Search results for: brick veneer residential buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2467

Search results for: brick veneer residential buildings

1927 Company-Independent Standardization of Timber Construction to Promote Urban Redensification of Housing Stock

Authors: Andreas Schweiger, Matthias Gnigler, Elisabeth Wieder, Michael Grobbauer

Abstract:

Especially in the alpine region, available areas for new residential development are limited. One possible solution is to exploit the potential of existing settlements. Urban redensification, especially the addition of floors to existing buildings, requires efficient, lightweight constructions with short construction times. This topic is being addressed in the five-year Alpine Building Centre. The focus of this cooperation between Salzburg University of Applied Sciences and RSA GH Studio iSPACE is on transdisciplinary research in the fields of building and energy technology, building envelopes and geoinformation, as well as the transfer of research results to industry. One development objective is a system of wood panel system construction with a high degree of prefabrication to optimize the construction quality, the construction time and the applicability for small and medium-sized enterprises. The system serves as a reliable working basis for mastering the complex building task of redensification. The technical solution is the development of an open system in timber frame and solid wood construction, which is suitable for a maximum two-story addition of residential buildings. The applicability of the system is mainly influenced by the existing building stock. Therefore, timber frame and solid timber construction are combined where necessary to bridge large spans of the existing structure while keeping the dead weight as low as possible. Escape routes are usually constructed in reinforced concrete and are located outside the system boundary. Thus, within the framework of the legal and normative requirements of timber construction, a hybrid construction method for redensification created. Component structure, load-bearing structure and detail constructions are developed in accordance with the relevant requirements. The results are directly applicable in individual cases, with the exception of the required verifications. In order to verify the practical suitability of the developed system, stakeholder workshops are held on the one hand, and the system is applied in the planning of a two-storey extension on the other hand. A company-independent construction standard offers the possibility of cooperation and bundling of capacities in order to be able to handle larger construction volumes in collaboration with several companies. Numerous further developments can take place on the basis of the system, which is under open license. The construction system will support planners and contractors from design to execution. In this context, open means publicly published and freely usable and modifiable for own use as long as the authorship and deviations are mentioned. The companies are provided with a system manual, which contains the system description and an application manual. This manual will facilitate the selection of the correct component cross-sections for the specific construction projects by means of all component and detail specifications. This presentation highlights the initial situation, the motivation, the approach, but especially the technical solution as well as the possibilities for the application. After an explanation of the objectives and working methods, the component and detail specifications are presented as work results and their application.

Keywords: redensification, SME, urban development, wood building system

Procedia PDF Downloads 104
1926 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback

Authors: P. Nafisi Poor, P. Javid

Abstract:

Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.

Keywords: adaptive buildings, energy efficiency, intelligent buildings, user comfortability

Procedia PDF Downloads 130
1925 Architectural Identity in Manifestation of Tall-buildings' Design

Authors: Huda Arshadlamphon

Abstract:

Advancing frontiers of technology and industry is moving rapidly fast influenced by the economic and political phenomena. One vital phenomenon,which has had consolidated the world to a one single village, is Globalization. In response, architecture and the built-environment have faced numerous changes, adjustments, and developments. Tall-buildings, as a product of globalization, represent prestigious icons, symbols, and landmarks for highly economics and advanced countries. Despite the fact, this trend has been encountering several design challenges incorporating architectural identity, traditions, and characteristics that enhance the built-environments' sociocultural values and traditions. The necessity of these values and traditionsform self-solitarily, leading to visual and spatial creativity, independency, and individuality. In other words, they maintain the inherited identity and avoid replications in all means and aspects. This paper, firstly, defines globalization phenomenon, architectural identity, and the concerns of sociocultural values in relation to the traditional characteristics of the built-environment. Secondly, through three case-studies of tall-buildings located in Jeddah city, Saudi Arabia, the Queen's Building, the National Commercial Bank Building (NCB), and the Islamic Development Bank Building; design strategies and methodologies in acclimating architectural identity and characteristics in tall-buildings are discussed. The case-studies highlight buildings' sites and surroundings, concepts and inspirations, design elements, architectural forms and compositions, characteristics, issues, barriers, and trammels facing the designs' decisions, representation of facades, and selection of materials and colors. Furthermore, the research will elucidate briefs of the dominant factors that shape the architectural identity of Jeddah city. In conclusion, the study manifests four tall-buildings' design standards guideline in preserving and developing architectural identity in Jeddah city; the scale of urban and natural environment, the scale of architectural design elements, the integration of visual images, and the creation of spatial scenes and scenarios. The prosed guideline will encourage the development of architectural identity aligned with zeitgeist demands and requirements, supports the contemporary architectural movement toward tall-buildings, and shoresself-solitarily in representing sociocultural values and traditions of the built-environment.

