Search results for: collagen silver lipid nanoparticles (CSLNs)
1914 Applications of Nanoparticles via Laser Ablation in Liquids: A Review
Authors: Fawaz M. Abdullah, Abdulrahman M. Al-Ahmari, Madiha Rafaqat
Abstract:
Laser ablation of any solid target in the liquid leads to fabricate nanoparticles (NPs) with metal or different compositions of materials such as metals, alloys, oxides, carbides, hydroxides. The fabrication of NPs in liquids based on laser ablation has grown up rapidly in the last decades compared to other techniques. Nowadays, laser ablation has been improved to prepare different types of NPs with special morphologies, microstructures, phases, and sizes, which can be applied in various fields. The paper reviews and highlights the different sizes, shapes and application field of nanoparticles that are produced by laser ablation under different liquids and materials. Also, the paper provides a case study for producing a titanium NPs produced by laser ablation submerged in distilled water. The size of NPs is an important parameter, especially for their usage and applications. The size and shape have been analyzed by SEM, (EDAX) was applied to evaluate the oxidation and elements of titanium NPs and the XRD was used to evaluate the phase composition and the peaks of both titanium and some element. SEM technique showed that the synthesized NPs size ranges were between 15-35 nm which can be applied in various field such as annihilator for cancerous cell etc.Keywords: nanoparticles, laser ablation, titanium NPs, applications
Procedia PDF Downloads 1371913 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence
Authors: Rafik Bouakkaz
Abstract:
A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle
Procedia PDF Downloads 1901912 Effect of Long-Term Boron Exposure on Liver Structure of Adult Male Albino Rats and a Possible Role of Vitamin C
Authors: Ola Abdel-Tawab Hussein
Abstract:
Background: Boron is a naturally occurring agent and an essential trace element of human, animals and higher plants. It is released in the form of boric acid (BA) that is water soluble and biolologically available. Its largest uses are in glass, detergents, agriculture, leather tanning industries, cosmetics, photographic materials, soaps and cleaners. Human consume daily few milligrams in the water, fruits and vegetables. High doses of boron had been recorded to be developmental and reproductive toxin in animals(Only few studies on human had investigated the health effects associated with exposure to boron. Vitamin C is a major water soluble non-enzymatic antioxidant, acts to overcome the oxidative stress. Aim of the work: However , the liver is exposed to toxic substances that are absorbed, degraded or conjugated there were little information exists about the effects of boron that it would specifically have in the liver tissue of experimental rats. So the present work aimed to study the effects of long-term boron ingestion on histological structural of the liver of adult male albino rats and to evaluate the protective role of vitamin C against induced changes. Material and Methods: 30 adult male albino rats were divided into 3 equal groups; Group I: control, Group II: recieved drinking water containing 55x10-6 gm boron/liter for 90 days and Group III: recieved vitamin C (200mg/Kg.B.W) orally concomitant with boron for the same period. liver specimens were processed for light and electron microscopic(TEM) study. Results: Examination of the liver sections of group II revealed foci of severe dilatation and congestion of central and portal veins with mononuclear cellular infiltration and hepatocellular vacuolation. Increased collagen deposition specially around the portal areas. Marked electrolucent areas in the cytoplasm, heterochromatic nuclei and destroyed organelles of the hepatocytes. Apoptotic cells were observed and decreased lipid content of ito cells. In Group III the co administration of vitamin C improved most of the structural changes of the hepatocytes, Ito cells, increased binucleated cells and decreased collagen fibers deposition. Conclusion: Thus, the long term exposure to boron, induced histological changes on the structure of liver. The co administration of vitamin C improved most of these structural changes.Keywords: boron, liver, vitamin C, rats
Procedia PDF Downloads 3441911 Preformed Au Colloidal Nanoparticles Immobilised on NiO as Highly Efficient Heterogeneous Catalysts for Reduction of 4-Nitrophenol to 4-Aminophenol
Authors: Khaled Alshammari
Abstract:
A facile approach to synthesizing highly active and stable Au/NiO catalysts for the hydrogenation of nitro-aromatics is reported. Preformed gold nanoparticles have been immobilized onto NiO using a colloidal method. In this article, the reduction of 4-nitrophenol with NaBH4 has been used as a model reaction to investigate the catalytic activity of synthesized Au/NiO catalysts. In addition, we report a systematic study of the reduction kinetics and the influence of specific reaction parameters such as (i) temperature, (ii) stirring rate, (iii) sodium borohydride concentration and (iv) substrate/metal molar ratio. The reaction has been performed at a substrate/metal molar ratio of 7.4, a ratio significantly higher than previously reported. The reusability of the catalyst has been examined, with little to no decrease in activity observed over 5 catalytic cycles. Systematic variation of Au loading reveals the successful synthesis of low-cost and efficient Au/NiO catalysts at very low Au content and using high substrate/metal molar ratios.Keywords: nonochemistry, catalyst, nanoparticles supported, characterization of materials, colloidal nanoparticles
Procedia PDF Downloads 621910 Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage
Authors: Sajid Maqsood, Aysha Al Rashedi, Aisha Abushelaibi, Kusaimah Manheem
Abstract:
Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves.Keywords: natural antioxidants, lipid oxidation, quality, camel meat
Procedia PDF Downloads 4321909 PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization
Authors: Magdalena Hałupka-Bryl, Magdalena Bednarowicz, Ryszard Krzyminiewski, Yukio Nagasaki
Abstract:
Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.Keywords: targeted drug delivery, magnetic properties, iron oxide nanoparticles, biodistribution
Procedia PDF Downloads 4621908 The Effects of Acid Rain, Smog Cars on Antioxidant Systems, Associated Enzyme and H⁺-ATPase Activity in Rice Cultivars (Oriza sativa L.)
Authors: Heidarali Malmir
Abstract:
The effects of acid rain (AR), smog’s cars (SC), and combined AR+SC on the antioxidants enzymes, lipid-soluble antioxidants, and water-soluble antioxidants were studied in the two cultivars of rice. The results showed that simulated AR significantly increased the total glutathione (TGSH), thiobarbituric acid (TBA), and α-tocopherol, accompanied by decreases in dry weight and leaves area in the two cultivars, and this change was more obvious in Shirudi cultivar than in Aus cultivar (p≤0.05). Under SC stress cultivar shirudi had higher H+-ATPase, glutathione peroxidase (GSH-px), and catalase (CAT) activities than cultivar Aus. The results of superoxide dismutase (SOD) activity, TGSH, and α-tocopherol levels affected by AR treatments were very different to those of SOD activity, TGSH, and α-tocopherol levels, as shown in SC treatment. It seems that SOD activity coupled with the water-soluble antioxidants and α-tocopherol levels correlated with the lipid-soluble antioxidants. It is suggested that α-tocopherol increases H+-ATPase activity.Keywords: H+-ATPase, membrane permeability, lipid soluble antioxidants, water soluble antioxidants, associated enzyme
Procedia PDF Downloads 831907 Biosynthesis of Selenium Oxide Nanoparticles by Streptomyces bikiniensis and Its Cytotoxicity as Antitumor Agents against Hepatocellular and Breast Cells Carcinoma
Authors: Maged Syed Ahamd, Manal Mohamed Yasser, Essam Sholkamy
Abstract:
In this paper, we reported that selenium (Se) nanoparticles were firstly biosynthesized with a simple and eco-friendly biological method. Their shape, size, FTIR (Fourier Transform Infrared spectroscopy), UV–vis spectra, TEM (Transmission Electron Microscopy) images and EDS (Energy Dispersive Spectroscopy) pattern have been analyzed. TEM analyses of the samples obtained at different stages indicated that the formation of these Se nanostructures was governed by an incubation time (12- 24- 48 hours). The Se nanoparticles were initially generated and then would transform into crystal seeds for the subsequent growth of nanowires; however obtaining stable Se nanowire with a diameter of about 15-100 nm. EDS shows that Se nanoparticles are entirely pure. The IR spectra showed the peaks at 550 cm-1, 1635 cm-1, 1994 cm-1 and 3430 cm-1 correspond to the presence of Se-O bending and stretching vibrations. The concentrations of Se-NPs (0, 1, 2, 5 µg/ml) did not give significantly effect on both two cell lines while the highest concentrations (10- 100 µg/ml gave significantly effects on them. The lethal dose (ID50%) of Se-NPs on Hep2 G and MCF-7 cells was obtained at 75.96 and 61.86 µg/ml, respectively. Results showed that Se nanoparticles as anticancer agent against MCF-7 cells were more effective than Hep2 G cells. Our results suggest that Se-NPs may be a candidate for further evaluation as a chemotherapeutic agent for breast and liver cancers.Keywords: selenium nanoparticle, Streptomyces bikiniensis, nanowires, chemotherapeutic agent
