Search results for: error reducing education
6733 Evolution of Relations among Multiple Institutional Logics: A Case Study from a Higher Education Institution
Authors: Ye Jiang
Abstract:
To examine how the relationships among multiple institutional logics vary over time and the factors that may impact this process, we conducted a 15-year in-depth longitudinal case study of a Higher Education Institution to examine its exploration in college student management. By employing constructive grounded theory, we developed a four-stage process model comprising separation, formalization, selective bridging, and embeddedness that showed how two contradictory logics become complementary, and finally become a new hybridized logic. We argue that selective bridging is an important step in changing inter-logic relations. We also found that ambidextrous leadership and situational sensemaking are two key factors that drive this process. Our contribution to the literature is threefold. First, we enhance the literature on the changing relationships among multiple institutional logics and our findings advance the understanding of relationships between multiple logics through a dynamic view. While most studies have tended to assume that the relationship among logics is static and persistently in a contentious state, we contend that the relationships among multiple institutional logics can change over time. Competitive logics can become complementary, and a new hybridized logic can emerge therefrom. The four-stage logic hybridization process model offers insights on the logic hybridization process, which is underexplored in the literature. Second, our research reveals that selective bridging is important in making conflicting logics compatible, and thus constitutes a key step in creating new hybridized logic dynamics. Our findings suggest that the relations between multiple logics are manageable and can thus be manipulated for organizational innovation. Finally, the factors influencing the variations in inter-logic relations enrich the understanding of the antecedents of these dynamics.Keywords: institutional theory, institutional logics, ambidextrous leadership, situational sensemaking
Procedia PDF Downloads 1746732 Promoting Civic Health through Patient Voter Registration
Authors: Amit Syal, Madeline Grade, Alister Martin
Abstract:
Background: Cross-sectional and longitudinal studies demonstrate an association between health and voting. Furthermore, voting enables populations to support policies that impact their health via social determinants like income, education, housing, and healthcare access. Unfortunately, many barriers exist which disproportionately affect the civic participation of certain minority groups. Health professionals have an important role to play in addressing the civic health of all patients and empowering underrepresented communities. Description: Vot-ER is a non-partisan, nonprofit organization that aims to reduce barriers to civic participation by helping patients register to vote while in healthcare settings. The initial approach involved iPad-based kiosks in the emergency department waiting rooms, allowing patients to register themselves while waiting. After the COVID-19 pandemic began, Vot-ER expanded its touchless digital approaches. Vot-ER provides healthcare workers across the country with “Healthy Democracy Kits” consisting of badge backers, posters, discharge paperwork, and other resources. These contain QR and text codes that direct users to an online platform for registering to vote or requesting a mail-in ballot, available in English or Spanish. Outcomes: From May to November 2020, Vot-ER helped prepare 46,320 people to vote. 13,192 individual healthcare providers across all 50 states signed up for and received Healthy Democracy Kits. 80 medical schools participated in the Healthy Democracy Campaign competition. Over 500 institutions ordered site-based materials. Conclusions: A healthy democracy is one in which all individuals in a community have equal and fair opportunities for their voices to be heard. Healthcare settings, such as hospitals, are appropriate and effective venues for increasing both voter registration and education.Keywords: civic health, enfranchisement, physician, voting
Procedia PDF Downloads 1926731 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology
Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen
Abstract:
Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.Keywords: absorption chillers (AC), turbine inlet air cooling (TIC), power purchase agreement (PPA), multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution (CDDE)
Procedia PDF Downloads 3156730 Perspectives and Outcomes of a Long and Shorter Community Mental Health Program
Authors: Danielle Klassen, Reiko Yeap, Margo Schmitt-Boshnick, Scott Oddie
Abstract:
The development of the 7-week Alberta Happiness Basics program was initiated in 2010 in response to the need for community mental health programming. This provincial wide program aims to increase overall happiness and reduce negative thoughts and feelings through a positive psychology intervention. While the 7-week program has proven effective, a shortened 4-week program has additionally been developed to address client needs. In this study, participants were interviewed to determine if the 4- and 7-week programs had similar success of producing lasting behavior change at 3, 6, and 9 months post-program. A health quality of life (HQOL) measure was also used to compare the two programs and examine patient outcomes. Quantitative and qualitative analysis showed significant improvements in HQOL and sustainable behavior change for both programs. Findings indicate that the shorter, patient-centered program was effective in increasing happiness and reducing negative thoughts and feelings.Keywords: primary care, mental health, depression, short duration
Procedia PDF Downloads 2736729 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint
Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung
Abstract:
Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow
Procedia PDF Downloads 1306728 Novel Self-Healing Eco-Friendly Coatings with Antifouling and Anticorrosion Properties for Maritime Applications
Authors: K. N. Kipreou, E. Efthmiadou, G. Kordas
Abstract:
Biofouling represents one of the most crucial problems in the present maritime industries when its control still challenges the researchers all over the world. The present work is referred to the synthesis and characterization CeMo and Cu2O nanocontainers by using a wide range of techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for marine applications. The above nanosystems will be loaded with active monomers and corrosion rendering healing ability to marine paints. The objective of this project is their ability for self-healing, self-polishing and finally for anti-corrosion activity. One of the driving forces for the exploration of CeMo, is the unique anticorrosive behavior, which will be confirmed by the electrochemistry methodology. It has be highlighted that the nanocontainers of Cu2O with the appropriate antibacterial inhibitor will improve the hydrophobicity and the morphology of the coating surfaces reducing the water friction. In summary, both novel nanoc will increase the lifetime of the paints releasing the antifouling agent in a control manner.Keywords: marinepaints, nanocontainer, antifouling, anticorrosion, copper, electrochemistry, coating, biofouling, inhibitors, copper oxide, coating, SEM
Procedia PDF Downloads 3426727 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence
Authors: Gus Calderon, Richard McCreight, Tammy Schwartz
Abstract:
Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.
Procedia PDF Downloads 1116726 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 2566725 Aristotelian Techniques of Communication Used by Current Affairs Talk Shows in Pakistan for Creating Dramatic Effect to Trigger Emotional Relevance
Authors: Shazia Anwer
Abstract:
The current TV Talk Shows, especially on domestic politics in Pakistan are following the Aristotelian techniques, including deductive reasoning, three modes of persuasion, and guidelines for communication. The application of “Approximate Truth is also seen when Talk Show presenters create doubts against political personalities or national issues. Mainstream media of Pakistan, being a key carrier of narrative construction for the sake of the primary function of national consensus on regional and extended public diplomacy, is failing the purpose. This paper has highlighted the Aristotelian communication methodology, its purposes and its limitations for a serious discussion, and its connection to the mistrust among the Pakistani population regarding fake or embedded, funded Information. Data has been collected from 3 Pakistani TV Talk Shows and their analysis has been made by applying the Aristotelian communication method to highlight the core issues. Paper has also elaborated that current media education is impaired in providing transparent techniques to train the future journalist for a meaningful, thought-provoking discussion. For this reason, this paper has given an overview of HEC’s (Higher Education Commission) graduate-level Mass Com Syllabus for Pakistani Universities. The idea of ethos, logos, and pathos are the main components of TV Talk Shows and as a result, the educated audience is lacking trust in the mainstream media, which eventually generating feelings of distrust and betrayal in the society because productions look like the genre of Drama instead of facts and analysis thus the line between Current Affairs shows and Infotainment has become blurred. In the last section, practical implication to improve meaningfulness and transparency in the TV Talk shows has been suggested by replacing the Aristotelian communication method with the cognitive semiotic communication approach.Keywords: Aristotelian techniques of communication, current affairs talk shows, drama, Pakistan