Keywords: architectural identity, built-environment, globalization, sociocultural values and traditions, tall-buildings

Procedia PDF Downloads 158
1924 Retrofitting Insulation to Historic Masonry Buildings: Improving Thermal Performance and Maintaining Moisture Movement to Minimize Condensation Risk

Authors: Moses Jenkins

Abstract:

Much of the focus when improving energy efficiency in buildings fall on the raising of standards within new build dwellings. However, as a significant proportion of the building stock across Europe is of historic or traditional construction, there is also a pressing need to improve the thermal performance of structures of this sort. On average, around twenty percent of buildings across Europe are built of historic masonry construction. In order to meet carbon reduction targets, these buildings will require to be retrofitted with insulation to improve their thermal performance. At the same time, there is also a need to balance this with maintaining the ability of historic masonry construction to allow moisture movement through building fabric to take place. This moisture transfer, often referred to as 'breathable construction', is critical to the success, or otherwise, of retrofit projects. The significance of this paper is to demonstrate that substantial thermal improvements can be made to historic buildings whilst avoiding damage to building fabric through surface or interstitial condensation. The paper will analyze the results of a wide range of retrofit measures installed to twenty buildings as part of Historic Environment Scotland's technical research program. This program has been active for fourteen years and has seen interventions across a wide range of building types, using over thirty different methods and materials to improve the thermal performance of historic buildings. The first part of the paper will present the range of interventions which have been made. This includes insulating mass masonry walls both internally and externally, warm and cold roof insulation and improvements to floors. The second part of the paper will present the results of monitoring work which has taken place to these buildings after being retrofitted. This will be in terms of both thermal improvement, expressed as a U-value as defined in BS EN ISO 7345:1987, and also, crucially, will present the results of moisture monitoring both on the surface of masonry walls the following retrofit and also within the masonry itself. The aim of this moisture monitoring is to establish if there are any problems with interstitial condensation. This monitoring utilizes Interstitial Hygrothermal Gradient Monitoring (IHGM) and similar methods to establish relative humidity on the surface of and within the masonry. The results of the testing are clear and significant for retrofit projects across Europe. Where a building is of historic construction the use of materials for wall, roof and floor insulation which are permeable to moisture vapor provides both significant thermal improvements (achieving a u-value as low as 0.2 Wm²K) whilst avoiding problems of both surface and intestinal condensation. As the evidence which will be presented in the paper comes from monitoring work in buildings rather than theoretical modeling, there are many important lessons which can be learned and which can inform retrofit projects to historic buildings throughout Europe.

Keywords: insulation, condensation, masonry, historic

Procedia PDF Downloads 164
1923 Development of Market Penetration for High Energy Efficiency Technologies in Alberta’s Residential Sector

Authors: Saeidreza Radpour, Md. Alam Mondal, Amit Kumar

Abstract:

Market penetration of high energy efficiency technologies has key impacts on energy consumption and GHG mitigation. Also, it will be useful to manage the policies formulated by public or private organizations to achieve energy or environmental targets. Energy intensity in residential sector of Alberta was 148.8 GJ per household in 2012 which is 39% more than the average of Canada 106.6 GJ, it was the highest amount among the provinces on per household energy consumption. Energy intensity by appliances of Alberta was 15.3 GJ per household in 2012 which is 14% higher than average value of other provinces and territories in energy demand intensity by appliances in Canada. In this research, a framework has been developed to analyze the market penetration and market share of high energy efficiency technologies in residential sector. The overall methodology was based on development of data-intensive models’ estimation of the market penetration of the appliances in the residential sector over a time period. The developed models were a function of a number of macroeconomic and technical parameters. Developed mathematical equations were developed based on twenty-two years of historical data (1990-2011). The models were analyzed through a series of statistical tests. The market shares of high efficiency appliances were estimated based on the related variables such as capital and operating costs, discount rate, appliance’s life time, annual interest rate, incentives and maximum achievable efficiency in the period of 2015 to 2050. Results show that the market penetration of refrigerators is higher than that of other appliances. The stocks of refrigerators per household are anticipated to increase from 1.28 in 2012 to 1.314 and 1.328 in 2030 and 2050, respectively. Modelling results show that the market penetration rate of stand-alone freezers will decrease between 2012 and 2050. Freezer stock per household will decline from 0.634 in 2012 to 0.556 and 0.515 in 2030 and 2050, respectively. The stock of dishwashers per household is expected to increase from 0.761 in 2012 to 0.865 and 0.960 in 2030 and 2050, respectively. The increase in the market penetration rate of clothes washers and clothes dryers is nearly parallel. The stock of clothes washers and clothes dryers per household is expected to rise from 0.893 and 0.979 in 2012 to 0.960 and 1.0 in 2050, respectively. This proposed presentation will include detailed discussion on the modelling methodology and results.

Keywords: appliances efficiency improvement, energy star, market penetration, residential sector

Procedia PDF Downloads 280
1922 Restoring Trees Damaged by Cyclone Hudhud at Visakhapatnam, India

Authors: Mohan Kotamrazu

Abstract:

Cyclone Hudhud which battered the city of Visakhapatnam on 12th October, 2014, damaged many buildings, public amenities and infrastructure facilities along the Visakha- Bheemili coastal corridor. More than half the green cover of the city was wiped out. Majority of the trees along the coastal corridor suffered from complete or partial damage. In order to understand the different ways that trees incurred damage during the cyclone, a damage assessment study was carried out by the author. The areas covered by this study included two university campuses, several parks and residential colonies which bore the brunt of the cyclone. Post disaster attempts have been made to restore many of the trees that have suffered from partial or complete damage from the effects of extreme winds. This paper examines the various ways that trees incurred damage from the cyclone Hudhud and presents some examples of the restoration efforts carried out by educational institutions, public parks and religious institutions of the city of Visakhapatnam in the aftermath of the devastating cyclone.