Procedia PDF Downloads 4431906 Increased Retention of Nanoparticle by Small Molecule Inhibitor in Cancer Cells
Authors: Neha Singh
Abstract:
Background: Nowadays, the nanoparticle is gaining unexceptional attention in targeted drug delivery. But before proceeding to this episode of accomplishment, the journey and closure of these nanoparticles inside the cells should be disentangle. Being foreign for the cells, nanoparticles will easily getcleared off without any effective outcome. As the cancer cells withhold these nanoparticles for a longer period of time, more will be the drug’s effect. Chlorpromazine is a cationic amphiphilic drug which is believed to inhibit clathrin-coated pit formation by a reversible translocation of clathrin and its adapter proteins from the plasma membrane to intracellular vesicles. Chlorpromazine has a role in increasing the retention of nanoparticles in cancer cells. The mechanism of action how this small molecule increases the retention of nanoparticles is still uncovered. Method: Polymeric nanoparticle (PLGA) with Cyanine3.5 dye were synthesized by solvent evaporation method and characterized for size and zeta potential. FTIR was also done. Pulse and chase studies with and without inhibitor were done to check the retention of nanoparticle using fluorescence microscopy. Mean fluorescence intensity was measured by ImageJ software. Results: Increased retention of nanoparticle with inhibitor was observed in both pulse and chase studies. Conclusion: Our results demonstrate that by repurposing these small molecule inhibitor, we can increase the retention of nanoparticle at the targeted site.Keywords: nanoparticle, endocytosis, clathrin inhibitor, cancer cell
Procedia PDF Downloads 1011905 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification
Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi
Abstract:
In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity
Procedia PDF Downloads 4061904 Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.Keywords: electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template
Procedia PDF Downloads 3771903 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation
Authors: Arezoo Assarian, Reza Javaherdashti
Abstract:
Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)
Procedia PDF Downloads 1661902 First-Principles Modeling of Nanoparticle Magnetization, Chaining, and Motion
Authors: Pierce Radecki, Pulkit Malik, Bharath Ramaswamy, Ben Shapiro
Abstract:
The ability to effectively design and test magnetic nanoparticles for controlled movement has been an elusive goal in the design of these particles. Magnetic nanoparticles of various characteristics have been created for use towards therapeutic effects, however the challenge of designing for controlled movement remains unmet. A step towards design in this aspect is a first principles model that captures and predicts the behaviors of particles in a magnetic field. The model is governed by four forces acting on the particles, the magnetic gradient, the dipole-dipole forces, the steric forces, and the viscous drag force. The particles are multi-core or single core, and incorporate a preferred magnetization axis. Particles exhibit behaviors, such as chaining, in simulations that are similar to those witnessed through experimentation. Currently, experimental results are being compared to the modeling results for verification of the model, through the analysis of chaining behaviors. This modeling system will be used in designing magnetic nanoparticles for specific chaining and movement behaviors.Keywords: controlled movement, modeling, magnetic nanoparticles, nanoparticle design
Procedia PDF Downloads 3031901 The Effects of Lipid Emulsion, Magnesium Sulphate and Metoprolol in Amitryptiline-Induced Cardiovascular Toxicity in Rats
Authors: Saylav Ejder Bora, Arife Erdogan, Mumin Alper Erdogan, Oytun Erbas, Ismet Parlak
Abstract:
Objective: The aim of this study was to evaluate histological, electrical and biochemical effects of metoprolol, lipid emulsion and magnesium sulphate as an alternative method to be used in preventing long QT emergence, that is among the lethal consequences of amitryptiline toxicity. Methods: Thirty Sprague- Dawley male rats were included. Rats were randomly separated into 5 groups. First group was administered saline only while the rest had received amitryptiline 100 mg/kg + saline, 5 mg/kg metoprolol, 20 ml/kg lipid emulsion and 75 mg/kg magnesium sulphate (MgSO4) intraperitoneally. ECG at DI lead, biochemical tests following euthanasia were performed in all groups after 1 hour of administration. Cardiac tissues were removed, sections were prepared and examined. Results: QTc values were significantly shorter in the rest when compared to amitryptiline+ saline group. While lipid emulsion did not affect proBNP and troponin values biochemically as compared to that of the control group, histologically, it was with reduced caspase 3 expression. Though statistically insignificant in the context of biochemical changes, pro-BNP and urea levels were lower in the metoprolol group when compared to controls. Similarly, metoprolol had no statistically significant effect on histological caspase 3 expression in the group that was treated with amitryptiline+metoprolol. On the other hand, there was a statistically significant decrease in Troponin, pro-BNP and urea levels as well as significant decline in histological caspase 3 expression within the MgSO4 group when compared to controls. Conclusion: As still a frequent cause of mortality in emergency units, administration of MgSO4, lipid emulsion and metoprolol might be beneficial in alternative treatment of cardiovascular toxicity caused by tricyclic antidepressant overdose, whether intake would be intentional or accidental.Keywords: amitryptiline, cardiovascular toxicity, long QT, Rat Model
Procedia PDF Downloads 1751900 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids
Authors: N. Targui, H. Kahalerras
Abstract:
The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy-Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.Keywords: double pipe heat exchanger, nanofluids, nanoparticles, porous baffles
Procedia PDF Downloads 2411899 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy
Authors: Priya Patel, Paresh Patel, Mihir Raval
Abstract:
Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability
Procedia PDF Downloads 4231898 Effects of Resistance Exercise Training on Blood Profile and CRP in Men with Type 2 Diabetes Mellitus
Authors: Mohsen Salesi, Seyyed Zoheir Rabei
Abstract:
Exercise has been considered a cornerstone of diabetes prevention and treatment for decades, but the benefits of resistance training are less clear. The purpose of this study was to determine the impact of resistance training on blood profile and inflammatory marker (CRP) of type 2 diabetes mellitus people. Thirty diabetic male were recruited (age: 50.34±10.28 years) and randomly assigned to 8 weeks resistance exercise training (n=15) and control groups (n=15). Before and after training blood pressure, weight, lipid profile (TC, TG, LDL-c, and HDL-c) and hs-CRP were measured. The resistance exercise training group took part in supervised 50–80 minutes resistance training sessions, three days a week on non-consecutive days for 8 weeks. Each exercise session included approximately 10 min of warm-up and cool-down periods. Results showed that TG significantly decreased (pre 210.19±9.31 vs. 101.12±7.25, p=0.03) and HDL-c significantly increased (pre 42.37±3.15 vs. 47.50±2.19, p=0.01) after exercise training. However, there was no difference between groups in TC, LDL-c, BMI and weight. In addition, a decrease in fasting blood glucose levels showed significant difference between groups (pre 144.65±5.73 vs. 124.21±6.48 p=0.04). Regular resistance exercise training can improve the lipid profile and reducing the cardiovascular risk factors in T2DM patients.Keywords: lipid profile, resistance exercise, type 2 diabetes mellitus, men
Procedia PDF Downloads 4121897 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles
Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan
Abstract:
We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques
Procedia PDF Downloads 3931896 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution
Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria
Abstract:
We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.Keywords: continuous production, magnetic nanoparticles, microfluidics, nanomaterials
Procedia PDF Downloads 5901895 Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles
Authors: Shinen B., Bavor J., Dorjkhand B., Suvd B., Maitsetseg B.
