Search results for: integrated structures
1333 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring
Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove
Abstract:
Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor
Procedia PDF Downloads 751332 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)
Authors: Feridun Demir, Pelin Okdem
Abstract:
Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor
Procedia PDF Downloads 211331 Effect of Dynamic Loading by Cyclic Triaxial Tests on Sand Stabilized with Cement
Authors: Priyanka Devi, Mohammad Muzzaffar Khan, G. Kalyan Kumar
Abstract:
Liquefaction of saturated soils due to dynamic loading is an important and interesting area in the field of geotechnical earthquake engineering. When the soil liquefies, the structures built on it develops uneven settlements thereby producing cracks in the structure and weakening the foundation. The 1964 Alaskan Good Friday earthquake, the 1989 San Francisco earthquake and 2011 Tōhoku earthquake are some of the examples of liquefaction occurred due to an earthquake. To mitigate the effect of liquefaction, several methods such use of stone columns, increasing the vertical stress, compaction and removal of liquefiable soil are practiced. Grouting is one of those methods used to increase the strength of the foundation and develop resistance to liquefaction of soil without affecting the superstructure. In the present study, an attempt has been made to investigate the undrained cyclic behavior of locally available soil, stabilized by cement to mitigate the seismically induced soil liquefaction. The specimens of 75mm diameter and 150mm height were reconstituted in the laboratory using water sedimentation technique. A series of strain-controlled cyclic triaxial tests were performed on saturated soil samples followed by consolidation. The effects of amplitude, confining pressure and relative density on the dynamic behavior of sand was studied for soil samples with varying cement content. The results obtained from the present study on loose specimens and medium dense specimens indicate that (i) the higher the relative density, the more will be the liquefaction resistance, (ii) with increase of effective confining pressure, a decrease in developing of excess pore water pressure during cyclic loading was observed and (iii) sand specimens treated with cement showed reduced excess pore pressures and increased liquefaction resistance suggesting it as one of the mitigation methods.Keywords: cyclic triaxial test, liquefaction, soil-cement stabilization, pore pressure ratio
Procedia PDF Downloads 2951330 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin
Authors: Roohallah Yousefi
Abstract:
Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid
Procedia PDF Downloads 81329 Detecting Potential Geothermal Sites by Using Well Logging, Geophysical and Remote Sensing Data at Siwa Oasis, Western Desert, Egypt
Authors: Amr S. Fahil, Eman Ghoneim
Abstract:
Egypt made significant efforts during the past few years to discover significant renewable energy sources. Regions in Egypt that have been identified for geothermal potential investigation include the Gulf of Suez and the Western Desert. One of the most promising sites for the development of Egypt's Northern Western Desert is Siwa Oasis. The geological setting of the oasis, a tectonically generated depression situated in the northernmost region of the Western desert, supports the potential for substantial geothermal resources. Field data obtained from 27 deep oil wells along the Western Desert included bottom-hole temperature (BHT) depth to basement measurements, and geological maps; data were utilized in this study. The major lithological units, elevation, surface gradient, lineaments density, and remote sensing multispectral and topographic were mapped together to generate the related physiographic variables. Eleven thematic layers were integrated in a geographic information system (GIS) to create geothermal maps to aid in the detection of significant potential geothermal spots along the Siwa Oasis and its vicinity. The contribution of total magnetic intensity data with reduction to the pole (RTP) to the first investigation of the geothermal potential in Siwa Oasis is applied in this work. The integration of geospatial data with magnetic field measurements showed a clear correlation between areas of high heat flow and magnetic anomalies. Such anomalies can be interpreted as related to the existence of high geothermal energy and dense rock, which also have high magnetic susceptibility. The outcomes indicated that the study area has a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W. k−1, a thermal conductivity of 1.3–2.65 W.m−1.k−1 and a measured amplitude temperature maximum of 100.7 °C. The southeastern part of the Siwa Oasis, and some sporadic locations on the eastern section of the oasis were found to have significant geothermal potential; consequently, this location is suitable for future geothermal investigation. The adopted method might be applied to identify significant prospective geothermal energy locations in other regions of Egypt and East Africa.Keywords: magnetic data, SRTM, depth to basement, remote sensing, GIS, geothermal gradient, heat flow, thermal conductivity
Procedia PDF Downloads 1161328 Relationship of Macro-Concepts in Educational Technologies
Authors: L. R. Valencia Pérez, A. Morita Alexander, Peña A. Juan Manuel, A. Lamadrid Álvarez
Abstract:
This research shows the reflection and identification of explanatory variables and their relationships between different variables that are involved with educational technology, all of them encompassed in macro-concepts which are: cognitive inequality, economy, food and language; These will give the guideline to have a more detailed knowledge of educational systems, the communication and equipment, the physical space and the teachers; All of them interacting with each other give rise to what is called educational technology management. These elements contribute to have a very specific knowledge of the equipment of communications, networks and computer equipment, systems and content repositories. This is intended to establish the importance of knowing a global environment in the transfer of knowledge in poor countries, so that it does not diminish the capacity to be authentic and preserve their cultures, their languages or dialects, their hierarchies and real needs; In short, to respect the customs of different towns, villages or cities that are intended to be reached through the use of internationally agreed professional educational technologies. The methodology used in this research is the analytical - descriptive, which allows to explain each of the variables, which in our opinion must be taken into account, in order to achieve an optimal incorporation of the educational technology in a model that gives results in a medium term. The idea is that in an encompassing