Search results for: specific energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14946

Search results for: specific energy

9366 Recessionary Tales: An Investigation into How Children with Intellectual Disability, and Their Families Experience the Current Economic Downturn

Authors: S. Flynn

Abstract:

This paper offers a focused commentary on the impact of the current economic downturn on children with ID (intellectual disability), and their families, in the Republic of Ireland. It will examine the practical challenges, serious concerns, and trends in the field of disability with specific regard to the impact of the economic downturn in the Irish context. This includes the impact of cutbacks to services and supports, and the erosion of possibilities for life progression for children with ID as evident within the existing body of research. This focused commentary on core and seminal literature, policy and research will then be used to provide a discussion on what are the core points of learning for policy makers, researchers, practitioners and society as whole.

Keywords: children, disability, economic, recession

Procedia PDF Downloads 301
9365 Relations between the Internal Employment Conditions of International Organizations and the Characteristics of the National Civil Service

Authors: Renata Hrecska

Abstract:

This research seeks to fully examine the internal employment law of international organizations by comparing it with the characteristics of the national civil service. The aim of the research is to compare the legal system that has developed over many centuries and the relatively new internal staffing regulations to find out what solution schemes can help each other through mutual legal development in order to respond effectively to the social challenges of everyday life. Generally, the rules of civil service of any country or international entity have in common that they have, in their pragmatics inherently, the characteristic that makes them serving public interests. Though behind the common base there are many differences: there is the clear fragmentation of state regulation and the unity of organizational regulation. On the other hand, however, this difference disappears to some extent: the public service regulation of international organizations can be considered uniform until we examine it within, but not outside an organization. As soon as we compare the different organizations we may find many different solutions for staffing regulations. It is clear that the national civil service is a strong model for international organizations, but the question may be whether the staffing policy of international organizations can serve the national civil service as an example, too. In this respect, the easiest way to imagine a legislative environment would be to have a single comprehensive code, the general part of which is the Civil Service Act itself, and the specific part containing specific, necessarily differentiating rules for each layer of the civil service. Would it be advantageous to follow the footsteps of the leading international organizations, or is there any speciality in national level civil service that we cannot avoid during regulating processes? In addition to the above, the personal competencies of officials working in international organizations and public administrations also show a high degree of similarity, regardless of the type of employment. Thus, the whole public service system is characterized by the fundamental and special values that a person capable of holding a public office must be able to demonstrate, in some cases, even without special qualifications. It is also interesting how we can compare the two spheres of employment in light of the theory of Lawyer Louis Brandeis, a judge at the US Supreme Court, who formulated a complex theory of profession as distinguished from other occupations. From this point of view we can examine the continuous development of research and specialized knowledge at work; the community recognition and social status; that to what extent we can see a close-knit professional organization of altruistic philosophy; that how stability grows in the working conditions due to the stability of the profession; and that how the autonomy of the profession can prevail.

Keywords: civil service, comparative law, international organizations, regulatory systems

Procedia PDF Downloads 113
9364 The Impact of Nutritional Education for Peritoneal Dialysis Patients in Mongolia

Authors: Sanchir Erdenebayar, Namuuntsetseg Oyunbaatar

Abstract:

Objectives: Peritoneal dialysis treatment is one of the important forms of kidney replacement therapy, and it has recently developed instantly in Mongolia for the past five years. Currently, more than 120 patients undergo peritoneal dialysis nationwide. These patients lack nutritional education, which predisposes them to protein deficiency and further impairs their quality of life. However, there is no study which is conducted among those about their dietary in Mongolia. Therefore, integrated nutrition information and educating them about dietary patterns to follow are urgently needed for PD patients. Methods: A cross-sectional study was carried out on 45 patients aged between 18 and 60 years who were undergoing CAPD at the biggest Medvic dialysis center in Ulaanbaatar. The knowledge of nutrition and food intake is assessed by interview based on a validated questionnaire prepared from KDIGO guidelines, semi-FFQ and a 24-hour dietary recall method. In addition, a biochemical blood test that includes total protein, albumin, calcium, phosphorus, potassium, and hemoglobin is used for an assessment of the patient’s current nutritional status. Results: Knowledge of nutritional status for CAPD was great, with 21.4% of patients and 78.65% having poor nutrition knowledge. The rate of mild to moderate malnutrition was 48.8% among research participants. Serum albumin was 38.4 ± 4.7 g/L, and total protein was 67.3±7.5g/l. Patients met 62.5± 26.5% of their daily intake nutritional requirement for calories and 72±40% of their nutritional requirement for protein. All patients’ energy intake was significantly /1328±304kcal/ lower than the energy requirement (2124±378kcal). Only 14.2% met the recommended dietary protein intake recommended to them of greater than 1.2 g/kg. Conclusions: As was established before, nutritional education has a vital positive impact on the health and nutritional status of peritoneal dialysis patients. The results of this study show that nutritional education programs are not enough adequate in peritoneal dialysis patients. There is a crucial priority to establish nutritional educational programs and guidelines for PD patients in Mongolia.

