Search results for: cybernetic model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16330

Search results for: cybernetic model

15790 The Status of BIM Adoption in Six Continents

Authors: Wooyoung Jung, Ghang Lee

Abstract:

This paper paper reports the worldwide status of building information modeling (BIM) adoption from the perspectives of the engagement level, the Hype Cycle model, the technology diffusion model, and BIM-uses. An online survey was distributed, and 156 experts from six continents responded. Overall, North America was the most advanced continent, followed by Oceania and Europe. Countries in Asia perceived their phase mainly as slope of enlightenment (mature) in the Hype Cycle model. In the technology diffusion model, the main BIM-users worldwide were “early majority” (third phase), but those in the Middle East/Africa and South America were “early adopters” (second phase). In addition, the more advanced the country, the more number of BIM services employed in general. In summary, North America, Europe, Oceania, and Asia were advancing rapidly toward the mature stage of BIM, whereas the Middle East/Africa and South America were still in the early phase. The simple indexes used in this study may be used to track the worldwide status of BIM adoption in long-term surveys.

Keywords: BIM adoption, BIM services, hype cycle model, technology diffusion model

Procedia PDF Downloads 530
15789 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport

Procedia PDF Downloads 418
15788 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security

Authors: Lynndee Kemmet

Abstract:

The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.

Keywords: food security, food system model, political stability, US Military

Procedia PDF Downloads 170
15787 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.

Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation

Procedia PDF Downloads 200
15786 A Study on Automotive Attack Database and Data Flow Diagram for Concretization of HEAVENS: A Car Security Model

Authors: Se-Han Lee, Kwang-Woo Go, Gwang-Hyun Ahn, Hee-Sung Park, Cheol-Kyu Han, Jun-Bo Shim, Geun-Chul Kang, Hyun-Jung Lee

Abstract:

In recent years, with the advent of smart cars and the expansion of the market, the announcement of 'Adventures in Automotive Networks and Control Units' at the DEFCON21 conference in 2013 revealed that cars are not safe from hacking. As a result, the HEAVENS model considering not only the functional safety of the vehicle but also the security has been suggested. However, the HEAVENS model only presents a simple process, and there are no detailed procedures and activities for each process, making it difficult to apply it to the actual vehicle security vulnerability check. In this paper, we propose an automated attack database that systematically summarizes attack vectors, attack types, and vulnerable vehicle models to prepare for various car hacking attacks, and data flow diagrams that can detect various vulnerabilities and suggest a way to materialize the HEAVENS model.

Keywords: automotive security, HEAVENS, car hacking, security model, information security

Procedia PDF Downloads 327
15785 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 61
15784 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis

Authors: J. Ritonja, B. Grcar

Abstract:

For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.

Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator

Procedia PDF Downloads 222
15783 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA

Procedia PDF Downloads 275
15782 Further Investigation of α+12C and α+16O Elastic Scattering

Authors: Sh. Hamada

Abstract:

The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.

Keywords: density distribution, double folding, elastic scattering, nuclear rainbow, optical model

Procedia PDF Downloads 206
15781 Computational Model of Human Cardiopulmonary System

Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek

Abstract:

The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.

Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine

Procedia PDF Downloads 147
15780 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.

Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)

Procedia PDF Downloads 53
15779 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model

Authors: Li Chen, Alex Skvortsov, Chris Norwood

Abstract:

Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.

Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model

Procedia PDF Downloads 262
15778 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 154
15777 Interoperable Design Coordination Method for Sharing Communication Information Using Building Information Model Collaboration Format

Authors: Jin Gang Lee, Hyun-Soo Lee, Moonseo Park

Abstract:

The utilization of BIM and IFC allows project participants to collaborate across different areas by consistently sharing interoperable product information represented in a model. Comments or markups generated during the coordination process can be categorized as communication information, which can be shared in less standardized manner. It can be difficult to manage and reuse such information compared to the product information in a model. The present study proposes an interoperable coordination method using BCF (the BIM Collaboration Format) for managing and sharing the communication information during BIM based coordination process. A management function for coordination in the BIM collaboration system is developed to assess its ability to share the communication information in BIM collaboration projects. This approach systematically links communication information during the coordination process to the building model and serves as a type of storage system for retrieving knowledge created during BIM collaboration projects.

Keywords: design coordination, building information model, BIM collaboration format, industry foundation classes

Procedia PDF Downloads 398
15776 Economical Dependency Evolution and Complexity

Authors: Allé Dieng, Mamadou Bousso, Latif Dramani

Abstract:

The purpose of this work is to show the complexity behind economical interrelations in a country and provide a linear dynamic model of economical dependency evolution in a country. The model is based on National Transfer Account which is one of the most robust methodology developed in order to measure a level of demographic dividend captured in a country. It is built upon three major factors: demography, economical dependency and migration. The established mathematical model has been simulated using Netlogo software. The innovation of this study is in describing economical dependency as a complex system and simulating using mathematical equation the evolution of the two populations: the economical dependent and the non-economical dependent as defined in the National Transfer Account methodology. It also allows us to see the interactions and behaviors of both populations. The model can track individual characteristics and look at the effect of birth and death rates on the evolution of these two populations. The developed model is useful to understand how demographic and economic phenomenon are related

Keywords: ABM, demographic dividend, National Transfer Accounts (NTA), ODE

Procedia PDF Downloads 169
15775 Analysis of the Contribution of Drude and Brendel Model Terms to the Dielectric Function

