Search results for: Rasch model
11399 Spatial Variation of WRF Model Rainfall Prediction over Uganda
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo
Abstract:
Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.Keywords: convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model
Procedia PDF Downloads 31611398 Analysis of Path Nonparametric Truncated Spline Maximum Cubic Order in Farmers Loyalty Modeling
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
Path analysis tests the relationship between variables through cause and effect. Before conducting further tests on path analysis, the assumption of linearity must be met. If the shape of the relationship is not linear and the shape of the curve is unknown, then use a nonparametric approach, one of which is a truncated spline. The purpose of this study is to estimate the function and get the best model on the nonparametric truncated spline path of linear, quadratic, and cubic orders with 1 and 2-knot points and determine the significance of the best function estimator in modeling farmer loyalty through the jackknife resampling method. This study uses secondary data through questionnaires to farmers in Sumbawa Regency who use SP-36 subsidized fertilizer products as many as 100 respondents. Based on the results of the analysis, it is known that the best-truncated spline nonparametric path model is the quadratic order of 2 knots with a coefficient of determination of 85.50%; the significance of the best-truncated spline nonparametric path estimator shows that all exogenous variables have a significant effect on endogenous variables.Keywords: nonparametric path analysis, farmer loyalty, jackknife resampling, truncated spline
Procedia PDF Downloads 5211397 Behavior of GRS Abutment Facing under Variable Cycles of Lateral Excitation through Physical Model Tests
Authors: Ashutosh Verma, Satyendra Mittal
Abstract:
Numerous geosynthetic reinforced soil (GRS) abutment failures over the years have been attributed to the loss of strength at the facing-reinforcement interface due to seasonal thermal expansion/contraction of the bridge deck. This causes excessive settlement below the bridge seat, causing bridge bumps along the approach road which reduces the design life of any abutment. Before designers while choosing the type of facing, a broad range of facing configurations are undoubtedly available. Generally speaking, these configurations can be divided into three groups: modular (panels/block), continuous, and full height rigid (FHR). The purpose of the current study is to use 1g physical model tests under serviceable cyclic lateral displacements to experimentally investigate the behaviour of these three facing classifications. To simulate field behaviour, a field instrumented GRS abutment prototype was modeled into a N scaled down 1g physical model (N = 5) with adjustable facing arrangements to represent these three facing classifications. For cyclic lateral displacement (d/H) of top facing at loading rate of 1mm/min, the peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) at 25, 50, 75 and 100 cycles have been measured. For a constant footing offset of x/H = 0.1, three forms of cyclic displacements have been performed to simulate active condition (CA), passive condition (CP), and active-passive condition (CAP). The findings showed that when reinforcements are integrated into the wall along with presence of gravel gabions i.e. FHR design, a rather substantial earth pressure occurs over the facing. Despite this, the FHR facing's continuous nature works in conjunction with the reinforcements' membrane resilience to reduce footing settlement. On the other hand, the pressure over the wall is released upon lateral excitation by the relative displacement between the panels in modular facing reducing the connection strength at the interface and leading to greater settlements below footing. On the contrary, continuous facing do not exhibit relative displacement along the depth of facing rather fails through rotation about the base, which extends the zone of active failure in the backfill leading to large depressions in the backfill region around the bridge seat. Conservatively, FHR facing shows relatively stable responses under lateral cyclic excitations as compared to modular or continuous type of abutment facing.Keywords: GRS abutments, 1g physical model, full height rigid, cyclic lateral displacement
Procedia PDF Downloads 8811396 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System
Authors: John Lorenzo Bautista, Yoon-Joong Kim
Abstract:
In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition
Procedia PDF Downloads 45911395 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System
Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du
Abstract:
Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.Keywords: cislunar transfer, dynamics, momentum exchange, tether
Procedia PDF Downloads 27011394 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction
Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage
Abstract:
Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention
Procedia PDF Downloads 7511393 Modelling Affordable Waste Management Solutions for India
Authors: Pradip Baishya, D. K. Mahanta
Abstract:
Rapid and unplanned urbanisation in most cities of India has progressively increased the problem of managing municipal waste in the past few years. With insufficient infrastructure and funds, Municipalities in most cities are struggling to cope with the pace of waste generated. Open dumping is widely in practice as a cheaper option. Scientific disposal of waste in such a large scale with the elements of segregation, recycling, landfill, and incineration involves sophisticated and expensive plants. In an effort to finding affordable and simple solutions to address this burning issue of waste disposal, a semi-mechanized plant has been designed underlying the concept of a zero waste community. The fabrication work of the waste management unit is carried out by local skills from locally available materials. A resident colony in the city of Guwahati has been chosen, which is seen as a typical representative of most cities in India in terms of size and key issues surrounding waste management. Scientific management and disposal of waste on site is carried out on the principle of reduce, reuse and recycle from segregation to compositing. It is a local community participatory model, which involves all stakeholders in the process namely rag pickers, residents, municipality and local industry. Studies were conducted to testify the plant as revenue earning self-sustaining model in the long term. Current working efficiency of plant for segregation was found to be 1kg per minute. Identifying bottlenecks in the success of the model, data on efficiency of the plant, economics of its fabrication were part of the study. Similar satellite waste management plants could potentially be a solution to supplement the waste management system of municipalities of similar sized cities in India or South East Asia with similar issues surrounding waste disposal.Keywords: affordable, rag pickers, recycle, reduce, reuse, segregation, zero waste
Procedia PDF Downloads 31011392 Investigation of a Natural Convection Heat Sink for LEDs Based on Micro Heat Pipe Array-Rectangular Channel
Authors: Wei Wang, Yaohua Zhao, Yanhua Diao
Abstract:
The exponential growth of the lighting industry has rendered traditional thermal technologies inadequate for addressing the thermal management challenges inherent to high-power light-emitting diode (LED) technology. To enhance the thermal management of LEDs, this study proposes a heat sink configuration that integrates a miniature heat pipe array based on phase change technology with rectangular channels. The thermal performance of the heat sink was evaluated through experimental testing, and the results demonstrated that when the input power was 100W, 150W, and 200W, the temperatures of the LED substrate were 47.64℃, 56.78℃, and 69.06℃, respectively. Additionally, the maximum temperature difference of the MHPA in the vertical direction was observed to be 0.32℃, 0.30℃, and 0.30℃, respectively. The results demonstrate that the heat sink not only effectively dissipates the heat generated by the LEDs, but also exhibits excellent temperature uniformity. In consideration of the experimental measurement outcomes, a corresponding numerical model was developed as part of this study. Following the model validation, the effect of the structural parameters of the heat sink on its heat dissipation efficacy was examined through the use of response surface methodology (RSM) analysis. The rectangular channel width, channel height, channel length, number of channel cross-sections, and channel cross-section spacing were selected as the input parameters, while the LED substrate temperature and the total mass of the heat sink were regarded as the response variables. Subsequently, the response was subjected to an analysis of variance (ANOVA), which yielded a regression model that predicted the response based on the input variables. This offers some direction for the design of the radiator.Keywords: light-emitting diodes, heat transfer, heat pipe, natural convection, response surface methodology
Procedia PDF Downloads 4211391 3D Interactions in Under Water Acoustic Simulations
Authors: Prabu Duplex
Abstract:
Due to stringent emission regulation targets, large-scale transition to renewable energy sources is a global challenge, and wind power plays a significant role in the solution vector. This scenario has led to the construction of offshore wind farms, and several wind farms are planned in the shallow waters where the marine habitat exists. It raises concerns over impacts of underwater noise on marine species, for example bridge constructions in the ocean straits. Dangerous to aquatic life, the environmental organisations say, the bridge would be devastating, since ocean straits are important place of transit for marine mammals. One of the highest concentrations of biodiversity in the world is concentrated these areas. The investigation of ship noise and piling noise that may happen during bridge construction and in operation is therefore vital. Once the source levels are known the receiver levels can be modelled. With this objective this work investigates the key requirement of the software that can model transmission loss in high frequencies that may occur during construction or operation phases. Most propagation models are 2D solutions, calculating the propagation loss along a transect, which does not include horizontal refraction, reflection or diffraction. In many cases, such models provide sufficient accuracy and can provide three-dimensional maps by combining, through interpolation, several two-dimensional (distance and depth) transects. However, in some instances the use of 2D models may not be sufficient to accurately model the sound propagation. A possible example includes a scenario where an island or land mass is situated between the source and receiver. The 2D model will result in a shadow behind the land mass where the modelled transects intersect the land mass. Diffraction will occur causing