Search results for: intelligent computational techniques
3607 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach
Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas
Abstract:
Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality
Procedia PDF Downloads 1873606 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion
Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin
Abstract:
This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection
Procedia PDF Downloads 4773605 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization
Procedia PDF Downloads 1903604 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing
Authors: Grzegorz Dolzyk, Sungmoon Jung
Abstract:
Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.Keywords: axial crushing, energy absorption, grooving, thin-wall structures
Procedia PDF Downloads 1443603 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2093602 Securing Online Voting With Blockchain and Smart Contracts
Authors: Anant Mehrotra, Krish Phagwani
Abstract:
Democratic voting is vital for any country, but current methods like ballot papers or EVMs have drawbacks, including transparency issues, low voter turnout, and security concerns. Blockchain technology offers a potential solution by providing a secure, decentralized, and transparent platform for e-voting. With features like immutability, security, and anonymity, blockchain combined with smart contracts can enhance trust and prevent vote tampering. This paper explores an Ethereum-based e-voting application using Solidity, showcasing a web app that prevents duplicate voting through a token-based system, while also discussing the advantages and limitations of blockchain in digital voting. Voting is a crucial component of democratic decision-making, yet current methods, like paper ballots, remain outdated and inefficient. This paper reviews blockchain-based voting systems, highlighting strategies and guidelines to create a comprehensive electronic voting system that leverages cryptographic techniques, such as zero-knowledge proofs, to enhance privacy. It addresses limitations of existing e-voting solutions, including cost, identity management, and scalability, and provides key insights for organizations looking to design their own blockchain-based voting systems.Keywords: electronic voting, smart contracts, blockchain nased voting, security
Procedia PDF Downloads 93601 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes
Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales
Abstract:
In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.Keywords: calibration, data modeling, industrial processes, machine learning
Procedia PDF Downloads 2993600 Self-Supervised Attributed Graph Clustering with Dual Contrastive Loss Constraints
Authors: Lijuan Zhou, Mengqi Wu, Changyong Niu
Abstract:
Attributed graph clustering can utilize the graph topology and node attributes to uncover hidden community structures and patterns in complex networks, aiding in the understanding and analysis of complex systems. Utilizing contrastive learning for attributed graph clustering can effectively exploit meaningful implicit relationships between data. However, existing attributed graph clustering methods based on contrastive learning suffer from the following drawbacks: 1) Complex data augmentation increases computational cost, and inappropriate data augmentation may lead to semantic drift. 2) The selection of positive and negative samples neglects the intrinsic cluster structure learned from graph topology and node attributes. Therefore, this paper proposes a method called self-supervised Attributed Graph Clustering with Dual Contrastive Loss constraints (AGC-DCL). Firstly, Siamese Multilayer Perceptron (MLP) encoders are employed to generate two views separately to avoid complex data augmentation. Secondly, the neighborhood contrastive loss is introduced to constrain node representation using local topological structure while effectively embedding attribute information through attribute reconstruction. Additionally, clustering-oriented contrastive loss is applied to fully utilize clustering information in global semantics for discriminative node representations, regarding the cluster centers from two views as negative samples to fully leverage effective clustering information from different views. Comparative clustering results with existing attributed graph clustering algorithms on six datasets demonstrate the superiority of the proposed method.Keywords: attributed graph clustering, contrastive learning, clustering-oriented, self-supervised learning
Procedia PDF Downloads 533599 Variety and the Distribution of the Java Language Lexicon “Sleeping” in Jombang District East Java: Study of Geographic Dialectology
Authors: Krismonika Khoirunnisa
Abstract:
This research article aims to describe the variation of the Javanese lexicon "Sleep " and its distribution in the Jombang area, East Java. The objectives of this study were (1) to classify the variation of the "Sleep" lexicon in the Jombang area and (2) to design the fish rips for the variation of the "Sleep" lexicon according to their distribution. This type of research is a qualitative descriptive study using the method of leading proficiency, namely conducting interviews with speakers without directly meeting the speakers (interviews via WhatsApp and email as the media). This research article uses techniques record as support and tools for mapping and classifying data, collecting data in this study conducted at four points, namely the Kaliwungu village (Jombang City), Banjardowo village (District of Jombang), Mayangan Village (Subdistrict Jogoroto), and Karobelah village (Subdistrict Mojoagung) as a target investigators to conduct the interview. This study uses the dialectology theory as a basis for analyzing the data obtained. The results of this study found that the Javanese language variation "Sleep" has many different linguals, meanings, and forms even though they are in the same area (Jombang).Keywords: geographical dialectology, lexicon variations, jombangan dialect, sssavanese language
Procedia PDF Downloads 2233598 Global City Typologies: 300 Cities and Over 100 Datasets
Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans
Abstract:
Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling
Procedia PDF Downloads 1803597 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria
Authors: Ofoegbu Ositadinma Edward
Abstract:
This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.Keywords: fuel pump, microcontroller, GUI, web
Procedia PDF Downloads 4343596 Effect of Naphtha on the Composition of a Heavy Crude, in Addition to a Cycle Steam Stimulation Process
Authors: A. Guerrero, A. Leon, S. Munoz, M. Sandoval
Abstract:
The addition of solvent to cyclic steam stimulation is done in order to reduce the solvent-vapor ratio at late stages of the process, the moment in which this relationship increases significantly. The study of the use of naphtha in addition to the cyclic steam stimulation has been mainly oriented to the effect it achieves on the incremental recovery compared to the application of steam only. However, the effect of naphtha on the reactivity of crude oil components under conditions of cyclic steam stimulation or if its effect is the only dilution has not yet been considered, to author’s best knowledge. The present study aims to evaluate and understand the effect of naphtha and the conditions of cyclic steam stimulation, on the remaining composition of the improved oil, as well as the main mechanisms present in the heavy crude - naphtha interaction. Tests were carried out with the system solvent (naphtha)-oil (12.5° API, 4216 cP @ 40° C)- steam, in a batch micro-reactor, under conditions of cyclic steam stimulation (250-300 °C, 400 psi). The characterization of the samples obtained was carried out by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and NMR (Nuclear Magnetic Resonance) techniques. The results indicate that there is a rearrangement of the microstructure of asphaltenes, resulting in a decrease in these and an increase in lighter components such as resins.Keywords: composition change, cyclic steam stimulation, interaction mechanism, naphtha
Procedia PDF Downloads 1363595 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis
Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus
Abstract:
Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.Keywords: additive manufacturing, internal topologies, porosity, rapid prototyping, selective laser melting
Procedia PDF Downloads 3313594 Mathematics Anxiety and Attitude among Nigerian University Library and Information Science Undergraduate Students
Authors: Fredrick Olatunji Ajegbomogun, Clement Ola Adekoya
Abstract:
Mathematics has, for ages, been an essential subject in the education curriculum across the globe. The word mathematics scares the majority of undergraduate students and even more library and information science (LIS) students who have not seen the pertinence of the subject to their academic pursuits. This study investigated mathematics anxiety and attitudes among LIS undergraduate students in Nigerian universities. The study adopted a descriptive survey research design. Multi-stage and convenient sampling techniques were used for the study. Data were collected using a questionnaire and analyzed using descriptive statistical tools. It was found that mathematics is important in LIS education. The students displayed a high level of anxiety toward mathematics. The students have a negative attitude toward mathematics. However, the hypotheses tested revealed that while the LIS female undergraduate students displayed low levels of anxiety and a positive attitude toward mathematics, the level of anxiety of the male undergraduate students was high, and their attitude toward mathematics was negative. It was recommended that LIS undergraduate students develop a positive attitude towards mathematics and appreciate that the paradigm shift in the practice of librarianship is towards mathematics as a way of developing technological tools (hardware and software) to facilitate the effective delivery of library services.Keywords: anxiety, attitude, library and information science, mathematics anxiety, undergraduate students, Nigerian universities