Keywords: renal diet, peritoneal dialysis, nutrition education, CKD diet

Procedia PDF Downloads 36
9363 Nanomaterials-Assisted Drilling Fluids for Application in Oil Fields - Challenges and Prospects

Authors: Husam Mohammed Saleh Alziyadi

Abstract:

The drilling fluid has a significant impact on drilling efficiency. Drilling fluids have several functions which make them most important within the drilling process, such as lubricating and cooling the drill bit, removing cuttings from down of hole, preventing formation damage, suspending drill bit cuttings, , and also removing permeable formation as a result, the flow of fluid into the formation process is delayed. In the oil and gas sector, unconventional shale reserves have been a central player in meeting world energy demands. Oil-based drilling fluids (OBM) are generally favored for drilling shale plays due to negligible chemical interactions. Nevertheless, the industry has been inspired by strict environmental regulations to design water-based drilling fluids (WBM) capable of regulating shale-water interactions to boost their efficiency. However, traditional additives are too large to plug the micro-fractures and nanopores of the shale. Recently, nanotechnology in the oil and gas industries has shown a lot of promise, especially with drilling fluids based on nanoparticles. Nanotechnology has already made a huge contribution to technical developments in the energy sector. In the drilling industry, nanotechnology can make revolutionary changes. Nanotechnology creates nanomaterials with many attractive properties that can play an important role in improving the consistency of mud cake, reducing friction, preventing differential pipe sticking, preserving the stability of the borehole, protecting reservoirs, and improving the recovery of oil and gas. The selection of suitable nanomaterials should be based on the shale formation characteristics intended for drilling. The size, concentration, and stability of the NPs are three more important considerations. The effects of the environment are highly sensitive to these materials, such as changes in ionic strength, temperature, or pH, all of which occur under downhole conditions. This review paper focused on the previous research and recent development of environmentally friendly drilling fluids according to the regulatory environment and cost challenges.

Keywords: nanotechnology, WBM, Drilling Fluid, nanofluids

Procedia PDF Downloads 110
9362 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia PDF Downloads 154
9361 The Effect of Styrene-Butadiene-Rubber (SBR) Polymer Modifier on Properties of Bitumen

Authors: Seyed Abbas Tabatabaei, Alireza Kiasat, Ferdows Karimi Alkouhi

Abstract:

In order to use bitumen in hot mix asphalt, it must have specific characteristics. There are some methods to reach these properties. Using polymer modifiers are one of the methods to modify the bitumen properties. In this paper, the effect of Styrene-Butadiene-Rubber that is one of the bitumen polymer modifiers on rheology properties of bitumen is studied. In this regard, the rheological properties of base bitumen and the modified bitumen with 3, 4, and 5 percent of Styrene-Butadiene-Rubber (SBR) were analysed. The results show that bitumen modified with 5 percent of SBR has the best performance than the other samples.

Keywords: bitumen, polymer modifier, styrene-butadiene-rubber, rheological properties

Procedia PDF Downloads 311
9360 A Scheme Cooperating with Cryptography to Enhance Security in Satellite Communications

Authors: Chieh-Fu Chang, Wan-Hsin Hsieh

Abstract:

We have proposed a novel scheme— iterative word-extension (IWE) to enhance the cliff effect of Reed-Solomon codes regarding the error performance at a specific Eb/N0. The scheme can be readily extended to block codes and the important properties of IWE are further investigated here. In order to select proper block codes specifying the desired cliff Eb/N0, the associated features of IWE are explored. These properties and features grant IWE ability to enhance security regarding the received Eb/N0 in physical layer so that IWE scheme can cooperate with the traditional presentation layer approach — cryptography, to meet the secure requirements in diverse applications. The features and feasibility of IWE scheme in satellite communication are finally discussed.

Keywords: security, IWE, cliff effect, space communications

Procedia PDF Downloads 405
9359 Application of Electrochromic Glazing for Reducing Peak Cooling Loads

Authors: Ranojoy Dutta

Abstract:

HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.

Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load

Procedia PDF Downloads 115
9358 Dispositional Loneliness and Mental Health of the Elderly in Cross River State, Nigeria

Authors: Peter Unoh Bassey

Abstract:

The study is predicated on the current trend of the rate of dispositional loneliness experienced by the elderly in society today as a result of the breakdown in the family attachment patterns, loss of close associates, and interpersonal conflicts. The research adopted the ex-post facto research design through a survey data collected from a total of 500 elderly comprising of both retirees and community-based elders. Both the stratified and simple sampling techniques were used to select the sample. Based on the findings, it was recommended that the elderly should be trained in acquiring specific attachment styles as well as be trained in developing appropriate social skills to counter loneliness.