bending of the sound around the land mass. In such cases, it may be necessary to use a 3D model, which accounts for horizontal diffraction to accurately represent the sound field. Other scenarios where 2D models may not provide sufficient accuracy may be environments characterised by a strong up-sloping or down sloping seabed, such as propagation around continental shelves. In line with these objectives by means of a case study, this work addresses the importance of 3D interactions in underwater acoustics. The methodology used in this study can also be used for other 3D underwater sound propagation studies. This work assumes special significance given the increasing interest in using underwater acoustic modeling for environmental impacts assessments. Future work also includes inter-model comparison in shallow water environments considering more physical processes known to influence sound propagation, such as scattering from the sea surface. Passive acoustic monitoring of the underwater soundscape with distributed hydrophone arrays is also suggested to investigate the 3D propagation effects as discussed in this article.Keywords: underwater acoustics, naval, maritime, cetaceans
Procedia PDF Downloads 2611390 Design for Safety: Safety Consideration in Planning and Design of Airport Airsides
Authors: Maithem Al-Saadi, Min An
Abstract:
During airport planning and design stages, the major issues of capacity and safety in construction and operation of an airport need to be taken into consideration. The airside of an airport is a major and critical infrastructure that usually consists of runway(s), taxiway system, and apron(s) etc., which have to be designed according to the international standards and recommendations, and local limitations to accommodate the forecasted demands. However, in many cases, airport airsides are suffering from unexpected risks that occurred during airport operations. Therefore, safety risk assessment should be applied in the planning and design of airsides to cope with the probability of risks and their consequences, and to make decisions to reduce the risks to as low as reasonably practicable (ALARP) based on safety risk assessment. This paper presents a combination approach of Failure Modes, Effect, and Criticality Analysis (FMECA), Fuzzy Reasoning Approach (FRA), and Fuzzy Analytic Hierarchy Process (FAHP) to develop a risk analysis model for safety risk assessment. An illustrated example is used to the demonstrate risk assessment process on how the design of an airside in an airport can be analysed by using the proposed safety design risk assessment model.Keywords: airport airside planning and design, design for safety, fuzzy reasoning approach, fuzzy AHP, risk assessment
Procedia PDF Downloads 36911389 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.Keywords: couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection
Procedia PDF Downloads 34011388 Adsorptive Desulfurization of Using Cu(I) – Y Zeolite via π-Complexation
Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng, Itumeleng Kohitlhetse
Abstract:
The accelerating requirement to reach 0% sulfur content in liquid fuels demand researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for the removal of organosulfur compounds (OSC) present in tire pyrolytic oil (TPO). The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion exchange between Na-Y zeolite with a Cu(NO₃)₂ aqueous solution of 0.5M for 48 hours followed by reduction of Cu²⁺ to Cu+. Fixed-bed breakthrough studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene, benzothiophenes (BT), and dibenzothiophenes (DBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of operating conditions such as adsorbent dosage and reaction time were studied to optimize the adsorptive desulfurization process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order DBT> BT> Thiophene. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.Keywords: adsorption, desulfurization, TPO, zeolite
Procedia PDF Downloads 11911387 Impact of Customer Experience Quality on Loyalty of Mobile and Fixed Broadband Services: Case Study of Telecom Egypt Group
Authors: Nawal Alawad, Passent Ibrahim Tantawi, Mohamed Abdel Salam Ragheb
Abstract:
Providing customers with quality experiences has been confirmed to be a sustainable, competitive advantage with a distinct financial impact for companies. The success of service providers now relies on their ability to provide customer-centric services. The importance of perceived service quality and customer experience is widely recognized. The focus of this research is in the area of mobile and fixed broadband services. This study is of dual importance both academically and practically. Academically, this research applies a new model investigating the impact of customer experience quality on loyalty based on modifying the multiple-item scale for measuring customers’ service experience in a new area and did not depend on the traditional models. The integrated scale embraces four dimensions: service experience, outcome focus, moments of truth and peace of mind. In addition, it gives a scientific explanation for this relationship so this research fill the gap in such relations in which no one correlate or give explanations for these relations before using such integrated model and this is the first time to apply such modified and integrated new model in telecom field. Practically, this research gives insights to marketers and practitioners to improve customer loyalty through evolving the experience quality of broadband customers which is interpreted to suggested outcomes: purchase, commitment, repeat purchase and word-of-mouth, this approach is one of the emerging topics in service marketing. Data were collected through 412 questionnaires and analyzed by using structural equation modeling.Findings revealed that both outcome focus and moments of truth have a significant impact on loyalty while both service experience and peace of mind have insignificant impact on loyalty.In addition, it was found that 72% of the variation occurring in loyalty is explained by the model. The researcher also measured the net prompters score and gave explanation for the results. Furthermore, assessed customer’s priorities of broadband services. The researcher recommends that the findings of this research will extend to be considered in the future plans of Telecom Egypt Group. In addition, to be applied in the same industry especially in the developing countries that have the same circumstances with similar service settings. This research is a positive contribution in service marketing, particularly in telecom industry for making marketing more reliable as managers can relate investments in service experience directly with the performance closest to income for instance, repurchasing behavior, positive word of mouth and, commitment. Finally, the researcher recommends that future studies should consider this model to explain significant marketing outcomes such as share of wallet and ultimately profitability.Keywords: broadband services, customer experience quality, loyalty, net promoters score
Procedia PDF Downloads 27111386 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles
Authors: Ismail Rahama Adam Hamid
Abstract:
This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation
Procedia PDF Downloads 6111385 Hate Speech Detection in Tunisian Dialect
Authors: Helmi Baazaoui, Mounir Zrigui
Abstract:
This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation
Procedia PDF Downloads 2111384 Nursing Experience in Improving Physical and Mental Well-Being of a Patient with Premature Menopause Osteoporosis and Sarcopenia in Nursing-Led Multi-Discipline Care
Authors: Huang Chiung Chiu
Abstract:
This article is about the nursing experience of assisting an outpatient with premature menopause, osteoporosis and sarcopenia through a multi-discipline care model. The nursing period is from September 22nd, 2020, to December 7th, 2020, collecting data through interviews with the patient, observation, and physical assessment. It was found that the main health problems were insufficient nutrition, less physical need, insomnia, and potentially dangerous falls. As an outpatient nurse, the author observed that in recent years, the age group of women with premature menopause, osteoporosis and sarcopenia had shifted downward. Integrated multi-disciplinary interventions were provided upon the initial diagnosis of osteoporosis and sarcopenia. Under the outpatient care setting, the collaborative team works between the doctors, nutritionists, osteoporosis educators, rehabilitates, physical therapists and other specialized teams were applied to provide individualized, integrated multi-disciplinary care. Through empathy and the establishment of attentive care, companionship and trust, we discussed care plans and treatment guidelines with the case, providing accurate, complete disease information and feedback education to strengthen the patient’s knowledge and motivation for exercise. Nursing guidance regarding the dietary nutrition and adjustment of daily routine was provided to increase the self-care ability, improve the health problems of muscle weakness and insomnia, and prevent falls. For patients with postmenopausal osteoporosis and sarcopenia, it is recommended that the nurses coordinate the multi-discipline integrated care model, adjust patients’ lifestyle and diet, and establish a regular exercise plan so that the cases can be evaluated holistically to improve the quality of care and physical and mental comfort.Keywords: multi-discipline care model, premature menopause, osteoporosis, sarcopenia, insomnia
Procedia PDF Downloads 12411383 Transformation of Industrial Policy towards Industry 4.0 and Its Impact on Firms' Competition
Authors: Arūnas Burinskas
Abstract:
Although Europe is on the threshold of a new industrial revolution called Industry 4.0, many believe that this will increase the flexibility of production, the mass adaptation of products to consumers and the speed of their service; it will also improve product quality and dramatically increase productivity. However, as expected, all the benefits of Industry 4.0 face many of the inevitable changes and challenges they pose. One of them is the inevitable transformation of current competition and business models. This article examines the possible results of competitive conversion from the classic Bertrand and Cournot models to qualitatively new competition based on innovation. Ability to deliver a new product quickly and the possibility to produce the individual design (through flexible and quickly configurable factories) by reducing equipment failures and increasing process automation and control is highly important. This study shows that the ongoing transformation of the competition model is changing the game. This, together with the creation of complex value networks, means huge investments that make it particularly difficult for small and medium-sized enterprises. In addition, the ongoing digitalization of data raises new concerns regarding legal obligations, intellectual property, and security.Keywords: Bertrand and Cournot Competition, competition model, industry 4.0, industrial organisation, monopolistic competition