Abstract:
A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade.Keywords: bioavailability, heavy metals, nanoparticles, remediation
Procedia PDF Downloads 1881894 Synthesis of Polystyrene Grafted Filler Nanoparticles: Effect of Grafting on Mechanical Reinforcement
Authors: M. Khlifa, A. Youssef, A. F. Zaed, A. Kraft, V. Arrighi
Abstract:
A series of PS-nanoparticles were prepared by grafting PS from both aggregated silica and colloidally silica using atom-transfer radical polymerisation (ATRP). The mechanical behaviour of the nanocomposites have been examined by differential scanning calorimetry (DSC)and dynamic mechanical thermal analysis (DMTA).Keywords: ATRP, nanocomposites, polystyrene, reinforcement
Procedia PDF Downloads 6201893 Screening Microalgae Strains Which Were Isolated from Agriculture and Municipal Wastewater Drain, Reno, Nevada and Reuse of Effluent Water from Municipal Wastewater Treatment Plant in Microalgae Cultivation for Biofuel Feedstock
Authors: Nita Rukminasari
Abstract:
The aim of this study is to select microalgae strains, which were isolated from agriculture and municipal wastewater drain, Reno, Nevada that has highest growth rate and lipid contents. The experiments in this study were carried out in two consecutive stages. The first stage is aimed at testing the survival capability of all isolated microalgae strains and determining the best candidates to grow in centrate cultivation system. The second stage was targeted at determination the highest growth rate and highest lipid content of the selected top performing algae strain when cultivated on centrate wastewater. 26 microalgae strains, which were isolated from municipal and agriculture waste water, were analyzed using Flow cytometer for FACS of lipid with BODIPY and Nile Red as a lipid dyes and they grew on 96 wells plate for 31 days to determine growth rate as a based line data for growth rate. The result showed that microalgae strains which showed a high mean of fluorescence for BODIPY and Nile Red were F3.BP.1, F3.LV.1, T1.3.1, and T1.3.3. Five microalgae strains which have high growth rate were T1.3.3, T2.4.1. F3.LV.1, T2.12.1 and T3.3.1. In conclusion, microalgae strain which showed the highest starch content was F3.LV.1. T1.3.1 had the highest mean of fluorescence for Nile Red and BODIPY. Microalgae strains were potential for biofuel feedstock such as F3.LV.1 and T1.3.1, those microalgae strains showed a positive correlation between growth rate at stationary phase, biomass and meant of fluorescence for Nile Red and BODIPY.Keywords: agriculture and municipal wastewater, biofuel, centrate, microalgae
Procedia PDF Downloads 3151892 Evaluation of Cytotoxic Effect of Mitoxantrone Conjugated Magnetite Nanoparticles and Graphene Oxide-Magnetite Nanocomposites on Mesenchymal Stem Cells
Authors: Abbas Jafarizad, Duygu Ekinci
Abstract:
In this work targeted drug delivery is proposed to decrease adverse effect of drugs with concomitant reduces in consumption and treatment outgoings. Nanoparticles (NPs) can be prepared from a variety of materials such as lipid, biodegradable polymer that prevent the drugs cytotoxicity in healthy cells, etc. One of the most important drugs used in chemotherapy is mitoxantrone (MTX) which prevents cell proliferation by inhibition of topoisomerase II and DNA repair; however, it is not selective and has some serious side effects. In this study, mentioned aim is achieved by using several nanocarriers like magnetite (Fe3O4) and their composites with magnetic graphene oxide (Fe3O4@GO). Also, cytotoxic potential of Fe3O4, Fe3O4-MTX, and Fe3O4@GO-MTX nanocomposite were evaluated on mesenchymal stem cells (MSCs). In this study, we reported the synthesis of monodisperse Fe3O4 NPs and Fe3O4@GO nanocomposite and their structures were investigated by using field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR) spectra, atomic force microscopy (AFM), Brauneur Emmet Teller (BET) isotherm and contact angle studies. Moreover, we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate cytotoxic effects of MTX, Fe3O4 NPs, Fe3O4-MTX and Fe3O4@GO-MTX nanocomposite on MSCs. The in-vitro MTT results indicated that all concentrations of MTX and Fe3O4@GO-MTX nanocomposites showed cytotoxic effects while all concentrations of Fe3O4 NPs and Fe3O4-MTX NPs did not show any cytotoxic effect on stem cells. The results from this study indicated that using Fe3O4 NPs as anticancer drug delivery systems could be a trustworthy method for cancer treatment. But for reaching excellent and accurate results, further investigation is necessary.Keywords: mitoxantrone, magnetite, magnetic graphene oxide, MTT assay, mesenchymal stem cells
Procedia PDF Downloads 2711891 Towards the Integration of a Micro Pump in μTAS
Authors: Y. Haik
Abstract:
The objective of this study is to present a micro mechanical pump that was fabricated using SwIFT™ microfabrication surface micromachining process and to demonstrate the feasibility of integrating such micro pump into a micro analysis system. The micropump circulates the bio-sample and magnetic nanoparticles through different compartments to separate and purify the targeted bio-sample. This article reports the flow characteristics in the microchannels and in a crescent micro pump.Keywords: crescent micropumps, microanalysis, nanoparticles, MEMS