Keywords: dispositional loneliness, mental health, elderly, cross river state

Procedia PDF Downloads 139
9357 Using Lesson-Based Discussion to Improve Teaching Quality: A Case of Chinese Mathematics Teachers

Authors: Jian Wang

Abstract:

Teachers’ lesson-based discussions presume central to their effective learning to teach. Whether and to what extent such discussions offer opportunities for teachers to learn to teach effectively is worth a careful empirical examination. This study examines this assumption by drawing on lesson-based discussions and relevant curriculum materials from Chinese teachers in three urban schools. Their lesson-based discussions consistently focused on pedagogical content knowledge and offered specific and reasoned suggestions for teachers to refine their teaching practices. The mandated curriculum and their working language-mediated their lesson-based discussions.

Keywords: Chinese teachers, curriculum materials, lesson discussion, mathematics instruction

Procedia PDF Downloads 68
9356 Law, Resistance, and Development in Georgia: A Case of Namakhvani HPP

Authors: Konstantine Eristavi

Abstract:

The paper will contribute to the discussion on the pitfalls, limits, and possibilities of legal and rights discourse in opposing large infrastructural projects in the context of neoliberal globalisation. To this end, the paper will analyse the struggle against the Namakhvani HPP project in Georgia. The latter has been hailed by the government as one of the largest energy projects in the history of the country, with an enormous potential impact on energy security, energy independence, economic growth, and development. This takes place against the backdrop of decades of market-led -or neoliberal- model of development in Georgia, characterised by structural adjustments, deregulation, privatisation, and Laissez-Fair approach to foreign investment. In this context, the Georgian state vies with other low and middle-income countries for foreign capital by offering to potential investors, on the one hand, exemptions from social and environmental regulations and, on the other hand, huge legal concessions and safeguards, thereby participating in what is often called a “race to the bottom.” The Namakhvani project is a good example of this. At every stage, the project has been marred with violations of laws and regulations concerning transparency, participation, social and environmental regulations, and so on. Moreover, the leaked contract between the state and the developer reveals the contractual safeguards which effectively insulate the investment throughout the duration of the contract from the changes in the national law that might adversely affect investors’ rights and returns. These clauses, aimed at preserving investors' economic position, place the contract above national law in many respects and even conflict with fundamental constitutional rights. In response to the perceived deficiencies of the project, one of the largest and most diverse social movements in the history of post-soviet Georgia has been assembled, consisting of the local population, conservative and leftist groups, human rights and environmental NGOs, etc. Crucially, the resistance movement is actively using legal tools. In order to analyse both the limitations and possibilities of legal discourse, the paper will distinguish between internal and immanent critiques. Law as internal critique, in the context of the struggles around the Namakhvani project, while potentially fruitful in hindering the project, risks neglecting and reproducing those factors -e.g., the particular model of development- that made such contractual concessions and safeguards and concomitant rights violations possible in the first place. On the other hand, the use of rights and law as part of immanent critique articulates a certain incapacity on the part of the addressee government to uphold existing laws and rights due to structural factors, hence, pointing to a need for a fundamental change. This 'ruptural' form of legal discourse that the movement employs makes it possible to go beyond the discussion around the breaches of law and enables a critical deliberation on the development model within which these violations and extraordinary contractual safeguards become necessary. It will be argued that it is this form of immanent critique that expresses the emancipatory potential of legal discourse.

Keywords: law, resistance, development, rights

Procedia PDF Downloads 72
9355 Experimental Study of Reflective Roof as a Passive Cooling Method in Homes Under the Paradigm of Appropriate Technology

Authors: Javier Ascanio Villabona, Brayan Eduardo Tarazona Romero, Camilo Leonardo Sandoval Rodriguez, Arly Dario Rincon, Omar Lengerke Perez

Abstract:

Efficient energy consumption in the housing sector in relation to refrigeration is a concern in the construction and rehabilitation of houses in tropical areas. Thermal comfort is aggravated by heat gain on the roof surface by heat gains. Thus, in the group of passive cooling techniques, one of the practices and technologies in solar control that provide improvements in comfortable conditions are thermal insulation or geometric changes of the roofs. On the other hand, methods with reflection and radiation are the methods used to decrease heat gain by facilitating the removal of excess heat inside a building to maintain a comfortable environment. Since the potential of these techniques varies in different climatic zones, their application in different zones should be examined. This research is based on the experimental study of a prototype of a roof radiator as a method of passive cooling in homes, which was developed through an experimental research methodology making measurements in a prototype built by means of the paradigm of appropriate technology, with the aim of establishing an initial behavior of the internal temperature resulting from the climate of the external environment. As a starting point, a selection matrix was made to identify the typologies of passive cooling systems to model the system and its subsequent implementation, establishing its constructive characteristics. Step followed by the measurement of the climatic variables (outside the prototype) and microclimatic variables (inside the prototype) to obtain a database to be analyzed. As a final result, the decrease in temperature that occurs inside the chamber with respect to the outside temperature was evidenced. likewise, a linearity in its behavior in relation to the variations of the climatic variables.

