Search results for: mutual recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2158

Search results for: mutual recognition

1618 FPGA Implementation of the BB84 Protocol

Authors: Jaouadi Ikram, Machhout Mohsen

Abstract:

The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.

Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication

Procedia PDF Downloads 183
1617 Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled

Authors: Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Nedko Shivarov

Abstract:

This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person’s needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons.

Keywords: service robot, mobile robot, autonomous navigation, computer vision, web user interface, ROS

Procedia PDF Downloads 339
1616 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.

Keywords: computer vision, human motion analysis, random forest, machine learning

Procedia PDF Downloads 37
1615 Symo-syl: A Meta-Phonological Intervention to Support Italian Pre-Schoolers’ Emergent Literacy Skills

Authors: Tamara Bastianello, Rachele Ferrari, Marinella Majorano

Abstract:

The adoption of the syllabic approach in preschool programmes could support and reinforce meta-phonological awareness and literacy skills in children. The introduction of a meta-phonological intervention in preschool could facilitate the transition to primary school, especially for children with learning fragilities. In the present contribution, we want to investigate the efficacy of "Simo-syl" intervention in enhancing emergent literacy skills in children (especially for reading). Simo-syl is a 12 weeks multimedia programme developed for children to improve their language and communication skills and later literacy development in preschool. During the intervention, Simo-syl, an invented character, leads children in a series of meta-phonological games. Forty-six Italian preschool children (i.e., the Simo-syl group) participated in the programme; seventeen preschool children (i.e., the control group) did not participate in the intervention. Children in the two groups were between 4;10 and 5;9 years. They were assessed on their vocabulary, morpho-syntactical, meta-phonological, phonological, and phono-articulatory skills twice: 1) at the beginning of the last year of the preschool through standardised paper-based assessment tools and 2) one week after the intervention. All children in the Simo-syl group took part in the meta-phonological programme based on the syllabic approach. The intervention lasted 12 weeks (three activities per week; week 1: activities focused on syllable blending and spelling and a first approach to the written code; weeks 2-11: activities focused on syllables recognition; week 12: activities focused on vowels recognition). Very few children (Simo-syl group = 21, control group = 9) were tested again (post-test) one week after the intervention. Before starting the intervention programme, the Simo-syl and the control groups had similar meta-phonological, phonological, lexical skills (all ps > .05). One week after the intervention, a significant difference emerged between the two groups in their meta-phonological skills (syllable blending, p = .029; syllable spelling, p = .032), in their vowel recognition ability (p = .032) and their word reading skills (p = .05). An ANOVA confirmed the effect of the group membership on the developmental growth for the word reading task (F (1,28) = 6.83, p = .014, ηp2 = .196). Taking part in the Simo-syl intervention has a positive effect on the ability to read in preschool children.

Keywords: intervention programme, literacy skills, meta-phonological skills, syllabic approach

Procedia PDF Downloads 162
1614 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 613
1613 Locating Speed Limit Signs for Highway Tunnel Entrance and Exit

Authors: Han Bai, Lemei Yu, Tong Zhang, Doudou Xie, Liang Zhao

Abstract:

The brightness changes at highway tunnel entrance and exit have an effect on the physical and psychological conditions of drivers. It is more conducive for examining driving safety with quantitative analysis of the physical and psychological characteristics of drivers to determine the speed limit sign locations at the tunnel entrance and exit sections. In this study, the physical and psychological effects of tunnels on traffic sign recognition of drivers are analyzed; subsequently, experiments with the assistant of Eyelink-II Type eye movement monitoring system are conducted in the typical tunnels in Ji-Qing freeway and Xi-Zha freeway, to collect the data of eye movement indexes “Fixation Duration” and “Eyeball Rotating Speed”, which typically represent drivers' mental load and visual characteristics. On this basis, the paper establishes a visual recognition model for the speed limit signs at the highway tunnel entrances and exits. In combination with related standards and regulations, it further presents the recommended values for locating speed limit signs under different tunnel conditions. A case application on Panlong tunnel in Ji-Qing freeway is given to generate the helpful improvement suggestions.

Keywords: driver psychological load, eye movement index, speed limit sign location, tunnel entrance and exit

Procedia PDF Downloads 295
1612 Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement

Authors: Ladislav Ptacek, Jan Vanek, Jan Eisner, Alexandra Pruchova, Pavel Linhart, Ludek Muller, Dana Jirotkova

Abstract:

One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date.