Procedia PDF Downloads 2086724 High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites
Authors: Charmaine Lamiel, Van Hoa Nguyen, Deivasigamani Ranjith Kumar, Jae-Jin Shim
Abstract:
The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors.Keywords: cobalt manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor
Procedia PDF Downloads 3626723 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification
Procedia PDF Downloads 3326722 Poly (Diphenylamine-4-Sulfonic Acid) Modified Glassy Carbon Electrode for Voltammetric Determination of Gallic Acid in Honey and Peanut Samples
Authors: Zelalem Bitew, Adane Kassa, Beyene Misgan
Abstract:
In this study, a sensitive and selective voltammetric method based on poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode (poly(DPASA)/GCE) was developed for determination of gallic acid. Appearance of an irreversible oxidative peak at both bare GCE and poly(DPASA)/GCE for gallic acid with about three folds current enhancement and much reduced potential at poly(DPASA)/GCE showed catalytic property of the modifier towards oxidation of gallic acid. Under optimized conditions, Adsorptive stripping square wave voltammetric peak current response of the poly(DPASA)/GCE showed linear dependence with gallic acid concentration in the range 5.00 × 10-7 − 3.00 × 10-4 mol L-1 with limit of detection of 4.35 × 10-9. Spike recovery results between 94.62-99.63, 95.00-99.80 and 97.25-103.20% of gallic acid in honey, raw peanut, and commercial peanut butter samples respectively, interference recovery results with less than 4.11% error in the presence of uric acid and ascorbic acid, lower LOD and relatively wider dynamic range than most of the previously reported methods validated the potential applicability of the method based on poly(DPASA)/GCE for determination of gallic acid real samples including in honey and peanut samples.Keywords: gallic acid, diphenyl amine sulfonic acid, adsorptive anodic striping square wave voltammetry, honey, peanut
Procedia PDF Downloads 826721 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing
Procedia PDF Downloads 1916720 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 776719 Evaluation of P16, Human Papillomavirus Capsid Protein L1 and Ki67 in Cervical Intraepithelial Lesions: Potential Utility in Diagnosis and Prognosis
Authors: Hanan Alsaeid Alshenawy
Abstract:
Background: Cervical dysplasia, which is potentially precancerous, has increased in young women. Detection of cervical is important for reducing morbidity and mortality in cervical cancer. This study analyzes the immunohistochemical expression of p16, HPV L1 capsid protein and Ki67 in cervical intraepithelial lesions and correlates them with lesion grade to develop a set of markers for diagnosis and detect the prognosis of cervical cancer precursors. Methods: 75 specimens were analyzed including 15 cases CIN 1, 28 CIN 2, 20 CIN 3, and 12 cervical squamous carcinoma, besides 10 normal cervical tissues. They were stained for p16, HPV L1 and Ki-67. Sensitivity, specificity, predictive values and accuracy were evaluated for each marker. Results: p16 expression increased during the progression from CIN 1 to carcinoma. HPV L1 positivity was detected in CIN 2 and decreased gradually as the CIN grade increased but disappear in carcinoma. Strong Ki-67 expression was observed with high grades CIN and carcinoma. p16, HPV L1 and Ki67 were sensitive but with variable specificity in detecting CIN lesions. Conclusions: p16, HPV L1 and Ki67 are useful set of markers in establishing the risk of high-grade CIN. They complete each other to reach accurate diagnosis and prognosis.Keywords: p16, HPV L1, Ki67, CIN, cervical carcinoma
Procedia PDF Downloads 3446718 Early Warning System of Financial Distress Based On Credit Cycle Index
Authors: Bi-Huei Tsai
Abstract:
Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy
Procedia PDF Downloads 3806717 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States
Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi
Abstract:
The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.Keywords: economic growth, energy demand, income, real GDP, urbanization, VECM
Procedia PDF Downloads 3156716 “It Plays a Huge Role”: Examining Dual Language Teachers’ Conceptions of Language, Culture and Sociocultural Competence
Authors: Giselle Martinez Negrette
Abstract:
Language and culture mutually shape and reflect the human experience. In the learning process, this connection creates and sustains the shared world of learners and educators. Dual Language (DL) programs exemplify this relationship by placing language and culture at the center of their educational approach. These programs, originally conceived to advance social justice in education, aim to foster bilingualism, biliteracy, academic development and sociocultural competence, emphasizing the inseparability of linguistic and cultural growth. Furthermore, because DL programs serve children from diverse cultural, ethnic, and socioeconomic backgrounds, they operate as spaces where linguistic skills and sociocultural understandings are actively cultivated, negotiated, and celebrated. Against this background, this paper examines how two DL teachers see language and culture shaping and reflecting the educational experience, and how their understandings of the relationship influence their mediation of sociocultural competence in their classrooms. This qualitative study employs critical discourse analysis to study in detail participants’ narratives seeking to uncover their perspectives on the “politics” surrounding language use and cultural understandings in their school contexts. Our findings show that these educators are not only keenly aware of the pivotal role that language and culture play in multilingual students’ learning journeys, but they have identified the sociolinguistic “games” taking place in their classrooms. We contend these understandings are pivotal for the critical development of sociocultural competence in DL programs. This study provides DL educators with important conceptual and pedagogical insights regarding the intersection between language and culture in their classrooms and seeks to encourage them to analyze their roles as supporters or opponents of transformative rupture opportunities to contest inequities in educationKeywords: sociocultural competence, critical discourse analysis, dual language programs, language, culture
Procedia PDF Downloads 186715 Produced Gas Conversion of Microwave Carbon Receptor Reforming
Authors: Young Nam Chun, Mun Sup Lim
Abstract:
Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used.Keywords: microwave, gas reforming, greenhouse gas, microwave receptor, catalyst
Procedia PDF Downloads 3826714 Understanding the Factors behind Graduate Employability in the United Arab Emirates
Authors: Mohammed Islam
Abstract:
Graduate employability is a well debated topic by governments, employers, and higher education institutes (HEI) across the world. Much of the focus of these debates have centred around the skills that graduates bring or should bring to the job market, a point echoed by United Arab Emirates (UAE) policy makers and employers. While some research has been carried out on graduates' employability skills, little or no attention has been paid to the forces at play in developing employability policy and its subsequent implementation. The focus of debate has been on a perceived skills gap rather than policy. Recognising a gap in the literature, this paper details a study of UAE employability policy development. Taking a social constructionist approach, this case study views policy as discursive and socially constructed through interactions with key stakeholders. It is within the myriad of interdependent socio-political factors and social practices, particularly power relationships, that this paper explores UAE policy on graduate employability. In doing so, this adds to the debate on graduate employability from the perspective of policy and explores its roots in the interaction between human activity and the ‘system’. Data was collected from two main sources: documentary review and semi-structured interviews. Policies and publicly stated rhetoric on graduate employability were analysed using Critical Discourse Analysis. Semi-structured interviews with representatives from policy makers, HEIs, and employers were reviewed through Thematic Analysis. The theoretical framework for the discussion of findings draws from social practice theories and highlights the factors at play in access to employment for UAE graduates. This case study presents a methodological approach to policy studies that can be applied beyond the context under investigation. Education policy researchers are provided with an opportunity to compare similarities and differences with their own specific contexts.Keywords: critical discourse analysis, employability, methodology, policy, social constructionism
Procedia PDF Downloads 1306713 Comparative Study of Music-Therapy Types on Anxiety in Early Stage Cancer Patients: A Randomized Clinical Trial
Authors: Farnaz Dehkhoda
Abstract:
This study was conducted to compare the effectiveness of active and receptive music-therapy on anxiety in cancer patients undergoing chemotherapy or radiotherapy. 184 young adult patients, who were diagnosed with early stage cancer and were undergoing treatment, were divided into three groups. Two groups received music therapy as a parallel treatment and the third group was control group. In active music-therapy, a music specialist helped the patients to play guitar and sing. In the receptive music-therapy, patients preferred pre-recorded music played by MP3 player. The level of anxiety was measured by the Beck Anxiety Inventory as pre-test and post-test. ANCOVA revealed that both types of music-therapy reduced anxiety level of patients and the active music-therapy intervention found to be more effective. The results suggest that music-therapy can be applied as an intervention method contemporary with cancer medical treatment, for improving quality of life in cancer patients by reducing their anxiety.Keywords: Anxiety, Cancer, Chemotherapy, Music-therapy
Procedia PDF Downloads 1886712 Prevalence of Over-Schooling Preschoolers as Perceived by Teachers in Kwara Central, Nigeria
Authors: Rachael Ojima Agarry, Raheemat Opeyemi Omosidi
Abstract:
Over-schooling children is an abuse of the fundamental provisions of the National Policy on Education in Nigeria. The practice overburdens or places unwarranted academic demands on children, particularly preschoolers. This study was carried out to ascertain the prevalence of over-schooling preschoolers as perceived by teachers in the Kwara Central Senatorial District. One research question and two null hypotheses were formulated to guide the study. A descriptive survey design was employed. The population of the study consists of all preschool teachers in both private and public schools in Kwara Central. A validated instrument tagged “Questionnaire on Prevalence of Over-schooling of Preschoolers (QPOP)” with a reliability index of 0.76 was used for data collection. The questionnaire consists of sections A and B. Section A solicited the respondents’ demographic information, and Section B sought the prevalence of over-schooling as perceived by teachers. Data collected were analyzed using descriptive statistics of frequency and percentage. Mean and standard deviation were used to analyze the demographic information and the research question. The two research hypotheses were analyzed using a t-test and Analysis of Variance (ANCOVA) at a 0.05 level of significance. The results revealed that there is a high level of prevalence of over-schooling of preschoolers in Kwara Central. Also, there is a significant difference in teachers' perception of the prevalence of over-schooling preschoolers based on school type and school location. It was concluded that both private and public schools in Kwara Central practice over-schooling of preschoolers at a high level. Hence, it was recommended that the government, through the State and/or Federal Ministry of Education, should enact and enforce a law that would ensure children in this category spend only the stipulated time in school as well as strict adherence to the recommended curriculum contents by proprietors and teachers.Keywords: over-schooling, preschoolers, school type, school location
Procedia PDF Downloads 636711 The Impact of Online Learning on Visual Learners
Authors: Ani Demetrashvili
Abstract:
As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.Keywords: online learning, visual learners, digital education, technology in learning
Procedia PDF Downloads 426710 Design of Impedance Box to Study Fluid Parameters
Authors: K. AlJimaz, A. Abdullah, A. Abdulsalam, K. Ebdah, A. Abdalrasheed
Abstract:
Understanding flow distribution and head losses is essential to design and calculate Thermo fluid parameters in order to reduce the pressure to a certain required pressure. This paper discusses the ways acquired in design and simulation to create and design an impedance box that reduces pressure. It's controlled by specific scientific principles such as Bernoulli’s principle and conservation of mass. In this paper, the design is made using SOLIDWORKS, and the simulation is done using ANSYS software to solve differential equations and study the parameters in the 3D model, also to understand how the design of this box reduced the pressure. The design was made so that fluid enters at a certain pressure of 3000 Pa in a single inlet; then, it exits from six outlets at a pressure of 300 Pa with respect to the conservation of mass principle. The effect of the distribution of flow and the head losses has been noticed that it has an impact on reducing the pressure since other factors, such as friction, were neglected and also the temperature, which was constant. The design showed that the increase in length and diameter of the pipe helped to reduce the pressure, and the head losses contributed significantly to reduce the pressure to 10% of the original pressure (from 3000 Pa to 300 Pa) at the outlets.Keywords: box, pressure, thermodynamics, 3D
Procedia PDF Downloads 926709 The Effectiveness and Accuracy of the Schulte Holt IOL Toric Calculator Processor in Comparison to Manually Input Data into the Barrett Toric IOL Calculator