Procedia PDF Downloads 1573593 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 4053592 Preliminary Studies of MWCNT/PVDF Polymer Composites
Authors: Esther Lorrayne M. Pereira, Adriana Souza M. Batista, Fabíola A. S. Ribeiro, Adelina P. Santos, Clascídia A. Furtado, Luiz O. Faria
Abstract:
The combination of multi–walled carbon nanotubes (MWCNTs) with polymers offers an attractive route to reinforce the macromolecular compounds as well as the introduction of new properties based on morphological modifications or electronic interactions between the two constituents. As they are only a few nanometers in dimension, it offers ultra-large interfacial area per volume between the nano-element and polymer matrix. Nevertheless, the use of MWCNTs as a rough material in different applications has been largely limited by their poor processability, insolubility, and infusibility. Studies concerning the nanofiller reinforced polymer composites are justified in an attempt to overcome these limitations. This work presents one preliminary study of MWCNTs dispersion into the PVDF homopolymer. For preparation, the composite components were diluted in n,n-dimethylacetamide (DMAc) with mechanical agitation assistance. After complete dilution, followed by slow evaporation of the solvent at 60°C, the samples were dried. Films of about 80 μm were obtained. FTIR and UV-Vis spectroscopic techniques were used to characterize the nanocomposites. The appearance of absorption bands in the FTIR spectra of nanofilled samples, when compared to the spectrum of pristine PVDF samples, are discussed and compared with the UV-Vis measurements.Keywords: composites materials, FTIR, MWNTs, PVDF, UV-vis
Procedia PDF Downloads 4483591 Surface Roughness Formed during Hybrid Turning of Inconel Alloy
Authors: Pawel Twardowski, Tadeusz Chwalczuk, Szymon Wojciechowski
Abstract:
Inconel 718 is a material characterized by the unique mechanical properties, high temperature strength, high thermal conductivity and the corrosion resistance. However, these features affect the low machinability of this material, which is usually manifested by the intense tool wear and low surface finish. Therefore, this paper is focused on the evaluation of surface roughness during hybrid machining of Inconel 718. The primary aim of the study was to determine the relations between the vibrations generated during hybrid turning and the formed surface roughness. Moreover, the comparison of tested machining techniques in terms of vibrations, tool wear and surface roughness has been made. The conducted tests included the face turning of Inconel 718 with laser assistance in the range of variable cutting speeds. The surface roughness was inspected with the application of stylus profile meter and accelerations of vibrations were measured with the use of three-component piezoelectric accelerometer. The carried out research shows that application of laser assisted machining can contribute to the reduction of surface roughness and cutting vibrations, in comparison to conventional turning. Moreover, the obtained results enable the selection of effective cutting speed allowing the improvement of surface finish and cutting dynamics.Keywords: hybrid machining, nickel alloys, surface roughness, turning, vibrations
Procedia PDF Downloads 3243590 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques
Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt
Abstract:
Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.Keywords: forecasting, time series, auto regression, ARCH, ARMA
Procedia PDF Downloads 3483589 Identify the Factors Affecting Employment and Prioritize in the Economic Sector Jobs of Increased Employment MADM approach of using SAW and TOPSIS and POSET: Ministry of Cooperatives, Do Varamin City Social Welfare
Authors: Mina Rahmani Pour
Abstract:
Negative consequences of unemployment are: increasing age at marriage, addiction, depression, drug trafficking, divorce, immigration, elite, frustration, delinquency, theft, murder, etc., has led to addressing the issue of employment by economic planners, public authorities, chief executive economic conditions in different countries and different time is important. All countries are faced with the problem of unemployment. By identifying the influential factors of occupational employment and employing strengths in the basic steps can be taken to reduce unemployment. In this study, the most significant factors affecting employment has identified 12 variables based on interviews conducted Choose Vtasyrafzaysh engaged in three main business is discussed. DRGAM next question the 8 expert ministry to respond to it is distributed and for weight Horns AZFN Shannon entropy and the ranking criteria of the (SAW, TOPSIS) used. According to the results of the above methods are not compatible with each other, to reach a general consensus on the rating criteria of the technique of integrating (POSET) involving average, Borda, copeland is used. Ultimately, there is no difference between the employments in the economic sector jobs of increased employment.Keywords: employment, effective techniques, SAW, TOPSIS
Procedia PDF Downloads 2353588 The Role of Facades in Conserving the Image of the City
Authors: Hemadri Raut
Abstract:
The city is a blend of the possible interactions of the built form, open spaces and their spatial organization layout in a geographical area to obtain an integrated pattern and environment with building facades being a dominant figure in the body of a city. Façades of each city have their own inherent properties responsive to the human behaviour, weather conditions, safety factors, material availability and composition along with the necessary aesthetics in coordination with adjacent building facades. Cities experience a huge transformation in the culture, lifestyle; socioeconomic conditions and technology nowadays because of the increasing population, urban sprawl, industrialization, contemporary architectural style, post-disaster consequences, war reconstructions, etc. This leads to the loss of the actual identity and architectural character of the city which in turn induces chaos and turbulence in the city. This paper attempts to identify and learn from the traditional elements that would make us more aware of the unique identity of the local communities in a city. It further studies the architectural style, color, shape, and design techniques through the case studies of contextual cities. The work focuses on the observation and transformation of the image of the city through these considerations in the designing of the facades to achieve the reconciliation of the people with urban spaces.Keywords: building facades, city, community, heritage, identity, transformation, urban
Procedia PDF Downloads 2163587 Xenografts: Successful Penetrating Keratoplasty Between Two Species
Authors: Francisco Alvarado, Luz Ramírez
Abstract:
Corneal diseases are one of the main causes of visual impairment and affect almost 4 million, and this study assesses the effects of deep anterior lamellar keratoplasty (DALK) with porcine corneal stroma and postoperative topical treatment with tacrolimus in patients with infectious keratitis. No patient was observed with clinical graft rejection. Among the cases: 2 were positive to fungal culture, 2 with Aspergillus and the other 8 cases were confirmed by bacteriological culture. Corneal diseases are one of the main causes of visual impairment and affect almost 4 million. This study assesses the effects of deep anterior lamellar keratoplasty (DALK) with porcine corneal stroma and postoperative topical treatment with tacrolimus in patients with infectious keratitis. Receiver bed diameters ranged from 7.00 to 9.00 mm. No incidents of Descemet's membrane perforation were observed during surgery. During the follow-up period, no corneal graft splitting, IOP increase, or intolerance to tacrolimus were observed. Deep anterior lamellar keratoplasty seems to be the best option to avoid xenograft rejection, and it could help new surgical techniques in humans.Keywords: ophthalmology, cornea, corneal transplant, xenografts, surgical innovations
Procedia PDF Downloads 833586 Integration of Artificial Neural Network with Geoinformatics Technology to Predict Land Surface Temperature within Sun City Jodhpur, Rajasthan, India
Authors: Avinash Kumar Ranjan, Akash Anand
Abstract:
The Land Surface Temperature (LST) is an essential factor accompanying to rise urban heat and climate warming within a city in micro level. It is also playing crucial role in global change study as well as radiation budgets measuring in heat balance studies. The information of LST is very substantial to recognize the urban climatology, ecological changes, anthropological and environmental interactions etc. The Chief motivation of present study focus on time series of ANN model that taken a sequence of LST values of 2000, 2008 and 2016, realize the pattern of variation within the data set and predict the LST values for 2024 and 2032. The novelty of this study centers on evaluation of LST using series of multi-temporal MODIS (MOD 11A2) satellite data by Maximum Value Composite (MVC) techniques. The results derived from this study endorse the proficiency of Geoinformatics Technology with integration of ANN to gain knowledge, understanding and building of precise forecast from the complex physical world database. This study will also focus on influence of Land Use/ Land Cover (LU/LC) variation on Land Surface Temperature.Keywords: LST, geoinformatics technology, ANN, MODIS satellite imagery, MVC