Keywords: avian audiogram, bird individual identification, bird song processing, bird species recognition, filter bank

Procedia PDF Downloads 387
1611 Horizontal Cooperative Game Theory in Hotel Revenue Management

Authors: Ririh Rahma Ratinghayu, Jayu Pramudya, Nur Aini Masruroh, Shi-Woei Lin

Abstract:

This research studies pricing strategy in cooperative setting of hotel duopoly selling perishable product under fixed capacity constraint by using the perspective of managers. In hotel revenue management, competitor’s average room rate and occupancy rate should be taken into manager’s consideration in determining pricing strategy to generate optimum revenue. This information is not provided by business intelligence or available in competitor’s website. Thus, Information Sharing (IS) among players might result in improved performance of pricing strategy. IS is widely adopted in the logistics industry, but IS within hospitality industry has not been well-studied. This research put IS as one of cooperative game schemes, besides Mutual Price Setting (MPS) scheme. In off-peak season, hotel manager arranges pricing strategy to offer promotion package and various kinds of discounts up to 60% of full-price to attract customers. Competitor selling homogenous product will react the same, then triggers a price war. Price war which generates lower revenue may be avoided by creating collaboration in pricing strategy to optimize payoff for both players. In MPS cooperative game, players collaborate to set a room rate applied for both players. Cooperative game may avoid unfavorable players’ payoff caused by price war. Researches on horizontal cooperative game in logistics show better performance and payoff for the players, however, horizontal cooperative game in hotel revenue management has not been demonstrated. This paper aims to develop hotel revenue management models under duopoly cooperative schemes (IS & MPS), which are compared to models under non-cooperative scheme too. Each scheme has five models, Capacity Allocation Model; Demand Model; Revenue Model; Optimal Price Model; and Equilibrium Price Model. Capacity Allocation Model and Demand Model employs self-hotel and competitor’s full and discount price as predictors under non-linear relation. Optimal price is obtained by assuming revenue maximization motive. Equilibrium price is observed by interacting self-hotel’s and competitor’s optimal price under reaction equation. Equilibrium is analyzed using game theory approach. The sequence applies for three schemes. MPS Scheme differently aims to optimize total players’ payoff. The case study in which theoretical models are applied observes two hotels offering homogenous product in Indonesia during a year. The Capacity Allocation, Demand, and Revenue Models are built using multiple regression and statistically tested for validation. Case study data confirms that price behaves within demand model in a non-linear manner. IS Models can represent the actual demand and revenue data better than Non-IS Models. Furthermore, IS enables hotels to earn significantly higher revenue. Thus, duopoly hotel players in general, might have reasonable incentives to share information horizontally. During off-peak season, MPS Models are able to predict the optimal equal price for both hotels. However, Nash equilibrium may not always exist depending on actual payoff of adhering or betraying mutual agreement. To optimize performance, horizontal cooperative game may be chosen over non-cooperative game. Mathematical models can be used to detect collusion among business players. Empirical testing can be used as policy input for market regulator in preventing unethical business practices potentially harming society welfare.

Keywords: horizontal cooperative game theory, hotel revenue management, information sharing, mutual price setting

Procedia PDF Downloads 289
1610 Recognizing Human Actions by Multi-Layer Growing Grid Architecture

Authors: Z. Gharaee

Abstract:

Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.

Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance

Procedia PDF Downloads 157
1609 In Support of Sustainable Water Resources Development in the Lower Mekong River Basin: Development of Guidelines for Transboundary Environmental Impact Assessment

Authors: Kongmeng Ly

Abstract:

The management of transboundary river basins across developing countries, such as the Lower Mekong River Basin (LMB), is frequently challenging given the development and conservation divergences of the basin countries. Driven by needs to sustain economic performance and reduce poverty, the LMB countries (Cambodia, Lao PDR, Thailand, Viet Nam) are embarking on significant land use changes in the form hydropower dam, to fulfill their energy requirements. This pathway could lead to irreversible changes to the ecosystem of the Mekong River, if not properly managed. Given the uncertain trade-offs of hydropower development and operation, the Lower Mekong River Basin Countries through the technical support of the Mekong River Commission (MRC) Secretariat embarked on decade long the development of Technical Guidelines for Transboundary Environmental Impact Assessment. Through a series of workshops, seminars, national and regional consultations, and pilot studies and further development following the recommendations generated through legal and institutional reviews undertaken over two decades period, the LMB Countries jointly adopted the MRC Technical Guidelines for Transboundary Environmental Impact Assessment (TbEIA Guidelines). These guidelines were developed with particular regard to the experience gained from MRC supported consultations and technical reviews of the Xayaburi Dam Project, Don Sahong Hydropower Project, Pak Beng Hydropower Project, and lessons learned from the Srepok River and Se San River case studies commissioned by the MRC under the generous supports of development partners around the globe. As adopted, the TbEIA Guidelines have been designed as a supporting mechanism to the national EIA legislation, processes and systems in each Member Country. In recognition of the already agreed mechanisms, the TbEIA Guidelines build on and supplement the agreements stipulated in the 1995 Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin and its Procedural Rules, in addressing potential transboundary environmental impacts of development projects and ensuring mutual benefits from the Mekong River and its resources. Since its adoption in 2022, the TbEIA Guidelines have already been voluntary implemented by Lao PDR on its underdevelopment Sekong A Downstream Hydropower Project, located on the Sekong River – a major tributary of the Mekong River. While this implementation is ongoing with results expected in early 2024, the implementation thus far has strengthened cooperation among concerned Member Countries with multiple successful open dialogues organized at national and regional levels. It is hope that lessons learnt from this application would lead to a wider application of the TbEIA Guidelines for future water resources development projects in the LMB.

Keywords: transboundary, EIA, lower mekong river basin, mekong river

Procedia PDF Downloads 37
1608 The Hijras of Odisha: A Study of the Self-Identity of the Eunuchs and Their Identification with Stereotypical Feminine Roles

Authors: Purnima Anjali Mohanty, Mousumi Padhi

Abstract:

Background of the study: In the background of the passage of the Transgender Bill 2016, which is the first such step of formal recognition of the rights of transgender, the Hijras have been recognized under the wider definition of Transgender. Fascinatingly, in the Hindu social context, Hijras have a long social standing during marriages and childbirths. Other than this ironically, they live an ostracized life. The Bill rather than recognizing their unique characteristics and needs, reinforces the societal dualism through a parallelism of their legal rights with rights available to women. Purpose of the paper: The research objective was to probe why and to what extent did they identify themselves with the feminine gender roles. Originality of the paper: In the Indian context, the subject of eunuch has received relatively little attention. Among the studies that exist, there has been a preponderance of studies from the perspective of social exclusion, rights, and physical health. There has been an absence of research studying the self-identity of Hijras from the gender perspective. Methodology: The paper adopts the grounded theory method to investigate and discuss the underlying gender identity of transgenders. Participants in the study were 30 hijras from various parts of Odisha. 4 Focus group discussions were held for collecting data. The participants were approached in their natural habitat. Following the methodological recommendations of the grounded theory, care was taken to select respondents with varying experiences. The recorded discourses were transcribed verbatim. The transcripts were analysed sentence by sentence, and coded. Common themes were identified, and responses were categorized under the themes. Data collected in the latter group discussions were added till saturation of themes. Finally, the themes were put together to prove that despite the demand for recognition as third gender, the eunuchs of Odisha identify themselves with the feminine roles. Findings: The Hijra have their own social structure and norms which are unique and are in contrast with the mainstream culture. These eunuchs live and reside in KOTHIS (house), where the family is led by a matriarch addressed as Maa (mother) with her daughters (the daughters are eunuchs/effeminate men castrated and not castrated). They all dress up as woman, do womanly duties, expect to be considered and recognized as woman and wife and have the behavioral traits of a woman. Looking from the stance of Feminism one argues that when the Hijras identify themselves with the gender woman then on what grounds they are given the recognition as third gender. As self-identified woman; their claim for recognition as third gender falls flat. Significance of the study: Academically it extends the study of understanding of gender identity and psychology of the Hijras in the Indian context. Practically its significance is far reaching. The findings can be used to address legal and social issues with regards to the rights available to the Hijras.