Keywords: appropriate technology, enveloping, energy efficiency, passive cooling

Procedia PDF Downloads 80
9354 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling

Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva

Abstract:

Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.

Keywords: energy saving, inverse problem, heat transfer, multilayer walling

Procedia PDF Downloads 383
9353 Semi-Empirical Modeling of Heat Inactivation of Enterococci and Clostridia During the Hygienisation in Anaerobic Digestion Process

Authors: Jihane Saad, Thomas Lendormi, Caroline Le Marechal, Anne-marie Pourcher, Céline Druilhe, Jean-louis Lanoiselle

Abstract:

Agricultural anaerobic digestion consists in the conversion of animal slurry and manure into biogas and digestate. They need, however, to be treated at 70 ºC during 60 min before anaerobic digestion according to the European regulation (EC n°1069/2009 & EU n°142/2011). The impact of such heat treatment on the outcome of bacteria has been poorly studied up to now. Moreover, a recent study¹ has shown that enterococci and clostridia are still detected despite the application of such thermal treatment, questioning the relevance of this approach for the hygienisation of digestate. The aim of this study is to establish the heat inactivation kinetics of two species of enterococci (Enterococcus faecalis and Enterococcus faecium) and two species of clostridia (Clostridioides difficile and Clostridium novyi as a non-toxic model for Clostridium botulinum of group III). A pure culture of each strain was prepared in a specific sterile medium at concentration of 10⁴ – 10⁷ MPN / mL (Most Probable number), depending on the bacterial species. Bacterial suspensions were then filled in sterilized capillary tubes and placed in a water or oil bath at desired temperature for a specific period of time. Each bacterial suspension was enumerated using a MPN approach, and tests were repeated three times for each temperature/time couple. The inactivation kinetics of the four indicator bacteria is described using the Weibull model and the classical Bigelow model of first-order kinetics. The Weibull model takes biological variation, with respect to thermal inactivation, into account and is basically a statistical model of distribution of inactivation times as the classical first-order approach is a special case of the Weibull model. The heat treatment at 70 ºC / 60 min contributes to a reduction greater than 5 log10 for E. faecium and E. faecalis. However, it results only in a reduction of about 0.7 log10 for C. difficile and an increase of 0.5 log10 for C. novyi. Application of treatments at higher temperatures is required to reach a reduction greater or equal to 3 log10 for C. novyi (such as 30 min / 100 ºC, 13 min / 105 ºC, 3 min / 110 ºC, and 1 min / 115 ºC), raising the question of the relevance of the application of heat treatment at 70 ºC / 60 min for these spore-forming bacteria. To conclude, the heat treatment (70 ºC / 60 min) defined by the European regulation is sufficient to inactivate non-sporulating bacteria. Higher temperatures (> 100 ºC) are required as far as spore-forming bacteria concerns to reach a 3 log10 reduction (sporicidal activity).

Keywords: heat treatment, enterococci, clostridia, inactivation kinetics

Procedia PDF Downloads 92
9352 A 4-Month Low-carb Nutrition Intervention Study Aimed to Demonstrate the Significance of Addressing Insulin Resistance in 2 Subjects with Type-2 Diabetes for Better Management

Authors: Shashikant Iyengar, Jasmeet Kaur, Anup Singh, Arun Kumar, Ira Sahay

Abstract:

Insulin resistance (IR) is a condition that occurs when cells in the body become less responsive to insulin, leading to higher levels of both insulin and glucose in the blood. This condition is linked to metabolic syndromes, including diabetes. It is crucial to address IR promptly after diagnosis to prevent long-term complications associated with high insulin and high blood glucose. This four-month case study highlights the importance of treating the underlying condition to manage diabetes effectively. Insulin is essential for regulating blood sugar levels by facilitating the uptake of glucose into cells for energy or storage. In IR individuals, cells are less efficient at taking up glucose from the blood resulting in elevated blood glucose levels. As a result of IR, beta cells produce more insulin to make up for the body's inability to use insulin effectively. This leads to high insulin levels, a condition known as hyperinsulinemia, which further impairs glucose metabolism and can contribute to various chronic diseases. In addition to regulating blood glucose, insulin has anti-catabolic effects, preventing the breakdown of molecules in the body, such as inhibiting glycogen breakdown in the liver, inhibiting gluconeogenesis, and inhibiting lipolysis. If a person is insulin-sensitive or metabolically healthy, an optimal level of insulin prevents fat cells from releasing fat and promotes the storage of glucose and fat in the body. Thus optimal insulin levels are crucial for maintaining energy balance and plays a key role in metabolic processes. During the four-month study, researchers looked at the impact of a low-carb dietary (LCD) intervention on two male individuals (A & B) who had Type-2 diabetes. Althoughvneither of these individuals were obese, they were both slightly overweight and had abdominal fat deposits. Before the trial began, important markers such as fasting blood glucose (FBG), triglycerides (TG), high-density lipoprotein (HDL) cholesterol, and Hba1c were measured. These markers are essential in defining metabolic health, their individual values and variability are integral in deciphering metabolic health. The ratio of TG to HDL is used as a surrogate marker for IR. This ratio has a high correlation with the prevalence of metabolic syndrome and with IR itself. It is a convenient measure because it can be calculated from a standard lipid profile and does not require more complex tests. In this four-month trial, an improvement in insulin sensitivity was observed through the ratio of TG/HDL, which, in turn, improves fasting blood glucose levels and HbA1c. For subject A, HbA1c dropped from 13 to 6.28, and for subject B, it dropped from 9.4 to 5.7. During the trial, neither of the subjects were taking any diabetic medications. The significant improvements in their health markers, such as better glucose control, along with an increase in energy levels, demonstrate that incorporating LCD interventions can effectively manage diabetes.