way the concepts will be integrated to others with greater coverage until reaching macro concepts that are of national coverage in the countries and that are elements of conciliation in the different federal and international reforms. At the center of the model is the educational technology which is directly related to the concepts that are contained in factors such as the educational system, communication and equipment, spaces and teachers, which are globally immersed in macro concepts Cognitive inequality, economics, food and language. One of the major contributions of this article is to leave this idea under an algorithm that allows to be as unbiased as possible when evaluating this indicator, since other indicators that are to be taken from international preference entities like the OECD in the area of education systems studied, so that they are not influenced by particular political or interest pressures. This work opens the way for a relationship between involved entities, both conceptual, procedural and human activity, to clearly identify the convergence of their impact on the problem of education and how the relationship can contribute to an improvement, but also shows possibilities of being able to reach a comprehensive education reform for all.Keywords: relationships macro-concepts, cognitive inequality, economics, alimentation and language
Procedia PDF Downloads 1991327 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole
Authors: Shingo Murakami, Shinichi Enoki
Abstract:
In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis
Procedia PDF Downloads 3011326 Groundwater Influences Wellbeing of Farmers from Semi-Arid Areas of India: Assessment of Subjective Wellbeing
Authors: Seemabahen Dave, Maria Varua, Basant Maheshwari, Roger Packham
Abstract:
The declining groundwater levels and quality are acknowledged to be affecting the well-being of farmers especially those located in the semi-arid regions where groundwater is the only source of water for domestic and agricultural use. Further, previous studies have identified the need to examine the quality of life of farmers beyond economic parameters and for a shift in setting rural development policy goals to the perspective of beneficiaries. To address these gaps, this paper attempts to ascertain the subjective wellbeing of farmers from two semi-arid regions of India. The study employs the integrated conceptual framework for the assessment of individual and regional subjective wellbeing developed by Larson in 2009 at Australia. The method integrates three domains i.e. society, natural environment and economic services consisting of 37 wellbeing factors. The original set of 27 revised wellbeing factors identified by John Ward is further revised in current study to make it more region specific. Generally, researchers in past studies select factors of wellbeing based on literature and assign the weights arbitrary. In contrast, the present methodology employs a unique approach by asking respondents to identify the factors most important to their wellbeing and assign weights of importance based on their responses. This method minimises the selection bias and assesses the wellbeing from farmers’ perspectives. The primary objectives of this study are to identify key wellbeing attributes and to assess the influence of groundwater on subjective wellbeing of farmers. Findings from 507 farmers from 11 villages of two watershed areas of Rajasthan and Gujarat, India chosen randomly and were surveyed using a structured face-to-face questionnaire are presented in this paper. The results indicate that significant differences exist in the ranking of wellbeing factors at individual, village and regional levels. The top five most important factors in the study areas include electricity, irrigation infrastructure, housing, land ownership, and income. However, respondents are also most dissatisfied with these factors and correspondingly perceive a high influence of groundwater on them. The results thus indicate that intervention related to improvement of groundwater availability and quality will greatly improve the satisfaction level of well-being factors identified by the farmers.Keywords: groundwater, farmers, semi-arid regions, subjective wellbeing
Procedia PDF Downloads 2591325 Durability Performances of Epoxy Resin/TiO₂ Composited Alkali-Activated Slag/Fly Ash Pastes in Phosphoric Acid Solution
Abstract:
Laden with phosphates at a low pH value, sewage wastewater aggressive environments constitute a great threat to concrete-based pipes which is made of alkaline cementitious materials such as ordinary Portland cement (OPC). As a promising alternative for OPC-based binders, alkali-activated slag/fly ash (AASF) cementitious binders are generally believed to gain similar or better properties compared to OPC-based counterparts, especially durability. However, there is limited research on the performance of AASF binders in phosphoric acid solution. Moreover, the behavior of AASF binders composited with epoxy resin/TiO₂ when exposed to acidic media has been rarely explored. In this study, the performance of AASF paste with the precursor slag:fly ash (50:50 in mass ratio) enhanced with epoxy resin/TiO₂ composite in phosphoric acid solution (pH = 3.0-4.0) was investigated. The exposure towards acid attack lasted for 90 days. The same AASF mixture without resin/TiO₂ composite was used as a reference. The compressive strength and porous-related properties prior to acidic immersion were tested. The mass variations and degradation depth of the two mixtures of binders were also monitored which is based on phenolphthalein-videomicroscope method. The results show that the binder with epoxy resin/TiO₂ addition gained a higher compressive strength and lower water absorption than the reference. In addition, it also displayed a higher resistance towards acid attack indicated by a less mass loss and less degradation depth compared to the control sample. This improvement can be attributed to a dense microstructure evidenced by the higher compressive strength and related porous structures. It can be concluded that the microstructure can be improved by adding epoxy resin/TiO₂ composite in order to enhance the resistance of AASF binder towards acid attacks.Keywords: alkali-activated paste, epoxy resin/TiO₂, composites, mechanical properties, phosphoric acid
Procedia PDF Downloads 1211324 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven
Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey
Abstract:
The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.Keywords: genus Geobacillus, NADPH/NADH-dependent reductase, selenium nanoparticles, biosynthesis
Procedia PDF Downloads 3151323 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood
Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy
Abstract:
In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage
Procedia PDF Downloads 1621322 Designing Creative Events with Deconstructivism Approach