Keywords: feminism, gender perspective, Hijras, rights, self-identity

Procedia PDF Downloads 432
1607 The Tiv Oral Poet and Taraba Crisis: Anger, Frustration and Uncotrollable Emotionalism in Obadia Kehemen Orkor's Ballads

Authors: Peter Nave Shirga

Abstract:

Obadia Kehemen Orkor’s songs that focus on the predicament of the Tiv man in Taraba in North Central Nigeria handle themes such as poverty, social inequality, discrimination and tyranny perpetrated by Jukun against the Tiv. The major thrust of his focus in the songs is the overriding longing for mutual understanding between the Jukun and Tiv that would usher in love, equality, peace and harmonious co-existence for the two antagonistic ethnic groups. This paper examines Obadia’s hard-hitting lyrics that reveal the anger, frustration and boiling emotionalism of Tiv people in Taraba state of Nigeria.

Keywords: poet, crisis, emotionalism, frustration

Procedia PDF Downloads 308
1606 Cognitive Development Theories as Determinant of Children's Brand Recall and Ad Recognition: An Indian Perspective

Authors: Ruchika Sharma

Abstract:

In the past decade, there has been an explosion of research that has examined children’s understanding of TV advertisements and its persuasive intent, socialization of child consumer and child psychology. However, it is evident from the literature review that no studies in this area have covered advertising messages and its impact on children’s brand recall and ad recognition. Copywriters use various creative devices to lure the consumers and very impressionable consumers such as children face far more drastic effects of these creative ways of persuasion. On the basis of Piaget’s theory of cognitive development as a theoretical basis for predicting/understanding children’s response and understanding, a quasi-experiment was carried out for the study, that manipulated measurement timing and advertising messages (familiar vs. unfamiliar) keeping gender and age group as two prominent factors. This study also examines children’s understanding of Advertisements and its elements, predominantly - Language, keeping in view Fishbein’s model. Study revealed significant associations between above mentioned factors and children’s brand recall and ad identification. Further, to test the reliability of the findings on larger sample, bootstrap simulation technique was used. The simulation results are in accordance with the findings of experiment, suggesting that the conclusions obtained from the study can be generalized for entire children’s (as consumers) market in India.

Keywords: advertising, brand recall, cognitive development, preferences

Procedia PDF Downloads 291
1605 Film Diplomacy: An Approach to International Relations

Authors: Lawrence Akande

Abstract:

Despite the efforts of African countries' governments and the foreign countries' governments, there are cautions between the people of Africa and the people of other countries. The cautions are based on the ideology of misconception, which comes from the narratives about Africa and African people and narratives about other people also. The film is a medium of educating people about people from foreign countries they have never been to. Negative or misconceived narratives about a people will affect the relations between the peoples, despite the efforts of the government. Using pop-culture medium of film as a diplomatic tool will promote mutual understanding and respect.

Keywords: film diplomacy, international relations, narratives, Nollywood, partnership

Procedia PDF Downloads 202
1604 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots

Procedia PDF Downloads 235
1603 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 176
1602 An Event-Related Potential Study of Individual Differences in Word Recognition: The Evidence from Morphological Knowledge of Sino-Korean Prefixes

Authors: Jinwon Kang, Seonghak Jo, Joohee Ahn, Junghye Choi, Sun-Young Lee

Abstract:

A morphological priming has proved its importance by showing that segmentation occurs in morphemes when visual words are recognized within a noticeably short time. Regarding Sino-Korean prefixes, this study conducted an experiment on visual masked priming tasks with 57 ms stimulus-onset asynchrony (SOA) to see how individual differences in the amount of morphological knowledge affect morphological priming. The relationship between the prime and target words were classified as morphological (e.g., 미개척 migaecheog [unexplored] – 미해결 mihaegyel [unresolved]), semantical (e.g., 친환경 chinhwangyeong [eco-friendly]) – 무공해 mugonghae [no-pollution]), and orthographical (e.g., 미용실 miyongsil [beauty shop] – 미확보 mihwagbo [uncertainty]) conditions. We then compared the priming by configuring irrelevant paired stimuli for each condition’s control group. As a result, in the behavioral data, we observed facilitatory priming from a group with high morphological knowledge only under the morphological condition. In contrast, a group with low morphological knowledge showed the priming only under the orthographic condition. In the event-related potential (ERP) data, the group with high morphological knowledge presented the N250 only under the morphological condition. The findings of this study imply that individual differences in morphological knowledge in Korean may have a significant influence on the segmental processing of Korean word recognition.