Keywords: defoliaton, salt spray damage, uprooting and wind throw, restoration

Procedia PDF Downloads 521
1921 Measuring Sustainable Interior Design

Authors: Iman Ibrahim

Abstract:

The interest of this paper is to review the sustainability measuring tools in Interior Design in UAE. To examine the ability of creating sustainable interior designed buildings satisfying the community social culture needs related to the world eco systems and how much it’s affected by humans, as the research will focus on sustainability as a multi-dimensional concept including environmental, social and economic dimensions. The aim of this research is to reach the most suitable sustainable rating method criteria for buildings in UAE, in a trial to develop it to match the community culture. Developing such criteria is gaining significance in UAE as a result of increased awareness of the environmental, economic and social issues. This will allow an exploration of the suitable criteria for developing a sustainable rating method for buildings in UAE. The final research findings will be presented as suitable criteria for developing a sustainable building assessment method for UAE in terms of environmental, economic, social and cultural perspectives.

Keywords: rating methods, sustainability tools, UAE, local conditions

Procedia PDF Downloads 414
1920 Solar Photovoltaic Driven Air-Conditioning for Commercial Buildings: A Case of Botswana

Authors: Taboka Motlhabane, Pradeep Sahoo

Abstract:

The global demand for cooling has grown exponentially over the past century to meet economic development and social needs, accounting for approximately 10% of the global electricity consumption. As global temperatures continue to rise, the demand for cooling and heating, ventilation and air-conditioning (HVAC) equipment is set to rise with it. The increased use of HVAC equipment has significantly contributed to the growth of greenhouse gas (GHG) emissions which aid the climate crisis- one of the biggest challenges faced by the current generation. The need to address emissions caused directly by HVAC equipment and electricity generated to meet the cooling or heating demand is ever more pressing. Currently, developed countries account for the largest cooling and heating demand, however developing countries are anticipated to experience a huge increase in population growth in 10 years, resulting in a shift in energy demand. Developing countries, which are projected to account for nearly 60% of the world's GDP by 2030, are rapidly building infrastructure and economies to meet their growing needs and meet these projections. Cooling, a very energy-intensive process that can account for 20 % to 75% of a building's energy, depending on the building's use. Solar photovoltaic (PV) driven air-conditioning offers a great cost-effective alternative for adoption in both residential and non-residential buildings to offset grid electricity, particularly in countries with high irradiation, such as Botswana. This research paper explores the potential of a grid-connected solar photovoltaic vapor-compression air-conditioning system for the Peter-Smith herbarium at the Okavango Research Institute (ORI) University of Botswana campus in Maun, Botswana. The herbarium plays a critical role in the collection and preservation of botanical data, dating back over 100 years, with pristine collection from the Okavango Delta, a UNESCO world heritage site and serves as a reference and research site. Due to the herbarium’s specific needs, it operates throughout the day and year in an attempt to maintain a constant herbarium temperature of 16°?. The herbarium model studied simulates a variable-air-volume HVAC system with a system rating of 30 kW. Simulation results show that the HVAC system accounts for 68.9% of the building's total electricity at 296 509.60 kWh annually. To offset the grid electricity, a 175.1 kWp nominal power rated PV system requiring 416 modules to match the required power, covering an area of 928 m2 is used to meet the HVAC system annual needs. An economic assessment using PVsyst found that for an installation priced with average solar PV prices in Botswana totalled to be 787 090.00 BWP, with annual operating costs of 30 500 BWP/year. With self-project financing, the project is estimated to have recouped its initial investment within 6.7 years. At an estimated project lifetime of 20 years, the Net Present Value is projected at 1 565 687.00 BWP with a ROI of 198.9%, with 74 070.67 tons of CO2 saved at the end of the project lifetime. This study investigates the performance of the HVAC system to meet the indoor air comfort requirements, the annual PV system performance, and the building model has been simulated using DesignBuilder Software.

Keywords: vapor compression refrigeration, solar cooling, renewable energy, herbarium

Procedia PDF Downloads 122
1919 Effect of Different Ground Motion Scaling Methods on Behavior of 40 Story RC Core Wall Building

Authors: Muhammad Usman, Munir Ahmed

Abstract:

The demand of high-rise buildings has grown fast during the past decades. The design of these buildings by using RC core wall have been widespread nowadays in many countries. The RC core wall (RCCW) buildings encompasses central core wall and boundary columns joined through post tension slab at different floor levels. The core wall often provides greater stiffness as compared to the collective stiffness of the boundary columns. Hence, the core wall dominantly resists lateral loading i.e. wind or earthquake load. Non-linear response history analysis (NLRHA) procedure is the finest seismic design procedure of the times for designing high-rise buildings. The modern design tools for nonlinear response history analysis and performance based design has provided more confidence to design these structures for high-rise buildings. NLRHA requires selection and scaling of ground motions to match design spectrum for site specific conditions. Designers use several techniques for scaling ground motion records (time series). Time domain and frequency domain scaling are most commonly used which comprises their own benefits and drawbacks. Due to lengthy process of NLRHA, application of only one technique is conceivable. To the best of author’s knowledge, no consensus on the best procedures for the selection and scaling of the ground motions is available in literature. This research aims to provide the finest ground motion scaling technique specifically for designing 40 story high-rise RCCW buildings. Seismic response of 40 story RCCW building is checked by applying both the frequency domain and time domain scaling. Variable sites are selected in three critical seismic zones of Pakistan. The results indicates that there is extensive variation in seismic response of building for these scaling. There is still a need to build a consensus on the subjected research by investigating variable sites and buildings heights.

