself/herself, the patient’s self-determination and its exercise are still protected under the law. The act also ensures that healthcare professionals (HCPs) have a specific set of rules to follow and complete legal protection when their patients are unable to express themselves clearly. This report is about a 55-year-old female patient who weighed 110 kg and was diagnosed with acute type A aortic dissection. The case was that the patient suddenly felt backache and nausea during sleep before daybreak and was therefore transferred to this hospital from the original one. After the doctor explained the patient’s conditions, it was concluded that surgery was necessary. However, the patient’s family was immediately against the surgery after having heard its possible complications. Nevertheless, the patient was still willing to receive the surgery. Being at odds with her family, the patient decided to sign the surgery agreement herself and agreed to receive the two surgical procedures: (1) ascending aorta replacement and (2) innominate artery debranching. After the surgery, the patient did not regain consciousness and therefore received computed tomography scanning of the brain, which revealed false lumen involving proximal left common carotid artery, left subclavian artery and innominate artery, and severe compression of the true lumen with total/subtotal occlusion in the left common carotid artery. On the following day, the doctor discussed two further surgical procedures: (1) endografting for descending aorta and (2) endografting for left common carotid artery and subclavian artery with the family. However, as the patient’s postoperative recovery of consciousness only reached the level of stupor and her family had no intention of subsequent healthcare for the patient, the family made the joint decision three days later to have the endotracheal tube removed from the patient and let her die a natural death. Suggestion: An advance directive (AD) can be created beforehand. Once the patient is in a special clinical state (e.g., terminal illness, permanent vegetative state, etc.), the AD can determine whether to sustain the patient’s life through ‘medical intervention’ or to respect the patient’s rights to choose a peaceful end and receive palliative care. Through the expression of self-determination, it is possible to respect the patient’s medical practice autonomy and protect the patient’s dignity and right to a peaceful end, thereby respecting and supporting the patient’s decision. This also allows the three sides: the patient, the family and the medical team to understand the patient’s true wish in the process of advance care planning (ACP) and thereby promote harmony in the HCP-patient relationship.

Keywords: intensive care unit patient, cardiovascular surgery, self-determination, advance directive

Procedia PDF Downloads 175
193 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments

Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor

Abstract:

Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.

Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling

Procedia PDF Downloads 70
192 A Comparison of Convolutional Neural Network Architectures for the Classification of Alzheimer’s Disease Patients Using MRI Scans

Authors: Tomas Premoli, Sareh Rowlands

Abstract:

In this study, we investigate the impact of various convolutional neural network (CNN) architectures on the accuracy of diagnosing Alzheimer’s disease (AD) using patient MRI scans. Alzheimer’s disease is a debilitating neurodegenerative disorder that affects millions worldwide. Early, accurate, and non-invasive diagnostic methods are required for providing optimal care and symptom management. Deep learning techniques, particularly CNNs, have shown great promise in enhancing this diagnostic process. We aim to contribute to the ongoing research in this field by comparing the effectiveness of different CNN architectures and providing insights for future studies. Our methodology involved preprocessing MRI data, implementing multiple CNN architectures, and evaluating the performance of each model. We employed intensity normalization, linear registration, and skull stripping for our preprocessing. The selected architectures included VGG, ResNet, and DenseNet models, all implemented using the Keras library. We employed transfer learning and trained models from scratch to compare their effectiveness. Our findings demonstrated significant differences in performance among the tested architectures, with DenseNet201 achieving the highest accuracy of 86.4%. Transfer learning proved to be helpful in improving model performance. We also identified potential areas for future research, such as experimenting with other architectures, optimizing hyperparameters, and employing fine-tuning strategies. By providing a comprehensive analysis of the selected CNN architectures, we offer a solid foundation for future research in Alzheimer’s disease diagnosis using deep learning techniques. Our study highlights the potential of CNNs as a valuable diagnostic tool and emphasizes the importance of ongoing research to develop more accurate and effective models.