Keywords: metabolic disorder, insulin resistance, type-2 diabetes, low-carb nutrition

Procedia PDF Downloads 22
9351 Thermodynamic Evaluation of Coupling APR-1400 with a Thermal Desalination Plant

Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan

Abstract:

Growing human populations have placed increased demands on water supplies and a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over the use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP which is the IAEA desalination program, it is approved to be capable of analyzing power generation systems coupled to desalination systems through various steam extraction positions, taking into consideration the isolation loop between the APR-1400 and the thermal desalination plant for safety concern.

Keywords: APR-1400, desalination, DE-TOP, IAEA, MSF, MED, MED-TVC, RO

Procedia PDF Downloads 514
9350 Factors of English Language Learning and Acquisition at Bisha College of Technology

Authors: Khlaid Albishi

Abstract:

This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.

Keywords: language acquisition, language learning, factors, Bisha college

Procedia PDF Downloads 479
9349 Sports: A Vital Tool for Promotion of Good Health and Prevention of Diseases

Authors: Agburuga Obi, Madumere Akuego Jane

Abstract:

This paper explores the important role sports can play in the promotion of good health and prevention of diseases. Technological advancements in today’s world has come along with some difficulties to man. This is because work formally done by man has been taken over by machines, thus, man has become sedentary. This has created a lot of health problems to man such as cardiovascular diseases, diabetes, cancer, obesity, and osteoporosis. To nip this ugly situation in the bud, the following recommendations are made: specific measures should be taken to raise the awareness within the government, key sectors and the population of the diverse benefits or physical activity and sports and the risk and costs of inactivity, provision of equipment, facilities for sports and recreational activities in every community, participation in physical activities in sports if not on daily basis at least thrice a week.

Keywords: physical activities, sport, good health, prevention, diseases

Procedia PDF Downloads 747
9348 Models of Innovation Processes and Their Evolution: A Literature Review

Authors: Maier Dorin, Maier Andreea

Abstract:

Today, any organization - regardless of the specific activity - must be prepared to face continuous radical changes, innovation thus becoming a condition of survival in a globalized market. Not all managers have an overall view on the real size of necessary innovation potential. Unfortunately there is still no common (and correct) understanding of the term of innovation among managers. Moreover, not all managers are aware of the need for innovation. This article highlights and analyzes a series of models of innovation processes and their evolution. The models analyzed encompass both the strategic level and the operational one within an organization, indicating performance innovation on each landing. As the literature review shows, there are no easy answers to the innovation process as there are no shortcuts to great results. Successful companies do not have a silver innovative bullet - they do not get results by making one or few things better than others, they make everything better.

Keywords: innovation, innovation process, business success, models of innovation

Procedia PDF Downloads 382
9347 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification

Authors: Kunio Yoshikawa, Ding Lu

Abstract:

Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).

Keywords: biomass carbonization, densification, distributed power generation, gasification

Procedia PDF Downloads 146
9346 The Impact of Using Flattening Filter-Free Energies on Treatment Efficiency for Prostate SBRT

Authors: T. Al-Alawi, N. Shorbaji, E. Rashaidi, M.Alidrisi

Abstract:

Purpose/Objective(s): The main purpose of this study is to analyze the planning of SBRT treatments for localized prostate cancer with 6FFF and 10FFF energies to see if there is a dosimetric difference between the two energies and how we can increase the plan efficiency and reduce its complexity. Also, to introduce a planning method in our department to treat prostate cancer by utilizing high energy photons without increasing patient toxicity and fulfilled all dosimetric constraints for OAR (an organ at risk). Then toevaluate the target 95% coverage PTV95, V5%, V2%, V1%, low dose volume for OAR (V1Gy, V2Gy, V5Gy), monitor unit (beam-on time), and estimate the values of homogeneity index HI, conformity index CI a Gradient index GI for each treatment plan.Materials/Methods: Two treatment plans were generated for15 patients with localized prostate cancer retrospectively using the CT planning image acquired for radiotherapy purposes. Each plan contains two/three complete arcs with two/three different collimator angle sets. The maximum dose rate available is 1400MU/min for the energy 6FFF and 2400MU/min for 10FFF. So in case, we need to avoid changing the gantry speed during the rotation, we tend to use the third arc in the plan with 6FFF to accommodate the high dose per fraction. The clinical target volume (CTV) consists of the entire prostate for organ-confined disease. The planning target volume (PTV) involves a margin of 5 mm. A 3-mm margin is favored posteriorly. Organs at risk identified and contoured include the rectum, bladder, penile bulb, femoral heads, and small bowel. The prescription dose is to deliver 35Gyin five fractions to the PTV and apply constraints for organ at risk (OAR) derived from those reported in references. Results: In terms of CI=0.99, HI=0.7, and GI= 4.1, it was observed that they are all thesame for both energies 6FFF and 10FFF with no differences, but the total delivered MUs are much less for the 10FFF plans (2907 for 6FFF vs.2468 for 10FFF) and the total delivery time is 124Sc for 6FFF vs. 61Sc for 10FFF beams. There were no dosimetric differences between 6FFF and 10FFF in terms of PTV coverage and mean doses; the mean doses for the bladder, rectum, femoral heads, penile bulb, and small bowel were collected, and they were in favor of the 10FFF. Also, we got lower V1Gy, V2Gy, and V5Gy doses for all OAR with 10FFF plans. Integral dosesID in (Gy. L) were recorded for all OAR, and they were lower with the 10FFF plans. Conclusion: High energy 10FFF has lower treatment time and lower delivered MUs; also, 10FFF showed lower integral and meant doses to organs at risk. In this study, we suggest usinga 10FFF beam for SBRTprostate treatment, which has the advantage of lowering the treatment time and that lead to lessplan complexity with respect to 6FFF beams.

Keywords: FFF beam, SBRT prostate, VMAT, prostate cancer

Procedia PDF Downloads 68
9345 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 281
9344 Human’s Sensitive Reactions during Different Geomagnetic Activity: An Experimental Study in Natural and Simulated Conditions

Authors: Ketevan Janashia, Tamar Tsibadze, Levan Tvildiani, Nikoloz Invia, Elguja Kubaneishvili, Vasili Kukhianidze, George Ramishvili

Abstract:

This study considers the possible effects of geomagnetic activity (GMA) on humans situated on Earth by performing experiments concerning specific sensitive reactions in humans in both: natural conditions during different GMA and by the simulation of different GMA in the lab. The measurements of autonomic nervous system (ANS) responses to different GMA via measuring the heart rate variability (HRV) indices and stress index (SI) and their comparison with the K-index of GMA have been presented and discussed. The results of experiments indicate an intensification of the sympathetic part of the ANS as a stress reaction of the human organism when it is exposed to high level of GMA as natural as well as in simulated conditions. Aim: We tested the hypothesis whether the GMF when disturbed can have effects on human ANS causing specific sensitive stress-reactions depending on the initial type of ANS. Methods: The study focuses on the effects of different GMA on ANS by comparing of HRV indices and stress index (SI) of n= 78, 18-24 years old healthy male volunteers. Experiments were performed as natural conditions on days of low (K= 1-3) and high (K= 5-7) GMA as well as in the lab by the simulation of different GMA using the device of geomagnetic storm (GMS) compensation and simulation. Results: In comparison with days of low GMA (K=1-3) the initial values of HRV shifted towards the intensification of the sympathetic part (SP) of the ANS during days of GMSs (K=5-7) with statistical significance p-values: HR (heart rate, p= 0.001), SDNN (Standard deviation of all Normal to Normal intervals, p= 0.0001), RMSSD (The square root of the arithmetical mean of the sum of the squares of differences between adjacent NN intervals, p= 0.0001). In comparison with conditions during GMSs compensation mode (K= 0, B= 0-5nT), the ANS balance was observed to shift during exposure to simulated GMSs with intensities in the range of natural GMSs (K= 7, B= 200nT). However, the initial values of the ANS resulted in different dynamics in its variation depending of GMA level. In the case of initial balanced regulation type (HR > 80) significant intensification of SP was observed with p-values: HR (p= 0.0001), SDNN (p= 0.047), RMSSD (p= 0.28), LF/HF (p=0.03), SI (p= 0.02); while in the case of initial parasympathetic regulation type (HR < 80), an insignificant shift to the intensification of the parasympathetic part (PP) was observed. Conclusions: The results indicate an intensification of SP as a stress reaction of the human organism when it is exposed to high level of GMA in both natural and simulated conditions.