Procedia PDF Downloads 2141890 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy
Procedia PDF Downloads 4411889 Numerical Investigation of Thermal Energy Storage Panel Using Nanoparticle Enhanced Phase Change Material for Micro-Satellites
Authors: Jelvin Tom Sebastian, Vinod Yeldho Baby
Abstract:
In space, electronic devices are constantly attacked with radiation, which causes certain parts to fail or behave in unpredictable ways. To advance the thermal controllability for microsatellites, we need a new approach and thermal control system that is smaller than that on conventional satellites and that demand no electric power. Heat exchange inside the microsatellites is not that easy as conventional satellites due to the smaller size. With slight mass gain and no electric power, accommodating heat using phase change materials (PCMs) is a strong candidate for solving micro satellites' thermal difficulty. In other words, PCMs can absorb or produce heat in the form of latent heat, changing their phase and minimalizing the temperature fluctuation around the phase change point. The main restriction for these systems is thermal conductivity weakness of common PCMs. As PCM is having low thermal conductivity, it increases the melting and solidification time, which is not suitable for specific application like electronic cooling. In order to increase the thermal conductivity nanoparticles are introduced. Adding the nanoparticles in base PCM increases the thermal conductivity. Increase in weight concentration increases the thermal conductivity. This paper numerically investigates the thermal energy storage panel with nanoparticle enhanced phase change material. Silver nanostructure have increased the thermal properties of the base PCM, eicosane. Different weight concentration (1, 2, 3.5, 5, 6.5, 8, 10%) of silver enhanced phase change material was considered. Both steady state and transient analysis was performed to compare the characteristics of nanoparticle enhanced phase material at different heat loads. Results showed that in steady state, the temperature near the front panel reduced and temperature on NePCM panel increased as the weight concentration increased. With the increase in thermal conductivity more heat was absorbed into the NePCM panel. In transient analysis, it was found that the effect of nanoparticle concentration on maximum temperature of the system was reduced as the melting point of the material reduced with increase in weight concentration. But for the heat load of maximum 20W, the model with NePCM did not attain the melting point temperature. Therefore it showed that the model with NePCM is capable of holding more heat load. In order to study the heat load capacity double the load is given, maximum of 40W was given as first half of the cycle and the other is given constant OW. Higher temperature was obtained comparing the other heat load. The panel maintained a constant temperature for a long duration according to the NePCM melting point. In both the analysis, the uniformity of temperature of the TESP was shown. Using Ag-NePCM it allows maintaining a constant peak temperature near the melting point. Therefore, by altering the weight concentration of the Ag-NePCM it is possible to create an optimum operating temperature required for the effective working of the electronics components.Keywords: carbon-fiber-reinforced polymer, micro/nano-satellite, nanoparticle phase change material, thermal energy storage
Procedia PDF Downloads 2021888 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State
Authors: Navneet Kaur, S. D. Tiwari
Abstract:
Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization
Procedia PDF Downloads 1311887 Poly(N-Vinylcaprolactam-Co-Itaconic Acid-Co-Ethylene Glycol Dimethacrylate)-Based Microgels Embedded in Chitosan Matrix for Controlled Release of Ketoprofen
Authors: Simone F. Medeiros, Jessica M. Fonseca, Gizelda M. Alves, Danilo M. Santos, Sérgio P. Campana-Filho, Amilton M. Santos
Abstract:
Stimuli responsive and biocompatible hydrogel nanoparticles have gained special attention as systems for potential applications in controlled release of drugs to improve their therapeutic efficacy while minimizing side effects. In this work, novel solid dispersions based on thermo- and pH-responsive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate) hydrogel nanoparticles embedded in chitosan matrices were prepared via spray drying for controlled release of ketoprofen. Firstly, the hydrogel nanoparticles containing ketoprofen were prepared via precipitation polymerization and their stimuli-responsive behavior, thermal properties, chemical composition, encapsulation efficiency and morphology were characterized. Then, hydrogel nanoparticles with different particles size were embedded into chitosan matrices via spray-drying. Scanning electron microscopy (SEM) analyses were performed to investigate the particles size, dispersity and morphology. Finally, ketoprofen release profiles were studied as a function of pH and temperature. Chitosan/poly(NVCL-co-IA-co-EGDMA)-ketoprofen microparticles presented spherical shape, rough surface and pronounced