Authors: Christopher Mkirema Maghanga, Maurice Mghendi Mwamburi

Abstract:

Parametric modeling provides a means to deeper understand the properties of materials. Drude, Brendel, Lorentz and OJL incorporated in SCOUT® software are some of the models used to study dielectric films. In our work, we utilized Brendel and Drude models to extract the optical constants from spectroscopic data of fabricated undoped and niobium doped titanium oxide thin films. The individual contributions by the two models were studied to establish how they influence the dielectric function. The effect of dopants on their influences was also analyzed. For the undoped films, results indicate minimal contribution from the Drude term due to the dielectric nature of the films. However as doping levels increase, the rise in the concentration of free electrons favors the use of Drude model. Brendel model was confirmed to work well with dielectric films - the undoped titanium Oxide films in our case.

Keywords: modeling, Brendel model, optical constants, titanium oxide, Drude Model

Procedia PDF Downloads 159
15774 A Multicriteria Mathematical Programming Model for Farm Planning in Greece

Authors: Basil Manos, Parthena Chatzinikolaou, Fedra Kiomourtzi

Abstract:

This paper presents a Multicriteria Mathematical Programming model for farm planning and sustainable optimization of agricultural production. The model can be used as a tool for the analysis and simulation of agricultural production plans, as well as for the study of impacts of various measures of Common Agriculture Policy in the member states of European Union. The model can achieve the optimum production plan of a farm or an agricultural region combining in one utility function different conflicting criteria as the maximization of gross margin and the minimization of fertilizers used, under a set of constraints for land, labor, available capital, Common Agricultural Policy etc. The proposed model was applied to the region of Larisa in central Greece. The optimum production plan achieves a greater gross return, a less fertilizers use, and a less irrigated water use than the existent production plan.

Keywords: sustainable optimization, multicriteria analysis, agricultural production, farm planning

Procedia PDF Downloads 578
15773 A Comparative Analysis of E-Government Quality Models

Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri

Abstract:

Many quality models have been used to measure e-government portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals.

Keywords: e-government, portal, best practices, quality model, ISO, standard, ISO 25010, ISO 9126

Procedia PDF Downloads 531
15772 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 58
15771 Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje

Authors: Ozden Saygili, Eser Cakti

Abstract:

The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed.

Keywords: dynamic analysis, non-linear modeling, shake table tests, masonry

Procedia PDF Downloads 392
15770 Tolerating Input Faults in Asynchronous Sequential Machines

Authors: Jung-Min Yang

Abstract:

A method of tolerating input faults for input/state asynchronous sequential machines is proposed. A corrective controller is placed in front of the considered asynchronous machine to realize model matching with a reference model. The value of the external input transmitted to the closed-loop system may change by fault. We address the existence condition for the controller that can counteract adverse effects of any input fault while maintaining the objective of model matching. A design procedure for constructing the controller is outlined. The proposed reachability condition for the controller design is validated in an illustrative example.

Keywords: asynchronous sequential machines, corrective control, fault tolerance, input faults, model matching

Procedia PDF Downloads 395
15769 The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model

Authors: Gürkan Şakar, Fevzi Çakmak Bolat

Abstract:

In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.

Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model

Procedia PDF Downloads 399
15768 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents

Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract:

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles

Procedia PDF Downloads 421
15767 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification

Procedia PDF Downloads 283
15766 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 323
15765 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.

Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables

Procedia PDF Downloads 306
15764 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran

Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi

Abstract:

Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.

Keywords: watershed simulation, WetSpa, stream flow, flood prediction

Procedia PDF Downloads 224
15763 Reinforcement Learning for Self Driving Racing Car Games

Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh

Abstract:

This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.

Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming

Procedia PDF Downloads 14
15762 Developing a Sustainable Business Model for Platform-Based Applications in Small and Medium-Sized Enterprise Sawmills: A Systematic Approach

Authors: Franziska Mais, Till Gramberg

Abstract:

The paper presents the development of a sustainable business model for a platform-based application tailored for sawing companies in small and medium-sized enterprises (SMEs). The focus is on the integration of sustainability principles into the design of the business model to ensure a technologically advanced, legally sound, and economically efficient solution. Easy2IoT is a research project that aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements, and potential solutions for smart services are derived. The structuring of the business ecosystem within the application plays a central role, whereby the roles of the partners, the management of the IT infrastructure and services, as well as the design of a sustainable operator model are considered. The business model is developed using the value proposition canvas, whereby a detailed analysis of the requirements for the business model is carried out, taking sustainability into account. This includes coordination with the business model patterns, according to Gassmann, and integration into a business model canvas for the Easy2IoT product. Potential obstacles and problems are identified and evaluated in order to formulate a comprehensive and sustainable business model. In addition, sustainable payment models and distribution channels are developed. In summary, the article offers a well-founded insight into the systematic development of a sustainable business model for platform-based applications in SME sawmills, with a particular focus on the synergy of ecological responsibility and economic efficiency.

Keywords: business model, sustainable business model, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 40
15761 Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies

Authors: Lei Zhao, Zhe Yuan, Wenyue Kuang

Abstract:

This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions.

Keywords: FIFO model, inventory-level-dependent, LIFO model, two-warehouse inventory

Procedia PDF Downloads 255