Keywords: 40-storied RC core wall building, nonlinear response history analysis, ground motions, time domain scaling, frequency domain scaling

Procedia PDF Downloads 130
1918 Geographic Information System (GIS) for Structural Typology of Buildings

Authors: Néstor Iván Rojas, Wilson Medina Sierra

Abstract:

Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.

Keywords: microzonation, buildings, geo-processing, cadastral number

Procedia PDF Downloads 327
1917 Urban Meetings: Graphic Analysis of the Public Space in a Cultural Building from São Paulo

Authors: Thalita Carvalho Martins de Castro, Núbia Bernardi

Abstract:

Currently, studies evidence that our cities are portraits of social relations. In the midst of so many segregations, cultural buildings emerge as a place to assemble collective activities and expressions. Through theater, exhibitions, educational workshops, libraries, the architecture approaches human relations and seeks to propose meeting places. The purpose of this research is to deepen the discussions about the contributions of cultural buildings in the use of the spaces of the contemporary city, based on the data and measure collected in the master's research in progress. The graphic analysis of the insertion of contemporary cultural buildings seeks to highlight the social use of space. The urban insertions of contemporary cultural buildings in the city of São Paulo (Brazil) will be analyzed to understand the relations between the architectural form and its audience. The collected data describe a dynamic of flows and the permanence in the use of these spaces, indicating the contribution of the cultural buildings, associated with artistic production, in the dynamics of urban spaces and the social modifications of their milieu. Among the case studies, the research in development is based on the registration and graphic analysis of the Praça das Artes (2012) building located in the historical central region of the city, which after a long period of great degradation undergoes a current redevelopment. The choice of this building was based on four parameters, both on the architectural scale and on the urban scale: urban insertion, local impact, cultural production and a mix of uses. For the analysis will be applied two methodologies of graphic analysis, one with diagrams accompanied by texts and another with the active analysis for open space projects using complementary graphic methodologies, with maps, plants, info-graphics, perspectives, time-lapse videos and analytical tables. This research aims to reinforce the debates between the methodologies of form-use spaces and visual synthesis applied in cultural buildings, in order that new projects can structure public spaces as catalysts for social use, generating improvements in the daily life of its users and in the cities where they are inserted.

Keywords: cultural buildings, design methodologies, graphic analysis, public spaces

Procedia PDF Downloads 301
1916 Scheduling of Repetitive Activities for Height-Rise Buildings: Optimisation by Genetic Algorithms

Authors: Mohammed Aljoma

Abstract:

In this paper, a developed prototype for the scheduling of repetitive activities in height-rise buildings was presented. The activities that describe the behavior of the most of activities in multi-storey buildings are scheduled using the developed approach. The prototype combines three methods to attain the optimized planning. The methods include Critical Path Method (CPM), Gantt and Line of Balance (LOB). The developed prototype; POTER is used to schedule repetitive and non-repetitive activities with respect to all constraints that can be automatically generated using a generic database. The prototype uses the method of genetic algorithms for optimizing the planning process. As a result, this approach enables contracting organizations to evaluate various planning solutions that are calculated, tested and classified by POTER to attain an optimal time-cost equilibrium according to their own criteria of time or coast.

Keywords: planning scheduling, genetic algorithms, repetitive activity, construction management, planning, scheduling, risk management, project duration

Procedia PDF Downloads 301
1915 Comparison of Seismic Retrofitting Methods for Existing Foundations in Seismological Active Regions

Authors: Peyman Amini Motlagh, Ali Pak

Abstract:

Seismic retrofitting of important structures is essential in seismological active zones. The importance is doubled when it comes to some buildings like schools, hospitals, bridges etc. because they are required to continue their serviceability even after a major earthquake. Generally, seismic retrofitting codes have paid little attention to retrofitting of foundations due to its construction complexity. In this paper different methods for seismic retrofitting of tall buildings’ foundations will be discussed and evaluated. Foundations are considered in three different categories. First, foundations those are in danger of liquefaction of their underlying soil. Second, foundations located on slopes in seismological active regions. Third, foundations designed according to former design codes and may show structural defects under earthquake loads. After describing different methods used in different countries for retrofitting of the existing foundations in seismological active regions, comprehensive comparison between these methods with regard to the above mentioned categories is carried out. This paper gives some guidelines to choose the best method for seismic retrofitting of tall buildings’ foundations in retrofitting projects.