Keywords: ERP, individual differences, morphological priming, sino-Korean prefixes

Procedia PDF Downloads 215
1601 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
1600 An Ontological Approach to Existentialist Theatre and Theatre of the Absurd in the Works of Jean-Paul Sartre and Samuel Beckett

Authors: Gülten Silindir Keretli

Abstract:

The aim of this study is to analyse the works of playwrights within the framework of existential philosophy. It is to observe the ontological existence in the plays of No Exit and Endgame. Literary works will be discussed separately in each section of this study. The despair of post-war generation of Europe problematized the ‘human condition’ in every field of literature which is the very product of social upheaval. With this concern in his mind, Sartre’s creative works portrayed man as a lonely being, burdened with terrifying freedom to choose and create his own meaning in an apparently meaningless world. The traces of the existential thought are to be found throughout the history of philosophy and literature. On the other hand, the theatre of the absurd is a form of drama showing the absurdity of the human condition and it is heavily influenced by the existential philosophy. Beckett is the most influential playwright of the theatre of the absurd. The themes and thoughts in his plays share many tenets of the existential philosophy. The existential philosophy posits the meaninglessness of existence and it regards man as being thrown into the universe and into desolate isolation. To overcome loneliness and isolation, the human ego needs recognition from the other people. Sartre calls this need of recognition as the need for ‘the Look’ (Le regard) from the Other. In this paper, existentialist philosophy and existentialist angst will be elaborated and then the works of existentialist theatre and theatre of absurd will be discussed within the framework of existential philosophy.

Keywords: consciousness, existentialism, the notion of the absurd, the other

Procedia PDF Downloads 158
1599 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique

Authors: Ahmet Karagoz, Irfan Karagoz

Abstract:

Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.

Keywords: automatic target recognition, sparse representation, image classification, SAR images

Procedia PDF Downloads 366
1598 Research on the Application of Flexible and Programmable Systems in Electronic Systems

Authors: Yang Xiaodong

Abstract:

This article explores the application and structural characteristics of flexible and programmable systems in electronic systems, with a focus on analyzing their advantages and architectural differences in dealing with complex environments. By introducing mathematical models and simulation experiments, the performance of dynamic module combination in flexible systems and fixed path selection in programmable systems in resource utilization and performance optimization was demonstrated. This article also discusses the mutual transformation between the two in practical applications and proposes a solution to improve system flexibility and performance through dynamic reconfiguration technology. This study provides theoretical reference for the design and optimization of flexible and programmable systems.

Keywords: flexibility, programmable, electronic systems, system architecture

Procedia PDF Downloads 9
1597 Being Your Own First Responder: A Training to Identify and Respond to Mental Health

Authors: Joe Voshall, Leigha Shoup

Abstract:

In 2022, the Ohio Peace Officer Training Council and the Attorney General required officers to complete a minimum of 24 hours of continued professional training for the year. Much of the training was based on Mental Health or similarly related topics. This includes Officer Wellness and Officer Mental Health. It is becoming clearer that the stigma of Officer / First Responder Mental Health is a topic that is becoming more prevalently faced. To assist officers and first responders in facing mental health issues, we are developing new training. This training will aid in recognizing mental health-related issues in officers/first responders and citizens, as well as further using the same information to better respond and interact with one another and the public. In general, society has many varying views of mental health, much of which is largely over-sensationalized by television, movies, and other forms of entertainment. There has also been a stigma in law enforcement / first responders related to mental health and being weak as a result of on-the-job-related trauma-induced struggles. It is our hope this new training will assist officers and first responders in not only positively facing and addressing their mental health but using their own experience and education to recognize signs and symptoms of mental health within individuals in the community. Further, we hope that through this recognition, officers and first responders can use their experiences and more in-depth understanding to better interact within the field and with the public. Through recognition and better understanding of mental health issues and more positive interaction with the public, additional achievements are likely to result. This includes in the removal of bias and stigma for everyone.