agglomeration, indicating that hydrogels nanoparticles loaded with ketoprofen modified the surface of chitosan matrix. The maximum encapsulation efficiency of ketoprofen into hydrogel nanoparticles was 57.8% and the electrostatic interactions between amino groups from chitosan and carboxylic groups from hydrogel nanoparticles were able to control ketoprofen release. The hydrogel nanoparticles themselves were capable to retard the release of ketoprofen-loaded until 48h of in vitro release tests, while their incorporation into chitosan matrix achieved a maximum percentage of drug release of 45%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 10:7, and 69%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 5:2.Keywords: hydrogel nanoparticles, poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate), chitosan, ketoprofen, spray-drying
Procedia PDF Downloads 2631886 Synthesis of Biopolymeric Nanoparticles of Starch for Packaging Reinforcement Applications
Authors: Yousof Farrag, Sara Malmir, Rebeca Bouza, Maite Rico, Belén Montero, Luís Barral
Abstract:
Biopolymers are being extensively studied in the last years as a replacement of the conventional petroleum derived polymers, especially in packaging industry. They are natural, biodegradable materials. However, the lack of good mechanical and barrier properties is a problem in the way of this replacement. One of the most abundant biopolymers in the nature is the starch, its renewable, biocompatible low cost polysaccharide, it can be obtained from wide variety of plants, it has been used in food, packaging and other industries. This work is focusing on the production a high yield of starch nanoparticles via nanoprecipitation, to be used as reinforcement filling of biopolymer packaging matrices made of different types of starch improving their mechanical and barrier properties. Wheat and corn starch solutions were prepared in different concentrations. Absolute ethanol, acetone and different concentrations of hydrochloric acid were added as antisolvents dropwise under different amplitudes of sonication and different speeds of stirring, the produced particles were analyzed with dynamic light scattering DLS and scanning electron microscope SEM getting the morphology and the size distribution to study the effect of those factors on the produced particles. DLS results show that we have nanoparticles using low concentration of corn starch (0.5%) using 0.1M HCl as antisolvent, [Z average: 209 nm, PDI: 0,49], in case of wheat starch, we could obtain nanoparticles [Z average: 159 nm, PDI: 0,45] using the same starch solution concentration together with absolute ethanol as antisolvent.Keywords: biopolymers, nanoparticles, DLS, starch
Procedia PDF Downloads 3271885 The Anti-Bladder Cancer Effects Exerted by Hyaluronan Nanoparticles Encapsulated Heteronemin Isolated from Hippospongia Sp.
Authors: Kuan Yin Hsiao, Shyh Ming Kuo, Yi Jhen Wu, Chin Wen Chuang, Chuen-Fu Lin, Wei-qing Yang, Han Hsiang Huang
Abstract:
Anti-tumor effects of natural products, like compounds from marine sponges and soft corals, have been investigated for decades. Polymeric nanoparticles prepared from biodegradable and biocompatible molecules, such as Hyaluronan (HA), Chitosan (CHI) and gelatin have been widely studied. Encapsulation of anti-cancer therapies by the biopolymeric nanoparticles in drug delivery system is potentially capable of improving the therapeutic effects and attenuating their toxicity. In the current study, the anti-bladder cancer effects of heteronemin extracted from the sponge Hippospongia sp. with or without HA and CHI nanoparticle encapsulation were assessed and evaluated in vitro. Results showed that IC50 (half maximal inhibitory concentration) of heteronemin toward T24 human bladder cancer cell viability is approximately 0.18 µg/mL. Both plain and HA nanoparticles-encapsulated heteronemin at 0.2 and 0.4 µg/mL significantly reduced T24 cell viability (P<0.001) while HA nanoparticles-encapsulated heteronemin showed weaker viability-inhibitory effects on L929 fibroblasts compared with plain heteronemin at the identical concentrations. HA and CHI nanoparticles-encapsulated heteronemin exhibited significantly stronger inhibitory effects against migration of T24 human bladder cancer cell than those exerted by plain heteronemin at the same concentrations (P<0.001). The flow cytometric results showed that 0.2 µg/mL HA and CHI nanoparticles-encapsulated heteronemin induced higher early apoptosis rate than that induced by plain heteronemin at the same concentration. These results show that HA and CHI nanoparticle encapsulation is able to elevate anti-migratory and apoptosis-inducing effects exerted by heteronemin against bladder cancer cells in vitro. The in vivo anti-bladder cancer effects of the compound with or without HA/CHI nanoparticle encapsulation will be further investigated and examined using murine tumor models. The data obtained from this study will extensively evaluate of the anti-bladder cancer effects of heteronemin as well as HA/CHI-encapsulated heteronemin and pave a way to develop potential bladder cancer treatment.Keywords: heteronemin, nanoparticles, hyaluronan, chitosan, bladder cancer
Procedia PDF Downloads 455