Keywords: existing foundation, landslide, liquefaction, seismic retrofitting

Procedia PDF Downloads 385
1914 Numerical Analysis and Parametric Study of Granular Anchor Pile on Expansive Soil Using Finite Element Method: Case of Addis Ababa, Bole Sub-City

Authors: Abdurahman Anwar Shfa

Abstract:

Addis Ababa is among the fastest-growing urban areas in the country. There are many new constructions of public and private condominiums and large new low rising residential buildings for residents. But the wide range of heaving problems of expansive soil in the city become a major difficulty for the construction sector, especially in low rising buildings, by causing different problems such as distortion and cracking of floor slabs, cracks in grade beams, and walls, jammed or misaligned Doors and Windows; failure of blocks supporting grade beams. Hence an attractive and economical design solution may be required for such type of problem. Therefore, this research works to publicize a recent innovation called the Granular Anchor Pile system for the reduction of the heave effect of expansive soil. This research is written for the objective of numerical investigation of the behavior of Granular Anchor Pile under the heave using Finite element analysis PLAXIS 3D program by means of studying the effect of different parameters like length of the pile, diameter of pile, and pile group by applying prescribed displacement of 10% of pile diameter at the center of granular pile anchor. An additional objective is examining the suitability of Granular Anchor Pile as an alternative solution for heave problems in expansive soils mostly for low rising buildings found in Addis Ababa City, especially in Bole Sub-City, by considering different factors such as the local availability of construction materials, economy for the construction, installation process condition, environmental benefit, time consumption and performance of the pile. Accordingly, the performance of the pile improves when the length of the pile increases. This is due to an increase in the self-weight of the pile and friction mobilized between the pile and soil interface. Additionally, the uplift capacity of the pile decreases when increasing the pile diameter and spacing between the piles in the group due to a reduction in the number of piles in the group. But, few cases show that the uplift capacity of the pile increases with increasing the pile diameter for a constant number of piles in the group and increasing the spacing between the pile and in the case of single pile capacity. This is due to the increment of piles' self-weight and surface area of the pile group and also the decrement of stress overlap in the soil caused by piles respectively. According to the suitability analysis, it is observed that Granular Anchor Pile is sensible or practical to apply for the actual problem of Expansive soil in a low rising building constructed in the country because of its convenience for all considerations.

Keywords: expansive soil, granular anchor pile, PLAXIS, suitability analysis

Procedia PDF Downloads 19
1913 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc

Abstract:

The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: battery bank, photo-voltaic, pump-storage, wind energy

Procedia PDF Downloads 590
1912 Urban Compactness and Sustainability: Beijing Experience

Authors: Xilu Liu, Ameen Farooq

Abstract:

Beijing has several compact residential housing settings in many of its urban districts. The study in this paper reveals that urban compactness, as predictor of density, may carry an altogether different meaning in the developing world when compared to the U.S for achieving objectives of urban sustainability. Recent urban design studies in the U.S are debating for compact and mixed-use higher density housing to achieve sustainable and energy efficient living environments. While the concept of urban compactness is widely accepted as an approach in modern architectural and urban design fields, this belief may not directly carry well into all areas within cities of developing countries. Beijing’s technology-driven economy, with its historic and rich cultural heritage and a highly speculated real-estate market, extends its urban boundaries into multiple compact urban settings of varying scales and densities. The accelerated pace of migration from the countryside for better opportunities has led to unsustainable and uncontrolled buildups in order to meet the growing population demand within and outside of the urban center. This unwarranted compactness in certain urban zones has produced an unhealthy physical density with serious environmental and ecological challenging basic living conditions. In addition, crowding, traffic congestion, pollution and limited housing surrounding this compactness is a threat to public health. Several residential blocks in close proximity to each other were found quite compacted, or ill-planned, with residential sites due to lack of proper planning in Beijing. Most of them at first sight appear to be compact and dense but further analytical studies revealed that what appear to be dense actually are not as dense as to make a good case that could serve as the corner stone of sustainability and energy efficiency. This study considered several factors including floor area ratio (FAR), ground coverage (GSI), open space ratio (OSR) as indicators in analyzing urban compactness as a predictor of density. The findings suggest that these measures, influencing the density of residential sites under study, were much smaller in density than expected given their compact adjacencies. Further analysis revealed that several residential housing appear to support the notion of density in its compact layout but are actually compacted due to unregulated planning marred by lack of proper urban design standards, policies and guidelines specific to their urban context and condition.

Keywords: Beijing, density, sustainability, urban compactness

Procedia PDF Downloads 416
1911 Rainwater Harvesting is an Effective Tool for City’s Storm Water Management and People’s Willingness to Install Rainwater Harvesting System in Buildings: A Case Study in Kazipara, Dhaka, Bangladesh

Authors: M. Abu Hanif, Anika Tabassum, Fuad Hasan Ovi, Ishrat Islam

Abstract:

Water is essential for life. Enormous quantities of water are cycled each year through hydrologic cycle but only a fraction of circulated water is available each year for human use. Dhaka, the capital of Bangladesh is the 19th mega city in the world with a population of over 14 million (World City Information, 2011). As a result the growth of urban population is increasing rapidly; the city is not able to manage with altering situations due to resource limitations and management capacity. Water crisis has become an acute problem faced by the inhabitants of Dhaka city. It is found that total water demand in Dhaka city is 2,240 million liter per day (MLD) whereas supply is 2,150 (MLD). According to Dhaka Water Supply and Sewerage Authority about 87 percent of this supply comes from groundwater resources and rest 13 percent from surface water. According to Dhaka Water Supply and Sewerage Authority it has been found that the current groundwater depletion rate is 3.52 meter per year. Such a fast depletion of the water table will result in intrusion of southern saline water into the groundwater reservoir, depriving this mega city of pure drinking water. This study mainly focus on the potential of Rainwater Harvesting System(RWHS) in Kazipara area of Dhaka city, determine the perception level of local people in installation of rainwater harvesting system in their building and identify the factors regarding willingness of owner in installing rainwater harvesting system. As most of the residential area of Dhaka city is unplanned with small plots, Kazipara area has been chosen as study area which depicts similar characteristics. In this study only roof top area is considered as catchment area and potential of rainwater harvesting has been calculated. From the calculation it is found that harvested rainwater can serve the 66% of demand of water for toilet flushing and cleaning purposes for the people of Kazipara. It is also observed that if only rooftop rainwater harvesting applied to all the structures of the study area then two third of surface runoff would be reduced than present surface runoff. In determining the perception of local people only owners of the buildings were. surveyed. From the questionnaire survey it is found that around 75% people have no idea about the rainwater harvesting system. About 83% people are not willing to install rainwater harvesting system in their dwelling. The reasons behind the unwillingness are high cost of installation, inadequate space, ignorance about the system, etc. Among 16% of the willing respondents who are interested in installing RWHS system, it was found that higher income, bigger size of buildings are important factors in willingness of installing rainwater harvesting system. Majority of the respondents demanded for both technical and economical support to install the system in their buildings. Government of Bangladesh has taken some initiatives to promote rainwater harvesting in urban areas. It is very much necessary to incorporate rainwater harvesting device and artificial recharge system in every building of Dhaka city to make Dhaka city self sufficient in water supply management and to solve water crisis problem of megacity like as Dhaka city.

Keywords: rainwater harvesting, water table, willingness, storm water

Procedia PDF Downloads 234
1910 Lighting Consumption Analysis in Retail Industry: Comparative Study

Authors: Elena C. Tamaş, Grațiela M. Țârlea, Gianni Flamaropol, Dragoș Hera

Abstract:

This article is referring to a comparative study regarding the electrical energy consumption for lighting on diverse types of big sizes commercial buildings built in Romania after 2007, having 3, 4, 5 versus 8, 9, 10 operational years. Some buildings have installed building management systems (BMS) to monitor also the lighting performances starting with the opening days till the present days but some have chosen only local meters to implement. Firstly, for each analyzed building, the total required energy power and the energy power consumption for lighting were calculated depending on the lamps number, the unit power and the average daily running hours. All objects and installations were chosen depending on the destination/location of the lighting (exterior parking or access, interior or covering parking, building interior and building perimeter). Secondly, to all lighting objects and installations, mechanical counters were installed, and to the ones linked to BMS there were installed the digital meters as well for a better monitoring. Some efficient solutions are proposed to improve the power consumption, for example the 1/3 lighting functioning for the covered and exterior parking lighting to those buildings if can be done. This type of lighting share can be performed on each level, especially on the night shifts. Another example is to use the dimmers to reduce the light level, depending on the executed work in the respective area, and a 30% power energy saving can be achieved. Using the right BMS to monitor, the energy consumption depending on the average operational daily hours and changing the non-performant unit lights with the ones having LED technology or economical ones might increase significantly the energy performances and reduce the energy consumption of the buildings.

Keywords: commercial buildings, energy performances, lightning consumption, maintenance

Procedia PDF Downloads 254
1909 Effect of White Roofing on Refrigerated Buildings

Authors: Samuel Matylewicz, K. W. Goossen

Abstract:

The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.

Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes

Procedia PDF Downloads 124
1908 Residential Satisfaction and Public Perception of Socialized Housing Projects in Davao City, Philippines

Authors: Micah Amor P. Yares

Abstract:

Aside from the provision of adequate housing, the Philippine government faces the challenge of ensuring that the housing units provided conform to the Filipino’s ambition to self as manifested by owning a small house on a big lot. The study aimed to explore the levels of satisfaction of end-users and the public perception towards socialized housing in Davao City, Philippines. The residential satisfaction survey includes three types of respondents, which are end-users of single-detached, duplex and rowhouse socialized housing units. Respondents were asked to rate their level of satisfaction and perception to the following housing components: Dwelling Unit; Public Facilities; Social Environment; Neighborhood Facilities; Management Systems; and Acquisition and Financing. The data were subjected to Exploratory Factor Analysis to determine if variables can be grouped together, and Confirmatory Factor Analysis to measure if the model fits the construct. In determining which component affects the level of perception and satisfaction, a Multiple Linear Regression Analysis was employed. Lastly, an Individual Samples T-Test was performed to compare the levels of satisfaction and perception among respondents. Results revealed that residents of socialized housing were highly satisfied with their living conditions despite concerns on management systems, public and neighborhood facilities. Residents' satisfaction is primarily influenced by the Social Environment, Acquisition and Financing, and the Dwelling Unit. However, a significant difference in residential satisfaction level was observed among different types of housing with rowhouse residents recording the lowest satisfaction level compared to single-detached and duplex units. Moreover, the general public perceived Socialized housing as moderately satisfactory having the same determinant as the end-users aside from the Public Facilities. This study recommends revisiting the current Socialized Housing policies by considering the feedback from the end-users based on their lived experience and the public according to their perception.