Authors: Maryam Memarian, Mahmood Naghizadeh
Abstract:
Deconstruction is an approach that is entirely incompatible with the traditional prevalent architecture. Considering the fact that this approach attempts to put architecture in sharp contrast with its opposite events and transpires with attending to the neglected and missing aspects of architecture and deconstructing its stable structures. It also recklessly proceeds beyond the existing frameworks and intends to create a different and more efficient prospect for space. The aim of deconstruction architecture is to satisfy both the prospective and retrospective visions as well as takes into account all tastes of the present in order to transcend time. Likewise, it ventures to fragment the facts and symbols of the past and extract new concepts from within their heart, which coincide with today’s circumstances. Since this approach is an attempt to surpass the limits of the prevalent architecture, it can be employed to design places in which creative events occur and imagination and ambition flourish. Thought-provoking artistic events can grow and mature in such places and be represented in the best way possible to all people. The concept of event proposed in the plan grows out of the interaction between space and creation. In addition to triggering surprise and high impressions, it is also considered as a bold journey into the suspended realms of the traditional conflicts in architecture such as architecture-landscape, interior-exterior, center-margin, product-process, and stability-instability. In this project, at first, through interpretive-historical research method and examining the inputs and data collection, recognition and organizing takes place. After evaluating the obtained data using deductive reasoning, the data is eventually interpreted. Given the fact that the research topic is in its infancy and there is not a similar case in Iran with limited number of corresponding instances across the world, the selected topic helps to shed lights on the unrevealed and neglected parts in architecture. Similarly, criticizing, investigating and comparing specific and highly prized cases in other countries with the project under study can serve as an introduction into this architecture style.Keywords: anti-architecture, creativity, deconstruction, event
Procedia PDF Downloads 3221321 Ethiopian Textile and Apparel Industry: Study of the Information Technology Effects in the Sector to Improve Their Integrity Performance
Authors: Merertu Wakuma Rundassa
Abstract:
Global competition and rapidly changing customer requirements are forcing major changes in the production styles and configuration of manufacturing organizations. Increasingly, traditional centralized and sequential manufacturing planning, scheduling, and control mechanisms are being found insufficiently flexible to respond to changing production styles and highly dynamic variations in product requirements. The traditional approaches limit the expandability and reconfiguration capabilities of the manufacturing systems. Thus many business houses face increasing pressure to lower production cost, improve production quality and increase responsiveness to customers. In a textile and apparel manufacturing, globalization has led to increase in competition and quality awareness and these industries have changed tremendously in the last few years. So, to sustain competitive advantage, companies must re-examine and fine-tune their business processes to deliver high quality goods at very low costs and it has become very important for the textile and apparel industries to integrate themselves with information technology to survive. IT can create competitive advantages for companies to improve coordination and communication among trading partners, increase the availability of information for intermediaries and customers and provide added value at various stages along the entire chain. Ethiopia is in the process of realizing its potential as the future sourcing location for the global textile and garments industry. With a population of over 90 million people and the fastest growing non-oil economy in Africa, Ethiopia today represents limitless opportunities for international investors. For the textile and garments industry Ethiopia promises a low cost production location with natural resources such as cotton to enable the setup of vertically integrated textile and garment operation. However; due to lack of integration of their business activities textile and apparel industry of Ethiopia faced a problem in that it can‘t be competent in the global market. On the other hand the textile and apparel industries of other countries have changed tremendously in the last few years and globalization has led to increase in competition and quality awareness. So the aim of this paper is to study the trend of Ethiopian Textile and Apparel Industry on the application of different IT system to integrate them in the global market.Keywords: information technology, business integrity, textile and apparel industries, Ethiopia
Procedia PDF Downloads 3621320 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure
Authors: Esra Zengin, Sinan Akkar
Abstract:
Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.Keywords: ground motion selection, scaling, uncertainty, fragility curve
Procedia PDF Downloads 5831319 Assessment of the Situation and the Cause of Junk Food Consumption in Iranians: A Qualitative Study
Authors: A. Rezazadeh, B Damari, S. Riazi-Esfahani, M. Hajian
Abstract:
The consumption of junk food in Iran is alarmingly increasing. This study aimed to investigate the influencing factors of junk food consumption and amendable interventions that are criticized and approved by stakeholders, in order to presented to health policy makers. The articles and documents related to the content of study were collected by using the appropriate key words such as junk food, carbonated beverage, chocolate, candy, sweets, industrial fruit juices, potato chips, French fries, puffed corn, cakes, biscuits, sandwiches, prepared foods and popsicles, ice cream, bar, chewing gum, pastilles and snack, in scholar.google.com, pubmed.com, eric.ed.gov, cochrane.org, magiran.com, medlib.ir, irandoc.ac.ir, who.int, iranmedex.com, sid.ir, pubmed.org and sciencedirect.com databases. The main key points were extracted and included in a checklist and qualitatively analyzed. Then a summarized abstract was prepared in a format of a questionnaire to be presented to stakeholders. The design of this was qualitative (Delphi). According to this method, a questionnaire was prepared based on reviewing the articles and documents and it was emailed to stakeholders, who were asked to prioritize and choose the main problems and effective interventions. After three rounds, consensus was obtained. Studies revealed high consumption of junk foods in the Iranian population, especially in children and adolescents. The most important affecting factors include availability, low price, media advertisements, preference of fast foods taste, the variety of the packages and their attractiveness, low awareness and changing in lifestyle. Main interventions recommended by stakeholders include developing a protective environment, educational interventions, increasing healthy food access and controlling media advertisements and putting pressure from the Industry and Mining Ministry on producers to produce healthy snacks. According to the findings, the results of this study may be proposed to public health policymakers as an advocacy paper and to be integrated in the interventional programs of Health and Education ministries and the media. Also, implementation of supportive meetings with the producers of alternative healthy products is suggested.Keywords: junk foods, situation, qualitative study, Iran