Keywords: law enforcement, mental health, officer related mental health, trauma

Procedia PDF Downloads 164
1596 The Zen Socrates Archetype and the Priority of the Unanswerable Question

Authors: Shawn Thompson

Abstract:

Socrates and Zen Buddhism are separated by time, distance, and cultures in a way that it is unlikely that they influenced each other. And yet the two have an amazing similarity in the principle that paradoxical and unanswerable questions can be a form of wisdom that produces a healthy psyche. Both have a sense that the limit of human awareness is a wisdom of this uncertainty. Both are at odds with the dogma of answers and of a western rationality that prioritizes the answer. Both have enigmatic answers that perpetuate the question. Both use the form of a dialogue of interaction with mutual illumination rather than the form of a lecture to passive recipients. If these premises are true, Socrates and Zen Buddhism has elements in common that reflect basic human needs for a good life. It can be argued that there is a joint archetypal experience of the wisdom of uncertainty and unanswerable questions in Socrates and Zen Buddhism.

Keywords: zen buddhism, socrates, unanswerable questions, aporia

Procedia PDF Downloads 75
1595 Mirrors and Lenses: Multiple Views on Recognition in Holocaust Literature

Authors: Kirsten A. Bartels

Abstract:

There are a number of similarities between survivor literature and Holocaust fiction for children and young adults. The paper explores three facets of the parallels of recognition found specifically between Livia Bitton-Jackson’s memoir of her experience during the Holocaust as an inmate in Auschwitz, I Have Lived a Thousand Years (1999) and Morris Glietzman series of Holocaust fiction. While Bitton-Jackson reflects on her past and Glietzman designs a fictive character, both are judicious with what they are willing to impart, only providing information about their appearance or themselves when it impacts others or when it serves a necessary purpose to the story. Another similarity lies in another critical aspect of many works of Holocaust literature – the idea of being ‘representatively Jewish’. The authors come to this idea from different angles, perhaps best explained as the difference between showing and telling, for Bitton-Jackson provides personal details, and Gleitzman constructed Felix arguably with this idea in mind. Interwoven through their journeys is a shift in perspectives on being recognized -- from wanting to be seen as individuals to being seen as Jew. With this, being Jewish takes on different meaning, both youths struggle with being labeled as something they do not truly understand, and may have not truly identified with, from a label, to a death warrant. With survivor literature viewed as the most credible and worthwhile type of Holocaust literature and Holocaust fiction is often seen as the least (with children’s and young-adult being the lowest form) the similarities in approaches to telling the stories may go overlooked or be undervalued. This paper serves as an exploration in the some of parallel messages shared between the two.

Keywords: holocaust fiction, Holocaust literature, representatively Jewish, survivor literature

Procedia PDF Downloads 169
1594 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 311
1593 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 75
1592 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420
1591 A Study on the Mechanism of the Regeneration of ‘Villages-in-City’ under Rapid Urbanization: Cases Study of Luojiazhuang

Authors: Mengying Du, Xiang Chen

Abstract:

‘villages-in-city’ is the unique product of rapid urbanization in China which embodies the contradiction between historical context and urbanization. This article mainly analyzes the corresponding strategy to the common problems such as urban texture, historical context, community structure, and industry pattern during the regeneration of ‘villages-in-city’ of Luojiazhuang. Taking government investment, community demands, the trend of urban renewal and transformation models of the ‘villages-in-city’ into consideration, the author propose a mechanism to balance those factors, and to achieve mutual confirmation with the instance of Luojiazhuang.

Keywords: community demands, historical context, villages-in-city, urbanization

Procedia PDF Downloads 308
1590 Lesson of Moral Teaching of the Sokoto Caliphate in the Quest for Genuine National Development in Nigeria

Authors: Murtala Marafa

Abstract:

It’s been 50 years now since we began the desperate search for a genuine all round development as a nation. Painfully though, like a wild goose chase, the search for that promised land had remain elusive. In this piece, recourse is made to the sound administrative qualities of the 19th century Sokoto Caliphate leaders. It enabled them to administer the vast entity on the basis of mutual peace and justice. It also guaranteed a just political order built on a sound and viable economy. The paper is of the view that if the Nigerian society can allow for a replication of such moral virtues as exemplified by the founding fathers of the Caliphate, Nigeria could transform into a politically coherent and economically viable nation aspired by all.

Keywords: administration, religion, sokoto caliphate, moral teachings

Procedia PDF Downloads 273
1589 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging

Authors: Ashraf Abuelhaija, Klaus Solbach

Abstract:

In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.

Keywords: EM coupling, inter-element isolation, magnetic resonance imaging (mri), parallel transmit

Procedia PDF Downloads 495