Authors: Gabrielle Holt
Abstract:
This paper is looking to prove the efficacy of the Schulte Holt IOL Toric Calculator Processor (Schulte Holt ITCP). It has been completed using manually inputted data into the Barrett Toric Calculator and comparing the number of minutes taken to complete the Toric calculations, the number of errors identified during completion, and distractions during completion. It will then compare that data to the number of minutes taken for the Schulte Holt ITCP to complete also, using the Barrett method, as well as the number of errors identified in the Schulte Holt ITCP. The data clearly demonstrate a momentous advantage to the Schulte Holt ITCP and notably reduces time spent doing Toric Calculations, as well as reducing the number of errors. With the ever-growing number of cataract surgeries taking place around the world and the waitlists increasing -the Schulte Holt IOL Toric Calculator Processor may well demonstrate a way forward to increase the availability of ophthalmologists and ophthalmic staff while maintaining patient safety.Keywords: Toric, toric lenses, ophthalmology, cataract surgery, toric calculations, Barrett
Procedia PDF Downloads 1006708 RFID Laptop Monitoring and Management System
Authors: Francis E. Idachaba, Sarah Uyimeh Tommy
Abstract:
This paper describes the design of an RFID laptop monitoring and management system. Laptops embedded with RFID chips are monitored and tracked to provide a monitoring system for the purpose of tracking as well as monitoring movement of the laptops in and out of a building. The proposed system is implemented with both hardware and software components. The hardware architecture consists of RFID passive tag, RFID module (reader), and a server hosting the application and database. The RFID readers are distributed at major exits of a building or premises. The tags are programmed with owner laptop details are concealed in the laptops. The software architecture consists of application software that has the APIs (Applications Programming Interface) necessary to interface the RFID system with the PC, to achieve automated laptop monitoring system. A friendly graphic user interface (GUI) and a database that saves all readings and owners details. The system is capable of reducing laptop theft especially in students’ hostels as laptops can be monitored as they are taken either in or out of the building.Keywords: asset tracking, GUI, laptop monitoring, radio frequency identification, passive tags
Procedia PDF Downloads 3946707 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images
Authors: Qiang Wang, Hongyang Yu
Abstract:
Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations
Procedia PDF Downloads 856706 Bridging the Gaping Levels of Information Entree for Visually Impaired Students in the Sri Lankan University Libraries
Authors: Wilfred Jeyatheese Jeyaraj
Abstract:
Education is a key determinant of future success, and every person deserves non-discriminant access to information for educational inevitabilities in any case. Analysing and understanding complex information is a crucial learning tool, especially for students. In order to compete equally with sighted students, visually impaired students require the unhinged access to access to all the available information resources. When the education of visually impaired students comes to a focal point, it can be stated that visually impaired students encounter several obstacles and barriers before they enter the university and during their time there as students. These obstacles and barriers are spread across technical, organizational and social arenas. This study reveals the possible approaches to absorb and benefit from the information provided by the Sri Lankan University Libraries for visually impaired students. Purposive sampling technique was used to select sample visually impaired students attached to the Sri Lankan National universities. There are 07 National universities which accommodate the visually impaired students and with the identified data, they were selected for this study and 80 visually impaired students were selected as the sample group. Descriptive type survey method was used to collect data. Structured questionnaires, interviews and direct observation were used as research instruments. As far as the Sri Lankan context spread is concerned, visually impaired students are able to finish their courses through their own determination to overcome the barriers they encounter on their way to graduation, through moral and practical support from their own friends and very often through a high level of creativity. According to the findings there are no specially trained university librarians to serve visually impaired users and less number of assistive technology equipment are available at present. This paper enables all university libraries in Sri Lanka to be informed about the social isolation of visually compromised students at the Sri Lankan universities and focuses on the rectification issues by considering their distinct case for interaction.Keywords: information access, Sri Lanka, university libraries, visual impairment