Keywords: Alzheimer’s disease, convolutional neural networks, deep learning, medical imaging, MRI

Procedia PDF Downloads 73
191 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 97
190 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 102
189 Diagnostic Yield of CT PA and Value of Pre Test Assessments in Predicting the Probability of Pulmonary Embolism

Authors: Shanza Akram, Sameen Toor, Heba Harb Abu Alkass, Zainab Abdulsalam Altaha, Sara Taha Abdulla, Saleem Imran

Abstract:

Acute pulmonary embolism (PE) is a common disease and can be fatal. The clinical presentation is variable and nonspecific, making accurate diagnosis difficult. Testing patients with suspected acute PE has increased dramatically. However, the overuse of some tests, particularly CT and D-dimer measurement, may not improve care while potentially leading to patient harm and unnecessary expense. CTPA is the investigation of choice for PE. Its easy availability, accuracy and ability to provide alternative diagnosis has lowered the threshold for performing it, resulting in its overuse. Guidelines have recommended the use of clinical pretest probability tools such as ‘Wells score’ to assess risk of suspected PE. Unfortunately, implementation of guidelines in clinical practice is inconsistent. This has led to low risk patients being subjected to unnecessary imaging, exposure to radiation and possible contrast related complications. Aim: To study the diagnostic yield of CT PA, clinical pretest probability of patients according to wells score and to determine whether or not there was an overuse of CTPA in our service. Methods: CT scans done on patients with suspected P.E in our hospital from 1st January 2014 to 31st December 2014 were retrospectively reviewed. Medical records were reviewed to study demographics, clinical presentation, final diagnosis, and to establish if Wells score and D-Dimer were used correctly in predicting the probability of PE and the need for subsequent CTPA. Results: 100 patients (51male) underwent CT PA in the time period. Mean age was 57 years (24-91 years). Majority of patients presented with shortness of breath (52%). Other presenting symptoms included chest pain 34%, palpitations 6%, collapse 5% and haemoptysis 5%. D Dimer test was done in 69%. Overall Wells score was low (<2) in 28 %, moderate (>2 - < 6) in 47% and high (> 6) in 15% of patients. Wells score was documented in medical notes of only 20% patients. PE was confirmed in 12% (8 male) patients. 4 had bilateral PE’s. In high-risk group (Wells > 6) (n=15), there were 5 diagnosed PEs. In moderate risk group (Wells >2 - < 6) (n=47), there were 6 and in low risk group (Wells <2) (n=28), one case of PE was confirmed. CT scans negative for PE showed pleural effusion in 30, Consolidation in 20, atelactasis in 15 and pulmonary nodule in 4 patients. 31 scans were completely normal. Conclusion: Yield of CT for pulmonary embolism was low in our cohort at 12%. A significant number of our patients who underwent CT PA had low Wells score. This suggests that CT PA is over utilized in our institution. Wells score was poorly documented in medical notes. CT-PA was able to detect alternative pulmonary abnormalities explaining the patient's clinical presentation. CT-PA requires concomitant pretest clinical probability assessment to be an effective diagnostic tool for confirming or excluding PE. . Clinicians should use validated clinical prediction rules to estimate pretest probability in patients in whom acute PE is being considered. Combining Wells scores with clinical and laboratory assessment may reduce the need for CTPA.

Keywords: CT PA, D dimer, pulmonary embolism, wells score

Procedia PDF Downloads 231
188 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation

Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang

Abstract:

The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.

Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics

Procedia PDF Downloads 132
187 Enhancing Precision in Abdominal External Beam Radiation Therapy: Exhale Breath Hold Technique for Respiratory Motion Management

Authors: Stephanie P. Nigro

Abstract:

The Exhale Breath Hold (EBH) technique presents a promising approach to enhance the precision and efficacy of External Beam Radiation Therapy (EBRT) for abdominal tumours, which include liver, pancreas, kidney, and adrenal glands. These tumours are challenging to treat due to their proximity to organs at risk (OARs) and the significant motion induced by respiration and physiological variations, such as stomach filling. Respiratory motion can cause up to 40mm of displacement in abdominal organs, complicating accurate targeting. While current practices like limiting fasting help reduce motion related to digestive processes, they do not address respiratory motion. 4DCT scans are used to assess this motion, but they require extensive workflow time and expose patients to higher doses of radiation. The EBH technique, which involves holding the breath in an exhale with no air in the lungs, stabilizes internal organ motion, thereby reducing respiratory-induced motion. The primary benefit of EBH is the reduction in treatment volume sizes, specifically the Internal Target Volume (ITV) and Planning Target Volume (PTV), as demonstrated by smaller ITVs when gated in EBH. This reduction also improves the quality of 3D Cone Beam CT (CBCT) images by minimizing respiratory artifacts, facilitating soft tissue matching akin to stereotactic treatments. Patients suitable for EBH must meet criteria including the ability to hold their breath for at least 15 seconds and maintain a consistent breathing pattern. For those who do not qualify, the traditional 4DCT protocol will be used. The implementation involves an EBH planning scan and additional short EBH scans to ensure reproducibility and assist in contouring and volume expansions, with a Free Breathing (FB) scan used for setup purposes. Treatment planning on EBH scans leads to smaller PTVs, though intrafractional and interfractional breath hold variations must be accounted for in margins. The treatment decision process includes performing CBCT in EBH intervals, with careful matching and adjustment based on soft tissue and fiducial markers. Initial studies at two sites will evaluate the necessity of multiple CBCTs, assessing shifts and the benefits of initial versus mid-treatment CBCT. Considerations for successful implementation include thorough patient coaching, staff training, and verification of breath holds, despite potential disadvantages such as longer treatment times and patient exhaustion. Overall, the EBH technique offers significant improvements in the accuracy and quality of abdominal EBRT, paving the way for more effective and safer treatments for patients.

Keywords: abdominal cancers, exhale breath hold, radiation therapy, respiratory motion

Procedia PDF Downloads 24
186 Relationship between Matrix Metalloproteases and Tissue Inhibitor of Matrix Metalloproteinase Levels and Elastic Moduli of Ascending Aneurysms

Authors: Khalil Khanafer

Abstract:

The objective of this study is to determine if there is a correlation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA). Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature, and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP2, 3, and 9, as well as TIMP1, were determined in these aortic wall specimens using MMP/TIMP antibodies array. Direct relations were found between MMP2 and the elastic modulus of the ascending aorta wall and between MMP9 and TIMP1.

Keywords: elastic modulus, MMPs/TIMPs levels, Ascending Thoracic Aortic Aneurysm

Procedia PDF Downloads 158
185 Diffusion Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Detecting Malignancy in Maxillofacial Lesions

Authors: Mohamed Khalifa Zayet, Salma Belal Eiid, Mushira Mohamed Dahaba

Abstract:

Introduction: Malignant tumors may not be easily detected by traditional radiographic techniques especially in an anatomically complex area like maxillofacial region. At the same time, the advent of biological functional MRI was a significant footstep in the diagnostic imaging field. Objective: The purpose of this study was to define the malignant metabolic profile of maxillofacial lesions using diffusion MRI and magnetic resonance spectroscopy, as adjunctive aids for diagnosing of such lesions. Subjects and Methods: Twenty-one patients with twenty-two lesions were enrolled in this study. Both morphological and functional MRI scans were performed, where T1, T2 weighted images, diffusion-weighted MRI with four apparent diffusion coefficient (ADC) maps were constructed for analysis, and magnetic resonance spectroscopy with qualitative and semi-quantitative analyses of choline and lactate peaks were applied. Then, all patients underwent incisional or excisional biopsies within two weeks from MR scans. Results: Statistical analysis revealed that not all the parameters had the same diagnostic performance, where lactate had the highest areas under the curve (AUC) of 0.9 and choline was the lowest with insignificant diagnostic value. The best cut-off value suggested for lactate was 0.125, where any lesion above this value is supposed to be malignant with 90 % sensitivity and 83.3 % specificity. Despite that ADC maps had comparable AUCs still, the statistical measure that had the final say was the interpretation of likelihood ratio. As expected, lactate again showed the best combination of positive and negative likelihood ratios, whereas for the maps, ADC map with 500 and 1000 b-values showed the best realistic combination of likelihood ratios, however, with lower sensitivity and specificity than lactate. Conclusion: Diffusion weighted imaging and magnetic resonance spectroscopy are state-of-art in the diagnostic arena and they manifested themselves as key players in the differentiation process of orofacial tumors. The complete biological profile of malignancy can be decoded as low ADC values, high choline and/or high lactate, whereas that of benign entities can be translated as high ADC values, low choline and no lactate.

Keywords: diffusion magnetic resonance imaging, magnetic resonance spectroscopy, malignant tumors, maxillofacial

Procedia PDF Downloads 169