Procedia PDF Downloads 2591318 Impact of Ethnic and Religious Identity on Coping Behavior in Young Adults: Cross-Cultural Research
Authors: Yuliya Kovalenko
Abstract:
Given the social nature of people, it is interesting to explore strategies of responding to psycho-traumatic situations in individuals of different ethnic and religious identity. This would allow to substantially expand the idea of human behavior in general, and coping behavior, in particular. This paper investigated the weighted impact of ethnic and religious identities on the patterns of coping behavior. This cross-cultural research empirically revealed intergroup differences in coping strategies and behavior in the samples of young students and teachers of different ethnic identities (Egyptians N=216 and Ukrainians N=109) and different religious identities (Egyptian Muslims N=147 and Christians, including Egyptian Christians N=68 and Ukrainian Christians N = 109). The empirical data were obtained using the questionnaires SACS and COPE. Statistical analysis and interpretation of the results were performed with IBM SPSS-23.0. It was found that, compared to the religious identity, the ethnic identity of the subjects appeared more predictive of coping behavior. It was shown that the constant exchange of information and the unity of biological and social contributed to a more homogeneous picture in the society where Christians and Muslims were integrated into a single cultural space. It was concluded that depending on their ethnic identity, individuals would form a specific hierarchy of coping strategies resulting in a specific pattern of coping with certain stressors. The Egyptian subjects revealed the following pattern of coping with various kinds of academic stress: 'seeking social support', 'problem solving', 'adapting', 'seeking information'. The coping pattern demonstrated by the Ukrainian subjects could be presented as 'seeking information', 'adapting', 'seeking social support', 'problem solving'. There was a tendency in the group of Egyptians to engage in more collectivist coping strategies (with the predominant coping strategy 'religious coping'), in contrast to the Ukrainians who displayed more individualistic coping strategies (with 'planning' and 'active coping' as the mostly used coping strategies). At the same time, it was obvious that Ukrainians should not be unambiguously attributed to the individualistic coping behavior due to their reliance on 'seeking social support' and 'social contact'. The final conclusion was also drawn from the peculiarities of developing religious identity, including religiosity, in Egyptians (formal religious education of both Muslims and Christians) and Ukrainians (more spontaneous process): Egyptians seem to learn to resort to the religious coping, which could be an indication that, in principle, it is possible and necessary to train individuals in desirable coping behavior.Keywords: coping behavior, cross-cultural research, ethnic and religious identity, hierarchical pattern of coping
Procedia PDF Downloads 1621317 Role of Matric Suction in Mechanics behind Swelling Characteristics of Expansive Soils
Authors: Saloni Pandya, Nikhil Sharma, Ajanta Sachan
Abstract:
Expansive soils in the unsaturated state are part of vadose zone and encountered in several arid and semi-arid parts of the world. Influence of high temperature, low precipitation and alternate cycles of wetting and drying are responsible for the chemical weathering of rocks, which results in the formation of expansive soils. Shrinkage-swelling (expansive) soils cover a substantial portion of area in India. Damages caused by expansive soils to various geotechnical structures are alarming. Matric suction develops in unsaturated soil due to capillarity and surface tension phenomena. Matric suction influences the geometric arrangement of soil skeleton, which induces the volume change behaviour of expansive soil. In the present study, an attempt has been made to evaluate the role of matric suction in the mechanism behind swelling characteristics of expansive soil. Four different soils have been collected from different parts of India for the current research. Soil sample S1, S2, S3 and S4 were collected from Nagpur, Bharuch, Bharuch-Dahej highway and Ahmedabad respectively. DFSI (Differential Free Swell Index) of these soils samples; S1, S2, S3, and S4; were determined to be 134%, 104%, 70% and 30% respectively. X-ray diffraction analysis of samples exhibited that percentage of Montmorillonite mineral present in the soils reduced with the decrease in DFSI. A series of constant volume swell pressure tests and in-contact filter paper tests were performed to evaluate swelling pressure and matric suction of all four soils at 30% saturation and 1.46 g/cc dry density. Results indicated that soils possessing higher DFSI exhibited higher matric suction as compared to lower DFSI expansive soils. Significant influence of matric suction on swelling pressure of expansive soils was observed with varying DFSI values. Higher matric suction of soil might govern the water uptake in the interlayer spaces of Montmorillonite mineral present in expansive soil leading to crystalline swelling.Keywords: differential free swell index, expansive soils, matric suction, swelling pressure
Procedia PDF Downloads 1661316 Exploring Regularity Results in the Context of Extremely Degenerate Elliptic Equations
Authors: Zahid Ullah, Atlas Khan
Abstract:
This research endeavors to explore the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. These equations hold significance in understanding complex physical systems like porous media flow, with applications spanning various branches of mathematics. The focus is on unraveling and analyzing regularity results to gain insights into the smoothness of solutions for these highly degenerate equations. Elliptic equations, fundamental in expressing and understanding diverse physical phenomena through partial differential equations (PDEs), are particularly adept at modeling steady-state and equilibrium behaviors. However, within the realm of elliptic equations, the subset of extremely degenerate cases presents a level of complexity that challenges traditional analytical methods, necessitating a deeper exploration of mathematical theory. While elliptic equations are celebrated for their versatility in capturing smooth and continuous behaviors across different disciplines, the introduction of degeneracy adds a layer of intricacy. Extremely degenerate elliptic equations are characterized by coefficients approaching singular behavior, posing non-trivial challenges in establishing classical solutions. Still, the exploration of extremely degenerate cases remains uncharted territory, requiring a profound understanding of mathematical structures and their implications. The motivation behind this research lies in addressing gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations. The study of extreme degeneracy is prompted by its prevalence in real-world applications, where physical phenomena often exhibit characteristics defying conventional mathematical modeling. Whether examining porous media flow or highly anisotropic materials, comprehending the regularity of solutions becomes crucial. Through this research, the aim is to contribute not only to the theoretical foundations of mathematics but also to the practical applicability of mathematical models in diverse scientific fields.Keywords: elliptic equations, extremely degenerate, regularity results, partial differential equations, mathematical modeling, porous media flow
Procedia PDF Downloads 731315 Interactive Garments: Flexible Technologies for Textile Integration
Authors: Anupam Bhatia
Abstract:
Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.Keywords: ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology
Procedia PDF Downloads 3931314 Identifying the Determinants of Compliance with Maritime Environmental Legislation in the North and Baltic Sea Area: A Model Developed from Exploratory Qualitative Data Collection
Authors: Thea Freese, Michael Gille, Andrew Hursthouse, John Struthers
Abstract:
Ship operators on the North and Baltic Sea have been experiencing increased political interest in marine environmental protection and cleaner vessel operations. Stricter legislation on SO2 and NOx emissions, ballast water management and other measures of protection are currently being phased in or will come into force in the coming years. These measures benefit the health of the marine environment, while increasing company’s operational costs. In times of excess shipping capacity and linked consolidation in the industry non-compliance with environmental rules is one way companies might hope to stay competitive with both intra- and inter-modal trade. Around 5-15% of industry participants are believed to neglect laws on vessel-source pollution willingly or unwillingly. Exploratory in-depth interviews conducted with 12 experts from various stakeholder groups informed the researchers about variables influencing compliance levels, including awareness and apprehension, willingness to comply, ability to comply and effectiveness of controls. Semi-structured expert interviews were evaluated using qualitative content analysis. A model of determinants of compliance was developed and is presented here. While most vessel operators endeavour to achieve full compliance with environmental rules, a lack of availability of technical solutions, expediency of implementation and operation and economic feasibility might prove a hindrance. Ineffective control systems on the other hand foster willing non-compliance. With respect to motivations, lacking time, lacking financials and the absence of commercial advantages decrease compliance levels. These and other variables were inductively developed from qualitative data and integrated into a model on environmental compliance. The outcomes presented here form part of a wider research project on economic effects of maritime environmental legislation. Research on determinants of compliance might inform policy-makers about actual behavioural effects of shipping companies and might further the development of a comprehensive legal system for environmental protection.Keywords: compliance, marine environmental protection, exploratory qualitative research study, clean vessel operations, North and Baltic Sea area
Procedia PDF Downloads 3831313 CRISPR/Cas9 Based Gene Stacking in Plants for Virus Resistance Using Site-Specific Recombinases
Authors: Sabin Aslam, Sultan Habibullah Khan, James G. Thomson, Abhaya M. Dandekar
Abstract:
Losses due to viral diseases are posing a serious threat to crop production. A quick breakdown of resistance to viruses like Cotton Leaf Curl Virus (CLCuV) demands the application of a proficient technology to engineer durable resistance. Gene stacking has recently emerged as a potential approach for integrating multiple genes in crop plants. In the present study, recombinase technology has been used for site-specific gene stacking. A target vector (pG-Rec) was designed for engineering a predetermined specific site in the plant genome whereby genes can be stacked repeatedly. Using Agrobacterium-mediated transformation, the pG-Rec was transformed into Coker-312 along with Nicotiana tabacum L. cv. Xanthi and Nicotiana benthamiana. The transgene analysis of target lines was conducted through junction PCR. The transgene positive target lines were used for further transformations to site-specifically stack two genes of interest using Bxb1 and PhiC31 recombinases. In the first instance, Cas9 driven by multiplex gRNAs (for Rep gene of CLCuV) was site-specifically integrated into the target lines and determined by the junction PCR and real-time PCR. The resulting plants were subsequently used to stack the second gene of interest (AVP3 gene from Arabidopsis for enhancing cotton plant growth). The addition of the genes is simultaneously achieved with the removal of marker genes for recycling with the next round of gene stacking. Consequently, transgenic marker-free plants were produced with two genes stacked at the specific site. These transgenic plants can be potential germplasm to introduce resistance against various strains of cotton leaf curl virus (CLCuV) and abiotic stresses. The results of the research demonstrate gene stacking in crop plants, a technology that can be used to introduce multiple genes sequentially at predefined genomic sites. The current climate change scenario highlights the use of such technologies so that gigantic environmental issues can be tackled by several traits in a single step. After evaluating virus resistance in the resulting plants, the lines can be a primer to initiate stacking of further genes in Cotton for other traits as well as molecular breeding with elite cotton lines.Keywords: cotton, CRISPR/Cas9, gene stacking, genome editing, recombinases
Procedia PDF Downloads 1551312 Transdisciplinary Pedagogy: An Arts-Integrated Approach to Promote Authentic Science, Technology, Engineering, Arts, and Mathematics Education in Initial Teacher Education