Procedia PDF Downloads 2406705 Numerical Study on the Urea Melting and Induced Natural Convection in a Urea Sender Module
Authors: Doo Ki Lee, Man Young Kim
Abstract:
The Urea-Selective Catalytic Reduction (SCR) system is considered to be the most promising technology to fulfill the stringent emission regulation. In the Urea-SCR system, the urea solutions are used as the reducing agent, which is a eutectic composition (32.5wt% of urea). The advantage of this eutectic compositions is that it has a low freezing point approximately at -11 ℃, however, the problem of freezing occurs at low-temperature levels below that freezing point. To prevent freezing of urea solutions, we need heating systems that can melt by heating the frozen urea solutions in urea storage tank at low-temperature environment. In this study, therefore, a numerical investigation of three-dimensional unsteady heating problems analyzed to find the melting characteristics of the urea solutions on melting process. In this work, it can be found that the urea melting initiated by heat conduction from the heater is enhanced by the natural convection inside the melted liquid urea solutions due to the temperature difference. Also, liquid urea solutions are initially concentrated on the upper parts of the urea sender module.Keywords: urea solution, melting, heat conduction, natural convection, liquid fraction, phase change
Procedia PDF Downloads 2746704 Introducing Data-Driven Learning into Chinese Higher Education English for Academic Purposes Writing Instructional Settings
Authors: Jingwen Ou
Abstract:
Writing for academic purposes in a second or foreign language is one of the most important and the most demanding skills to be mastered by non-native speakers. Traditionally, the EAP writing instruction at the tertiary level encompasses the teaching of academic genre knowledge, more specifically, the disciplinary writing conventions, the rhetorical functions, and specific linguistic features. However, one of the main sources of challenges in English academic writing for L2 students at the tertiary level can still be found in proficiency in academic discourse, especially vocabulary, academic register, and organization. Data-Driven Learning (DDL) is defined as “a pedagogical approach featuring direct learner engagement with corpus data”. In the past two decades, the rising popularity of the application of the data-driven learning (DDL) approach in the field of EAP writing teaching has been noticed. Such a combination has not only transformed traditional pedagogy aided by published DDL guidebooks in classroom use but also triggered global research on corpus use in EAP classrooms. This study endeavors to delineate a systematic review of research in the intersection of DDL and EAP writing instruction by conducting a systematic literature review on both indirect and direct DDL practice in EAP writing instructional settings in China. Furthermore, the review provides a synthesis of significant discoveries emanating from prior research investigations concerning Chinese university students’ perception of Data-Driven Learning (DDL) and the subsequent impact on their academic writing performance following corpus-based training. Research papers were selected from Scopus-indexed journals and core journals from two main Chinese academic databases (CNKI and Wanfang) published in both English and Chinese over the last ten years based on keyword searches. Results indicated an insufficiency of empirical DDL research despite a noticeable upward trend in corpus research on discourse analysis and indirect corpus applications for material design by language teachers. Research on the direct use of corpora and corpus tools in DDL, particularly in combination with genre-based EAP teaching, remains a relatively small fraction of the whole body of research in Chinese higher education settings. Such scarcity is highly related to the prevailing absence of systematic training in English academic writing registers within most Chinese universities' EAP syllabi due to the Chinese English Medium Instruction policy, where only English major students are mandated to submit English dissertations. Findings also revealed that Chinese learners still held mixed attitudes towards corpus tools influenced by learner differences, limited access to language corpora, and insufficient pre-training on corpus theoretical concepts, despite their improvements in final academic writing performance.Keywords: corpus linguistics, data-driven learning, EAP, tertiary education in China
Procedia PDF Downloads 70