Keywords: public perception, residential satisfaction, rowhouse, socialized housing

Procedia PDF Downloads 217
1907 Zero Energy Buildings in Hot-Humid Tropical Climates: Boundaries of the Energy Optimization Grey Zone

Authors: Nakul V. Naphade, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg

Abstract:

Achieving zero-energy targets in existing buildings is known to be a difficult task requiring important cuts in the building energy consumption, which in many cases clash with the functional necessities of the building wherever the on-site energy generation is unable to match the overall energy consumption. Between the building’s consumption optimization limit and the energy, target stretches a case-specific optimization grey zone, which requires tailored intervention and enhanced user’s commitment. In the view of the future adoption of more stringent energy-efficiency targets in the context of hot-humid tropical climates, this study aims to define the energy optimization grey zone by assessing the energy-efficiency limit in the state-of-the-art typical mid- and high-rise full AC office buildings, through the integration of currently available technologies. Energy models of two code-compliant generic office-building typologies were developed as a baseline, a 20-storey ‘high-rise’ and a 7-storey ‘mid-rise’. Design iterations carried out on the energy models with advanced market ready technologies in lighting, envelope, plug load management and ACMV systems and controls, lead to a representative energy model of the current maximum technical potential. The simulations showed that ZEB targets could be achieved in fully AC buildings under an average of seven floors only by compromising on energy-intense facilities (as full AC, unlimited power-supply, standard user behaviour, etc.). This paper argues that drastic changes must be made in tropical buildings to span the energy optimization grey zone and achieve zero energy. Fully air-conditioned areas must be rethought, while smart technologies must be integrated with an aggressive involvement and motivation of the users to synchronize with the new system’s energy savings goal.

Keywords: energy simulation, office building, tropical climate, zero energy buildings

Procedia PDF Downloads 177
1906 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models

Authors: Morten Brøgger, Kim Wittchen

Abstract:

Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.

Keywords: building stock energy modelling, energy-savings, archetype

Procedia PDF Downloads 149
1905 Investigation of Thermal Comfort Conditions of Vernacular Buildings Taking into Consideration Various Use Patterns: A Case Study

Authors: Christina Kalogirou

Abstract:

The main goal of this paper is to explore the thermal comfort conditions in traditional buildings during all seasons of the year taking into consideration various use patterns. For this purpose a dwelling of vernacular architecture is selected and data regarding the indoor and outdoor air and surface temperature as well as the relative humidity are collected. These measurements are conducted in situ during the period of a year. Also, this building is occupied periodically and a calendar of occupancy was kept (duration of residence, hours of heating system operation, hours of natural ventilation, etc.) in order to correlate the indoor conditions recorded with the use patterns via statistical analysis. Furthermore, the effect of the high thermal inertia of the stone masonry walls and the different orientation of the rooms is addressed. Thus, this paper concludes in some interesting results on the effect of the users in the indoor climate conditions in the case of buildings with high thermal inertia envelops.

Keywords: thermal comfort, in situ measurements, occupant behaviour, vernacular architecture

Procedia PDF Downloads 437
1904 Analysis of the Acoustic Performance of Vertical Internal Seals with Pet Wool as NBR 15.575-4NO Green Towers Building-DF

Authors: Lucas Aerre, Wallesson Faria, Roberto Pimentel, Juliana Santos

Abstract:

An extremely disturbing and irritating element in the lives of people and organizations is the noise, the consequences that can bring us has a lot of connection with human health as well as financial and economic aspects. In order to improve the efficiency of buildings in Brazil in general, a performance standard was created, NBR 15.575 in which all buildings are seen in a more systemic and peculiar way, while following the requirements of the standard. The acoustic performance present in these buildings is one such requirement. Based on this, the present work was elaborated with the objective of evaluating through acoustic measurements the acoustic performance of vertical internal fences that are under the incidence of aerial noise of a building in the city of Brasilia-DF. A short theoretical basis is made and soon after the procedures of measurement are described through the control method established by the standard, and its results are evaluated according to the parameters of the same. The measurement performed between rooms of the same unit, presented a standardized sound pressure level difference (D nT, w) equal to 40 dB, thus being classified within the minimum performance required by the standard in question.

Keywords: airborne noise, performance standard, soundproofing, vertical seal

Procedia PDF Downloads 295
1903 Analysis of Building Response from Vertical Ground Motions

Authors: George C. Yao, Chao-Yu Tu, Wei-Chung Chen, Fung-Wen Kuo, Yu-Shan Chang

Abstract:

Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be.

Keywords: vertical ground motion, vertical amplification factor, natural frequency, component

Procedia PDF Downloads 312
1902 Sustainable Lighting Solutions in Residential Interiors to Combat the Ever-Growing Problem of Environmental Degradation

Authors: Ankita Sharma, Reenu Singh

Abstract:

In order to conserve the ecology and the environment, there is a need to focus on sustainable lighting solutions such as LED bulbs instead of incandescent bulbs, candle-powered lamps, self-cooling smart bulbs, and many more, that are both eco-friendly and practical. This paper focuses on such sustainable solutions to lighting, which will have a major positive impact on the environment in the coming future. A questionnaire survey was conducted to note the responses of people living in high-rise buildings in metropolitan cities with regards to such sustainable lighting choices in their homes. The result of such questionnaire survey has helped to design parameters which are used to ideate design interventions in this field of sustainable lighting choices. This paper includes proposals to facilitate the reduction of electric power in interior lighting through various lighting accessory design interventions. Thus, such design interventions will allow us to design more sustainable interior spaces, and renewable energy strategies can be developed in the field of lighting, which will not only help to save energy but also positively affect other aspects of human well-being such as productivity, heritage conservation and economic well-being too!