Authors: Anne Marie Morrin
Abstract:
This paper will focus on the design, delivery and assessment of a transdisciplinary STEAM (Science, Technology, Engineering, Arts, and Mathematics) education initiative in a college of education in Ireland. The project explores a transdisciplinary approach to supporting STEAM education where the concepts, methodologies and assessments employed derive from visual art sessions within initial teacher education. The research will demonstrate that the STEAM Education approach is effective when visual art concepts and methods are placed at the core of the teaching and learning experience. Within this study, emphasis is placed on authentic collaboration and transdisciplinary pedagogical approaches with the STEAM subjects. The partners included a combination of teaching expertise in STEM and Visual Arts education, artists, in-service and pre-service teachers and children. The inclusion of all stakeholders mentioned moves towards a more authentic approach where transdisciplinary practice is at the core of the teaching and learning. Qualitative data was collected using a combination of questionnaires (focused and open-ended questions) and focus groups. In addition, the data was collected through video diaries where students reflected on their visual journals and transdisciplinary practice, which gave rich insight into participants' experiences and opinions on their learning. It was found that an effective program of STEAM education integration was informed by co-teaching (continuous professional development), which involved a commitment to adaptable and flexible approaches to teaching, learning, and assessment, as well as the importance of continuous reflection-in-action by all participants. The delivery of a transdisciplinary model of STEAM education was devised to reconceptualizatise how individual subject areas can develop essential skills and tackle critical issues (such as self-care and climate change) through data visualisation and technology. The success of the project can be attributed to the collaboration, which was inclusive, flexible and a willingness between various stakeholders to be involved in the design and implementation of the project from conception to completion. The case study approach taken is particularistic (focusing on the STEAM-ED project), descriptive (providing in-depth descriptions from varied and multiple perspectives), and heuristic (interpreting the participants’ experiences and what meaning they attributed to their experiences).Keywords: collaboration, transdisciplinary, STEAM, visual arts education
Procedia PDF Downloads 491311 Polymer-Layered Gold Nanoparticles: Preparation, Properties and Uses of a New Class of Materials
Authors: S. M. Chabane sari S. Zargou, A.R. Senoudi, F. Benmouna
Abstract:
Immobilization of nano particles (NPs) is the subject of numerous studies pertaining to the design of polymer nano composites, supported catalysts, bioactive colloidal crystals, inverse opals for novel optical materials, latex templated-hollow inorganic capsules, immunodiagnostic assays; “Pickering” emulsion polymerization for making latex particles and film-forming composites or Janus particles; chemo- and biosensors, tunable plasmonic nano structures, hybrid porous monoliths for separation science and technology, biocidal polymer/metal nano particle composite coatings, and so on. Particularly, in the recent years, the literature has witnessed an impressive progress of investigations on polymer coatings, grafts and particles as supports for anchoring nano particles. This is actually due to several factors: polymer chains are flexible and may contain a variety of functional groups that are able to efficiently immobilize nano particles and their precursors by dispersive or van der Waals, electrostatic, hydrogen or covalent bonds. We review methods to prepare polymer-immobilized nano particles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nano particles. The latter range from soft bio macromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nano particles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nano particles, while polymers provide excellent platforms for dispersing nano particles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.Keywords: gold, layer, polymer, macromolecular
Procedia PDF Downloads 3911310 Six Years Antimicrobial Resistance Trends among Bacterial Isolates in Amhara National Regional State, Ethiopia
Authors: Asrat Agalu Abejew
Abstract:
Background: Antimicrobial resistance (AMR) is a silent tsunami and one of the top global threats to health care and public health. It is one of the common agendas globally and in Ethiopia. Emerging AMR will be a double burden to Ethiopia, which is facing a series of problems from infectious disease morbidity and mortality. In Ethiopia, although there are attempts to document AMR in healthcare institutions, comprehensive and all-inclusive analysis is still lacking. Thus, this study is aimed to determine trends in AMR from 2016-2021. Methods: A retrospective analysis of secondary data recorded in the Amhara Public Health Institute (APHI) from 2016 to 2021 G.C was conducted. Blood, Urine, Stool, Swabs, Discharge, body effusions, and other Microbiological specimens were collected from each study participants, and Bacteria identification and Resistance tests were done using the standard microbiologic procedure. Data was extracted from excel in August 2022, Trends in AMR were analyzed, and the results were described. In addition, the chi-square (X2) test and binary logistic regression were used, and a P. value < 0.05 was used to determine a significant association. Results: During 6 years period, there were 25143 culture and susceptibility tests. Overall, 265 (46.2%) bacteria were resistant to 2-4 antibiotics, 253 (44.2%) to 5-7 antibiotics, and 56 (9.7%) to >=8 antibiotics. The gram-negative bacteria were 166 (43.9%), 155 (41.5%), and 55 (14.6%) resistant to 2-4, 5-7, and ≥8 antibiotics, respectively, whereas 99(50.8%), 96(49.2% and 1 (0.5%) of gram-positive bacteria were resistant to 2-4, 5-7 and ≥8 antibiotics respectively. K. pneumonia 3783 (15.67%) and E. coli 3199 (13.25%) were the most commonly isolated bacteria, and the overall prevalence of AMR was 2605 (59.9%), where K. pneumonia 743 (80.24%), E. cloacae 196 (74.81%), A. baumannii 213 (66.56%) being the most common resistant bacteria for antibiotics tested. Except for a slight decline during 2020 (6469 (25.4%)), the overall trend of AMR is rising from year to year, with a peak in 2019 (8480 (33.7%)) and in 2021 (7508 (29.9%). If left un-intervened, the trend in AMR will increase by 78% of variation from the study period, as explained by the differences in years (R2=0.7799). Ampicillin, Augmentin, ciprofloxacin, cotrimoxazole, tetracycline, and Tobramycin were almost resistant to common bacteria they were tested. Conclusion: AMR is linearly increasing during the last 6 years. If left as it is without appropriate intervention after 15 years (2030 E.C), AMR will increase by 338.7%. A growing number of multi-drug resistant bacteria is an alarm to awake policymakers and those who do have the concern to intervene before it is too late. This calls for a periodic, integrated, and continuous system to determine the prevalence of AMR in commonly used antibiotics.Keywords: AMR, trend, pattern, MDR