Keywords: autonomic nervous system, device of magneto compensation/simulation, geomagnetic storms, heart rate variability

Procedia PDF Downloads 129
9343 Heavy Oil Recovery with Chemical Viscosity-Reduction: An Innovative Low-Carbon and Low-Cost Technology

Authors: Lin Meng, Xi Lu, Haibo Wang, Yong Song, Lili Cao, Wenfang Song, Yong Hu

Abstract:

China has abundant heavy oil resources, and thermal recovery is the main recovery method for heavy oil reservoirs. However, high energy consumption, high carbon emission and high production costs make heavy oil thermal recovery unsustainable. It is urgent to explore a replacement for developing technology. A low Carbon and cost technology of heavy oil recovery, chemical viscosity-reduction in layer (CVRL), is developed by the petroleum exploration and development research institute of Sinopec via investigated mechanisms, synthesized products, and improved oil production technologies, as follows: (1) Proposed a cascade viscous mechanism of heavy oil. Asphaltene and resin grow from free molecules to associative structures further to bulk aggregations by π - π stacking and hydrogen bonding, which causes the high viscosity of heavy oil. (2) Aimed at breaking the π - π stacking and hydrogen bond of heavy oil, the copolymer of N-(3,4-dihydroxyphenethyl) acryl amide and 2-Acrylamido-2-methylpropane sulfonic acid was synthesized as a viscosity reducer. It achieves a viscosity reduction rate of>80% without shearing for heavy oil (viscosity < 50000 mPa‧s), of which fluidity is evidently improved in the layer. (3) Synthesized hydroxymethyl acrylamide-maleic acid-decanol ternary copolymer self-assembly plugging agent. The particle size is 0.1 μm-2 mm adjustable, and the volume is 10-500 times controllable, which can achieve the efficient transportation of viscosity reducer to enriched oil areas. CVRL has applied 400 wells until now, increasing oil production by 470000 tons, saving 81000 tons of standard coal, reducing CO2 emissions by 174000 tons, and reducing production costs by 60%. It promotes the transformation of heavy oil towards low energy consumption, low carbon emissions, and low-cost development.

Keywords: heavy oil, chemical viscosity-reduction, low carbon, viscosity reducer, plugging agent

Procedia PDF Downloads 55
9342 Transverse Momentum Dependent Factorization and Evolution for Spin Physics

Authors: Bipin Popat Sonawane

Abstract:

After 1988 Electron muon Collaboration (EMC) announcement of measurement of spin dependent structure function, it has been found that it has become a need to understand spin structure of a hadron. In the study of three-dimensional spin structure of a proton, we need to understand the foundation of quantum field theory in terms of electro-weak and strong theories using rigorous mathematical theories and models. In the process of understanding the inner dynamical stricture of proton we need understand the mathematical formalism in perturbative quantum chromodynamics (pQCD). In QCD processes like proton-proton collision at high energy we calculate cross section using conventional collinear factorization schemes. In this calculations, parton distribution functions (PDFs) and fragmentation function are used which provide the information about probability density of finding quarks and gluons ( partons) inside the proton and probability density of finding final hadronic state from initial partons. In transverse momentum dependent (TMD) PDFs and FFs, collectively called as TMDs, take an account for intrinsic transverse motion of partons. The TMD factorization in the calculation of cross sections provide a scheme of hadronic and partonic states in the given QCD process. In this study we review Transverse Momentum Dependent (TMD) factorization scheme using Collins-Soper-Sterman (CSS) Formalism. CSS formalism considers the transverse momentum dependence of the partons, in this formalism the cross section is written as a Fourier transform over a transverse position variable which has physical interpretation as impact parameter. Along with this we compare this formalism with improved CSS formalism. In this work we study the TMD evolution schemes and their comparison with other schemes. This would provide description in the process of measurement of transverse single spin asymmetry (TSSA) in hadro-production and electro-production of J/psi meson at RHIC, LHC, ILC energy scales. This would surely help us to understand J/psi production mechanism which is an appropriate test of QCD.

Keywords: QCD, PDF, TMD, CSS

Procedia PDF Downloads 51
9341 The Determinants of Corporate Social Responsibility Disclosure Extent and Quality: The Case of Jordan

Authors: Hani Alkayed, Belal Omar, Eileen Roddy

Abstract:

This study focuses on investigating the determinants of Corporate Social Responsibility Disclosure (CSRD) extent and quality in Jordan. The study examines factors that influence CSR disclosure extent and quality, such as corporate characteristics (size, gearing, firm’s age, and industry type), corporate governance (board size, number of meetings, non-executive directors, female directors in the board, family directors in the board, foreign members, audit committee, type of external auditors, and CEO duality) and ownership structure (government ownership, institutional ownership, and ownership concentration). Legitimacy theory is utilised as the main theory for our theoretical framework. A quantitative approach is adopted for this research and content analysis technique is used to gather CSR disclosure extent and quality from the annual reports. The sample is withdrawn from the annual reports of 118 Jordanian companies over the period of 2010-2015. A CSRD index is constructed, and includes the disclosures of the following categories; environmental, human resources, product and consumers, and community involvement. A 7 point-scale measurement was developed to examine the quality of disclosure, were 0= No Disclosures, 1= General disclosures, (Non-monetary), 2= General disclosures, (Non-monetary) with pictures, charts, and graphs 3= Descriptive/ qualitative disclosures, specific details (Non-monetary), 4= Descriptive/ qualitative disclosures, specific details with pictures, charts, and graphs, 5= Numeric disclosures, full descriptions with supporting numbers, 6= Numeric disclosures, full descriptions with supporting numbers, pictures, and Charts. This study fills the gap in the literature regarding CSRD in Jordan, and the fact that all the previous studies have ignored a clear categorisation as a measurement of quality. The result shows that the extent of CSRD is higher than the quality in Jordan. Regarding the determinants of CSR disclosures, the followings were found to have a significant relationship with both extent and quality of CSRD except non-executives, were the significant relationship was found just with the extent of CSRD: board size, non-executive directors, firm’s age, foreign members on the board, number of boards meetings, the presence of audit committees, big 4, government ownership, firm’s size, industry type.