Keywords: sustainable, interior lighting, lighting design, environmental impact, metropolitan cities

Procedia PDF Downloads 198
1901 Methods Employed to Mitigate Wind Damage on Ancient Egyptian Architecture

Authors: Hossam Mohamed Abdelfattah Helal Hegazi

Abstract:

Winds and storms are considered crucial weathering factors, representing primary causes of destruction and erosion for all materials on the Earth's surface. This naturally includes historical structures, with the impact of winds and storms intensifying their deterioration, particularly when carrying high-hardness sand particles during their passage across the ground. Ancient Egyptians utilized various methods to prevent wind damage to their ancient architecture throughout the ancient Egyptian periods . One of the techniques employed by ancient Egyptians was the use of clay or compacted earth as a filling material between opposing walls made of stone, bricks, or mud bricks. The walls made of reeds or woven tree branches were covered with clay to prevent the infiltration of winds and rain, enhancing structural integrity, this method was commonly used in hollow layers . Additionally, Egyptian engineers innovated a type of adobe brick with uniformly leveled sides, manufactured from dried clay. They utilized stone barriers, constructed wind traps, and planted trees in rows parallel to the prevailing wind direction. Moreover, they employed receptacles to drain rainwater resulting from wind-loaded rain and used mortar to fill gaps in roofs and structures. Furthermore, proactive measures such as the removal of sand from around historical and archaeological buildings were taken to prevent adverse effects

Keywords: winds, storms, weathering, destruction, erosion, materials, Earth's surface, historical structures, impact

Procedia PDF Downloads 50
1900 Performance Analysis of Air-Tunnel Heat Exchanger Integrated into Raft Foundation

Authors: Chien-Yeh Hsu, Yuan-Ching Chiang, Zi-Jie Chien, Sih-Li Chen

Abstract:

In this study, a field experiment and performance analysis of air-tunnel heat exchanger integrated with water-filled raft foundation of residential building were performed. In order to obtain better performance, conventional applications of air-tunnel inevitably have high initial cost or issues about insufficient installation space. To improve the feasibility of air tunnel heat exchanger in high-density housing, an integrated system consisting of air pipes immersed in the water-filled raft foundation was presented, taking advantage of immense amount of water and relatively stable temperature in raft foundation of building. The foundation-integrated air tunnel was applied to a residential building located in Yilan, Taiwan, and its thermal performance was measured in the field experiment. The results indicated that the cooling potential of integrated system was close to the potential of soil-based EAHE at 2 m depth or deeper. An analytical model based on thermal resistance method was validated by measurement results, and was used to carry out the dimensioning of foundation-integrated air tunnel. The discrepancies between calculated value and measured data were less than 2.7%. In addition, the return-on-investment with regard to thermal performance and economics of the application was evaluated. Because the installation for air tunnel is scheduled in the building foundation construction, the utilization of integrated system spends less construction cost compare to the conventional earth-air tunnel.

Keywords: air tunnel, ground heat exchanger, raft foundation, residential building

Procedia PDF Downloads 323
1899 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times

Authors: Nagham Ismail, Djamel Ouahrani

Abstract:

Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.

Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather

Procedia PDF Downloads 64
1898 Comparing Energy Labelling of Buildings in Spain

Authors: Carolina Aparicio-Fernández, Alejandro Vilar Abad, Mar Cañada Soriano, Jose-Luis Vivancos

Abstract:

The building sector is responsible for 40% of the total energy consumption in the European Union (EU). Thus, implementation of strategies for quantifying and reducing buildings energy consumption is indispensable for reaching the EU’s carbon neutrality and energy efficiency goals. Each Member State has transposed the European Directives according to its own peculiarities: existing technical legislation, constructive solutions, climatic zones, etc. Therefore, in accordance with the Energy Performance of Buildings Directive, Member States have developed different Energy Performance Certificate schemes, using proposed energy simulation software-tool for each national or regional area. Energy Performance Certificates provide a powerful and comprehensive information to predict, analyze and improve the energy demand of new and existing buildings. Energy simulation software and databases allow a better understanding of the current constructive reality of the European building stock. However, Energy Performance Certificates still have to face several issues to consider them as a reliable and global source of information since different calculation tools are used that do not allow the connection between them. In this document, TRNSYS (TRaNsient System Simulation program) software is used to calculate the energy demand of a building, and it is compared with the energy labeling obtained with Spanish Official software-tools. We demonstrate the possibility of using not official software-tools to calculate the Energy Performance Certificate. Thus, this approach could be used throughout the EU and compare the results in all possible cases proposed by the EU Member States. To implement the simulations, an isolated single-family house with different construction solutions is considered. The results are obtained for every climatic zone of the Spanish Technical Building Code.

Keywords: energy demand, energy performance certificate EPBD, trnsys, buildings

Procedia PDF Downloads 120