Procedia PDF Downloads 2403585 Discovering Groundbreaking Geopolymer-Based Materials with Versatile Designs, Ideal for the Construction and Infrastructure Industry
Authors: Maryam Kiani
Abstract:
Geopolymer has gained significant prominence worldwide and is now widely regarded as a potential alternative to conventional Portland cement. Nevertheless, for it to be widely accepted and incorporated into national and international standards, it is crucial to establish precise definitions and dependable mix design methodologies for geopolymer materials. The lack of a common definition and methodology has led to inconsistencies and perplexity across various areas of research. Addressing this concern is imperative for several reasons. To overcome the existing inconsistencies and confusion, concerted efforts should be made to establish clear definitions and robust mix design methodologies for geopolymer materials. This can be achieved through collaborative research, knowledge sharing, and engagement with industry experts. By doing so, we can pave the way for the widespread acceptance and utilization of geopolymer materials, revolutionizing the construction and infrastructure industry in a sustainable and environmentally friendly manner. The primary goal of this article is to offer clear explanations regarding the different meanings of geopolymer and the various methodologies used in geopolymer processes. Its main aim is to improve comprehension of both unary and binary geopolymer systems. By thoroughly exploring existing research, this article strives to illuminate the diverse methods and techniques utilized in the exciting field of geopolymer science.Keywords: geopolymer, nanomaterials, structural materials, mechanical properties
Procedia PDF Downloads 1143584 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers
Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari
Abstract:
Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete
Procedia PDF Downloads 1783583 Economic Evaluation of Bowland Shale Gas Wells Development in the UK
Authors: Elijah Acquah-Andoh
Abstract:
The UK has had its fair share of the shale gas revolutionary waves blowing across the global oil and gas industry at present. Although, its exploitation is widely agreed to have been delayed, shale gas was looked upon favorably by the UK Parliament when they recognized it as genuine energy source and granted licenses to industry to search and extract the resource. This, although a significant progress by industry, there yet remains another test the UK fracking resource must pass in order to render shale gas extraction feasible – it must be economically extractible and sustainably so. Developing unconventional resources is much more expensive and risky, and for shale gas wells, producing in commercial volumes is conditional upon drilling horizontal wells and hydraulic fracturing, techniques which increase CAPEX. Meanwhile, investment in shale gas development projects is sensitive to gas price and technical and geological risks. Using a Two-Factor Model, the economics of the Bowland shale wells were analyzed and the operational conditions under which fracking is profitable in the UK was characterized. We find that there is a great degree of flexibility about Opex spending; hence Opex does not pose much threat to the fracking industry in the UK. However, we discover Bowland shale gas wells fail to add value at gas price of $8/ Mmbtu. A minimum gas price of $12/Mmbtu at Opex of no more than $2/ Mcf and no more than $14.95M Capex are required to create value within the present petroleum tax regime, in the UK fracking industry.Keywords: capex, economical, investment, profitability, shale gas development, sustainable
Procedia PDF Downloads 5793582 Quality of Life Measurements: Evaluation of Intervention Program of Persons with Addiction
Authors: Julie Wittmannová, Petr Šeda
Abstract:
Quality of life measurements (QLF) help to evaluate interventions programs in different groups of persons with special needs. Our presentation deals with QLF of persons with addiction in relation to the physical activity (PA), type of addiction, age, gender and other variables. The aim of presentation is to summarize the basic findings and offer thoughts for questions arose. Methods: SQUALA (Subjective Quality of Life Analysis); SEIQoL (Schedule for the Evaluation of Individual Quality of Life); questionnaire of own construction. The results are evaluated by MannWhitney U test and KruskallWallis ANOVA test (p ≤ 0,05). Sample of 64 participants – clients of aftercare center, aged 18 plus. Findings: Application of the methods SQUALA and SEIQoL in the chosen population seems appropriate, the obtaining information regarding the QLF correlate to intervention program topics, the need of an activelifestyle and health related topics in persons with addiction is visible. Conclusions or Implications: The subjective evaluation of quality of life of Aftercare clients is an important part of evaluation process, especially used to evaluate satisfaction with offered services and programs. Techniques SQUALA and SEIQoL gave us the desired outcomes.Keywords: adapted physical activity, addiction, quality of life, physical activity, aftercare
Procedia PDF Downloads 3333581 Research on Thermal Runaway Reaction of Ammonium Nitrate with Incompatible Substances
Authors: Weic-Ting Chen, Jo-Ming Tseng
Abstract:
Ammonium nitrate (AN) has caused many accidents in the world, which have caused a large number of people’s life and serious economic losses. In this study, the safety of the AN production process was discussed deeply, and the influence of incompatible substances was estimated according to the change of their heat value by mixing them with incompatible substances by thermal analysis techniques, and their safety parameters were calculated according to their kinetic parameters. In this study, differential scanning calorimeters (DSC) were applied for the temperature rise test and adiabatic thermal analysis in combination with the Advanced Reactive System Screening Tool (ARSST). The research results could contribute to the safety of the ammonium nitrate production process. Manufacturers can better understand the possibility of chemical heat release and the operating conditions that will cause a chemical reaction to be out of control when storing or adding new substances, so safety parameters were researched for these complex reactions. The results of this study will benefit the process of AN and the relevant staff, which also have safety protection in the working environment.Keywords: ammonium nitrate, incompatible substances, differential scanning calorimeters, advanced reactive system screening tool, safety parameters
Procedia PDF Downloads 943580 In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method
Authors: Alireza Jalalvand, Maryam Saleh, Somayeh Behjat Khatouni, Zahra Bahri Najafi, Foroozan Fatahinia, Narges Ismailzadeh, Behrokh Farahmand
Abstract:
Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2.Keywords: covid-19, drug repositioning, molecular docking, lopinavir, saquinavir
Procedia PDF Downloads 883579 Framework for Integrating Big Data and Thick Data: Understanding Customers Better
Authors: Nikita Valluri, Vatcharaporn Esichaikul
Abstract:
With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data
Procedia PDF Downloads 1623578 Study on Conservation and Regeneration of the Industrial Buildings
Authors: Rungpansa Noichan, Bart Julian Dewancker
Abstract:
The conservation and regeneration of historical industrial building is one of the most important issues to be solved in today’s urban development in the world. There are growing numbers of industrial building in which promoting heritage conservation maybe a helpful tool for a sustainable city in social, urban restructuring, environmental and economic component. This paper identifies the key attributes of conservation and regeneration industrial building from the literature, were discussed by reviewing its development at home and abroad. The authors have investigated 93 industrial buildings, which were used as industrial building before and reused into buildings with another function afterward. The data to be discussed below were mainly collected from various publications but also from available internet sources. This study focuses on green transformation, historical culture heritage, transformation techniques, and urban regeneration based on the empirical researches on the historical industrial building and site. Moreover, we focus on social, urban environment and sustainable development. The implications of the study provide suggestions for future improvements in the conservation and regeneration of historical industrial building, and inspire new ways of use, so the building becomes flexible and can consequently be adaptable to changes in order to survive time. Therefore, the building does not take into account only its future impact in the environment and society. Instead, it focuses on its entire life cycle.Keywords: industrial building, heritage conservation, green transformation, regeneration, sustainable development
Procedia PDF Downloads 370