Procedia PDF Downloads 761309 Conductivity-Depth Inversion of Large Loop Transient Electromagnetic Sounding Data over Layered Earth Models
Authors: Ravi Ande, Mousumi Hazari
Abstract:
One of the common geophysical techniques for mapping subsurface geo-electrical structures, extensive hydro-geological research, and engineering and environmental geophysics applications is the use of time domain electromagnetic (TDEM)/transient electromagnetic (TEM) soundings. A large transmitter loop for energising the ground and a small receiver loop or magnetometer for recording the transient voltage or magnetic field in the air or on the surface of the earth, with the receiver at the center of the loop or at any random point inside or outside the source loop, make up a large loop TEM system. In general, one can acquire data using one of the configurations with a large loop source, namely, with the receiver at the center point of the loop (central loop method), at an arbitrary in-loop point (in-loop method), coincident with the transmitter loop (coincidence-loop method), and at an arbitrary offset loop point (offset-loop method), respectively. Because of the mathematical simplicity associated with the expressions of EM fields, as compared to the in-loop and offset-loop systems, the central loop system (for ground surveys) and coincident loop system (for ground as well as airborne surveys) have been developed and used extensively for the exploration of mineral and geothermal resources, for mapping contaminated groundwater caused by hazardous waste and thickness of permafrost layer. Because a proper analytical expression for the TEM response over the layered earth model for the large loop TEM system does not exist, the forward problem used in this inversion scheme is first formulated in the frequency domain and then it is transformed in the time domain using Fourier cosine or sine transforms. Using the EMLCLLER algorithm, the forward computation is initially carried out in the frequency domain. As a result, the EMLCLLER modified the forward calculation scheme in NLSTCI to compute frequency domain answers before converting them to the time domain using Fourier Cosine and/or Sine transforms.Keywords: time domain electromagnetic (TDEM), TEM system, geoelectrical sounding structure, Fourier cosine
Procedia PDF Downloads 921308 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation
Authors: Montree Bunruanses, Preecha Yupapin
Abstract:
In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate
Procedia PDF Downloads 761307 Radio Frequency Heating of Iron-Filled Carbon Nanotubes for Cancer Treatment
Authors: L. Szymanski, S. Wiak, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska
Abstract:
There exist more than one hundred different types of cancer, and therefore no particular treatment is offered to people struggling with this disease. The character of treatment proposed to a patient will depend on a variety of factors such as type of the cancer diagnosed, advancement of the disease, its location in the body, as well as personal preferences of a patient. None of the commonly known methods of cancer-fighting is recognised as a perfect cure, however great advances in this field have been made over last few decades. Once a patient is diagnosed with cancer, he is in need of medical care and professional treatment for upcoming months, and in most cases even for years. Among the principal modes of treatment offered by medical centres, one can find radiotherapy, chemotherapy, and surgery. All of them can be applied separately or in combination, and the relative contribution of each is usually determined by medical specialist in agreement with a patient. In addition to the conventional treatment option, every day more complementary and alternative therapies are integrated into mainstream care. There is one promising cancer modality - hyperthermia therapy which is based on exposing body tissues to high temperatures. This treatment is still being investigated and is not widely available in hospitals and oncological centres. There are two kinds of hyperthermia therapies with direct and indirect heating. The first is not commonly used due to low efficiency and invasiveness, while the second is deeply investigated and a variety of methods have been developed, including ultrasounds, infrared sauna, induction heating and magnetic hyperthermia. The aim of this work was to examine possibilities of heating magnetic nanoparticles under the influence of electromagnetic field for cancer treatment. For this purpose, multiwalled carbon nanotubes used as nanocarriers for iron particles were investigated for its heating properties. The samples were subjected to an alternating electromagnetic field with frequency range between 110-619 kHz. Moreover, samples with various concentrations of carbon nanotubes were examined. The lowest frequency of 110 kHz and sample containing 10 wt% of carbon nanotubes occurred to influence the most effective heating process. Description of hyperthermia therapy aiming at enhancing currently available cancer treatment was also presented in this paper. Most widely applied conventional cancer modalities such as radiation or chemotherapy were also described. Methods for overcoming the most common obstacles in conventional cancer modalities, such as invasiveness and lack of selectivity, has been presented in magnetic hyperthermia characteristics, which explained the increasing interest of the treatment.Keywords: hyperthermia, carbon nanotubes, cancer colon cells, ligands
Procedia PDF Downloads 2661306 Institutional Legitimacy and Professional Boundary: Western Medicine-Trained Doctors' Attitudes and Behaviors toward Traditional Chinese Medicine
Authors: Xiaoli Tian
Abstract:
The recent growing interest in and use of complementary and alternative medicine is a global phenomenon. In many regions, traditional Chinese medicine (TCM), an important type of complementary and alternative medicine, has been formally integrated into the healthcare system. Consequently, today’s doctors face increasing requests and questions from patients regarding TCM. However, studies of TCM focus either on patients’ approaches to TCM and Western medicine (WM) or on the politics involved in the institutionalization of TCM. To our knowledge, sociological studies on doctors’ attitudes toward TCM are rare. This paper compares the receptivity of WM-trained Chinese doctors to TCM in Hong Kong and mainland China, in order to evaluate the interplay between professional training and dominant medical paradigms, on the one hand, and institutional legitimacy and government and client pressures to accept TCM, on the other. Based on survey and in-depth interviews with Western-medicine doctors in Hong Kong and mainland China, this research finds that: there is major difference between Western-medicine doctors’ attitude toward traditional Chinese medicine (TCM) in Hong Kong and mainland China. Doctors in Hong Kong are still suspicious toward TCM, no matter if they have exposure to TCM or not. Even some doctors who have much knowledge about TCM, such as got a diploma or certificate in TCM or tried TCM themselves, are still suspicious. This is because they hold up to the ideal of 'evidence-based medicine' and emphasize the kind of evidence based on randomized controlled trial (RCT). To Western medicine doctors in Hong Kong, this is the most reliable type of evidence for any medical practice, but it is lacking in TCM. This is the major reason why they do not trust TCM and would not refer patients to TCM in clinical practices. In contrast, western medicine doctors in mainland China also know about randomized controlled trial (RCT) and believe that’s the most reliable evidence, but they tend to think experience-based evidence is also reliable. On this basis, they think TCM also has clinical effectiveness. Research findings reveal that legitimacy based on institutional arrangements is a relevant factor, but how doctors understand their professional boundaries also play an important role. Doctors in Hong Kong are more serious about a strict professional boundary between Western medicine and TCM because they benefited from it, such as a very prestigious status and high income. Doctors in mainland China tend to be flexible about professional boundaries because they never benefited from a well-defined strict professional boundary. This is related to a long history of the lack of professionalism in China but is also aggravated by the increasing state support of TCM.Keywords: evidence-based decision-making, institutional legitimacy, professional behavior, traditional Chinese medicine
Procedia PDF Downloads 1841305 Nanotechnology in Construction as a Building Security
Authors: Hanan Fayez Hussein
Abstract:
‘Due to increasing environmental challenges and security problems in the world such as global warming, storms, and terrorism’, humans have discovered new technologies and new materials in order to program daily life. As providing physical and psychological security is one of the primary functions of architecture, so in order to provide security, building must prevents unauthorized entry and harm to occupant and reduce the threat of attack by making building less attractive targets by new technologies such as; Nanotechnology, which has emerged as a major science and technology focus of the 21st century and will be the next industrial revolution. Nanotechnology is control of the properties of matter, and it deals with structures of the size 100 nanometers or smaller in at least one dimension and has wide application in various fields. The construction and architecture sectors were among the first to be identified as a promising application area for nanotechnology. The advantages of using nanomaterials in construction are enormous, and promises heighten building security by utilizing the strength of building materials to make our buildings more secure and get smart home. Access barriers such as wall and windows could incorporate stronger materials benefiting from nano-reinforcement utilizing nanotubes and nano composites to act as protective cover. Carbon nanotubes, as one of nanotechnology application, can be designed up to 250 times stronger than steel. Nano-enabled devices and materials offer both enhanced and, in some cases, completely new defence systems. In the addition, the small amount of carbon nanoparticles to the construction materials such as; cement, concrete, wood, glass, gypson, and steel can make these materials act as defence elements. This paper highlights the fact that nanotechnology can impact the future global security and how building’s envelop can act as a defensive cover for the building and can be resistance to any threats can attack it. Then focus on its effect on construction materials such as; Concrete can obtain by nanoadditives excellent mechanical, chemical, and physical properties with less material, which can acts as a precautionary shield to the building.Keywords: nanomaterial, global warming, building security, smart homes
Procedia PDF Downloads 821304 NMR-Based Metabolomic Study of Antimalarial Plant Species Used Traditionally by Vha-Venda People in Limpopo Province, South Africa
Authors: Johanna Bapela, Heino Heyman, Marion Meyer
Abstract:
Regardless of the significant advances accomplished in reducing the burden of malaria and other tropical diseases in recent years, malaria remains a major cause of mortality in endemic countries. This is especially the case in sub-Saharan Africa where 99% of the estimated global malaria deaths occurs on an annual basis. The emergence of resistant Plasmodium species and the lack of diversified chemotherapeutic agents provide the rationale for bioprospecting for antiplasmodial scaffolds. Crude extracts from twenty indigenous antimalarial plant species were screened for antimalarial activity and then subjected to 1H NMR-based metabolomic analysis. Ten plant extracts exhibited significant in vitro antiplasmodial activity (IC50 ≤ 5 µg/ml). The Principal Component Analysis (PCA) of the acquired 1H NMR spectra could not separate the analyzed plant extracts according to the detected antiplasmodial bioactivity. Application of supervised Orthogonal Projections to Latent Structures–Discriminant Analysis (OPLS-DA) to the 1H NMR profiles resulted in a discrimination pattern that could be correlated to bioactivity. A contribution plot generated from the OPLS-DA scoring plot illustrated the classes of compounds responsible for the observed grouping. Given the preliminary in vitro results, Tabernaemontana elegans Stapf. (Apocynaceae) and Vangueria infausta Burch. subsp. infausta (Rubiaceae) were subjected to further phytochemical investigations. Two indole alkaloids, dregamine and tabernaemontanine possessing antiplasmodial activity were isolated from T. elegans. Two compounds were isolated from V. infausta subsp. infausta and identified as friedelin (IC50 = 3.01 µg/ml) and morindolide (IC50 = 18.5 µg/ml). While these compounds have been previously identified, this is the first account of their occurrence in the genus Vangueria and their antiplasmodial activity. Based on the results of the study, metabolomics can be used to globally identify classes of plant secondary metabolites that are responsible for antiplasmodial activity.Keywords: ethnopharmacology, Malaria, medicinal plants, metabolomics
Procedia PDF Downloads 341