Keywords: content analysis, corporate governance, corporate social responsibility disclosure, Jordan, quality of disclosure

Procedia PDF Downloads 213
9340 Check Factors Contributing to the Increase or Decrease in Labor Productivity in Employees Applied Science Center Municipal Andimeshk

Authors: Hossein Boromandfar, Ahmad Ghalavandi

Abstract:

This paper examines the importance of human resources as a strategic resource and the factors that lead to increased Labor productivity in Applied Science Center Andimeshk pay. First, the concepts and definitions of productivity and factors affecting it, and then determine the center Recommendations for improving the productivity of the university at a high level its improvement. What leads to increased productivity of labor is worth. The most competent human resources infrastructure is set, because by moving towards the development and promotion. The use of qualified employees in the university with a focus on specific objectives can be effective on its promotion.

Keywords: productivity, manage, human resources, center for applied science

Procedia PDF Downloads 407
9339 Study of White Salted Noodles Air Dehydration Assisted by Microwave as Compared to Conventional Air Dried Process

Authors: Chiun-C. R. Wang, I-Yu Chiu

Abstract:

Drying is the most difficult and critical step to control in the dried salted noodles production. Microwave drying has the specific advantage of rapid and uniform heating due to the penetration of microwaves into the body of the product. Microwave-assisted facility offers a quick and energy saving method during food dehydration as compares to the conventional air-dried method for the noodle preparation. Recently, numerous studies in the rheological characteristics of pasta or spaghetti were carried out with microwave–assisted and conventional air driers and many agricultural products were dried successfully. There is very few research associated with the evaluation of physicochemical characteristics and cooking quality of microwave-assisted air dried salted noodles. The purposes of this study were to compare the difference between conventional air and microwave-assisted air drying method on the physicochemical properties and eating quality of rice bran noodles. Three different microwave power including 0.5 KW, 0.75 KW and 1.0 KW installing with 50℃ hot air were applied for dehydration of rice bran noodles in this study. Three proportion of rice bran ranging in 0-20% were incorporated into salted noodles processing. The appearance, optimum cooking time, cooking yield and losses, textural profiles analysis, and sensory evaluation of rice bran noodles were measured in this study. The results indicated that high power (1.0 KW) microwave facility caused partially burnt and porous on the surface of rice bran noodles. However, no significant difference of noodle was appeared on the surface of noodles between low power (0.5 KW) microwave-assisted salted noodles and control set. The optimum cooking time of noodles was decreased as higher power microwave was applied or higher proportion of rice bran was incorporated in the preparation of salted noodles. The higher proportion of rice bran (20%) or higher power of microwave-assisted dried noodles obtained the higher color intensity and the higher cooking losses as compared with conventional air dried noodles. Meanwhile, the higher power of microwave-assisted air dried noodles indicated the larger air cell inside the noodles and appeared little burnt stripe on the surface of noodles. The firmness of cooked rice bran noodles slightly decreased in the cooked noodles which were dried by high power microwave-assisted method. The shearing force, tensile strength, elasticity and texture profiles of cooked rice noodles decreased with the progress of the proportion of rice bran. The results of sensory evaluation indicated conventional dried noodles obtained the higher springiness, cohesiveness and overall acceptability of cooked noodles than high power (1.0 KW) microwave-assisted dried noodles. However, low power (0.5 KW) microwave-assisted dried noodles showed the comparable sensory attributes and acceptability with conventional dried noodles. Moreover, the sensory attributes including firmness, springiness, cohesiveness decreased, but stickiness increased with the increases of rice bran proportion in the salted noodles. These results inferred that incorporation of lower proportion of rice bran and lower power microwave-assisted dried noodles processing could produce faster cooking time and more acceptable quality of cooked noodles as compared to conventional dried noodles.

Keywords: white salted noodles, microwave-assisted air drying processing, cooking yield, appearance, texture profiles, scanning electrical microscopy, sensory evaluation

Procedia PDF Downloads 475
9338 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator

Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira

Abstract:

True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).

Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve

Procedia PDF Downloads 425
9337 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 207