Procedia PDF Downloads 14611382 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles
Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi
Abstract:
This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles
Procedia PDF Downloads 28611381 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes
Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse
Abstract:
Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools. Procedia PDF Downloads 1811380 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 19711379 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 19011378 Local Government Digital Attention and Green Technology Innovation: Analysis Based on Spatial Durbin Model
Authors: Xin Wang, Chaoqun Ma, Zheng Yao
Abstract:
Although green technology innovation faces new opportunities and challenges in the digital era, its theoretical research remains limited. Drawing on the attention-based view, this study employs the spatial Durbin model to investigate the impact of local government digital attention and digital industrial agglomeration on green technology innovation across 30 Chinese provinces from 2011 to 2021, as well as the spatial spillover effects present. The results suggest that both government digital attention and digital industrial agglomeration positively influence green technology innovation in local and neighboring provinces, with digital industrial agglomeration exhibiting a positive moderating effect on this direct local and indirect spatial spillover relationship. The findings of this study provide a new theoretical perspective for green technology innovation research and hold valuable implications for the advancement of the attention-based view and green technology innovation.Keywords: local government digital attention, digital industrial agglomeration, green technology innovation, attention-based view
Procedia PDF Downloads 7211377 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering
Procedia PDF Downloads 40011376 Effect of Deficit Irrigation on Barley Yield and Water Productivity through Field Experiment and Modeling at Koga Irrigation Scheme, Amhara Region, Ethiopia
Authors: Bekalu Melis Alehegn, Dagnenet Sultan Alemu
Abstract:
The insufficiency of water is the most severe restraint for the expansion of agriculture in arid and semi-arid areas. An important strategy for increasing water productivity and improving water productivity deficit irrigation at different growth stages is important to advance the yield and Water Productivity of barley in water scarce areas. A field experiment was conducted at the Koga irrigation scheme in Ethiopia to examine barley yield response to different irrigation regimes and validate the aqua crop model. The experimental setup comprised six randomized treatments (T) with three replications for one irrigation season because of financial limitations. The irrigation regimes were selected 100%, 75%, and 50% application levels in different growth stages of gross irrigation requirements using trial and error in order to select the optimal water application level. The treatments were: no stress at all (T1), 25% stressed during all crop stages (T2), 50% stressed at all stages (T3), 50% stressed at the development stage (T4), 50% stressed at mid-stage (T5) and 50% stress at initial and late season (T6). The agronomic parameters, including canopy cover, biomass, and grain yield, were collected to compare the ground-based crop yield and the aqua crop model. The results showed that the initial and late stages and stress 25% through the whole season were the right time for practice deficit irrigation without significant yield reduction. The highest (2.62kg/m³) and the lowest (2.03 kg/m³) water productivity were found under T3 and T4, respectively. The stress of 50% at the mid-growth stage and stress 50% of the full irrigation water requirement at all growth stages significantly (α=5%) affected the canopy expansion, biomass and yield production. The aqua Crop model performed well in simulating the yield of barley for most of the treatments (R2 = 0.84 and RMSE = 0.7 t ha–¹).Keywords: aqua crop, barley, deficit irrigation, irrigation regimes, water productivity
Procedia PDF Downloads 3311375 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC
Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi
Abstract:
Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model
Procedia PDF Downloads 36611374 Sequence Component-Based Adaptive Protection for Microgrids Connected Power Systems
Authors: Isabelle Snyder
Abstract:
Microgrid protection presents challenges to conventional protection techniques due to the low induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected mode. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid connected or microgrid connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are the following: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR). The first two methods focus on identifying the islanded mode without communication by monitoring the current sequence component generated by the system (ACPS) or induced with inverter control during islanded mode (IUCPC) to identify the islanding condition without communication at the relay to adjust the settings. These two methods are used as a backup to the APSCC, which relies on a communication network to communicate the islanded configuration to the system components. The fourth method relies on a short circuit model inside the relay that is used in conjunction with communication to adjust the system configuration and computes the fault current and adjusts the settings accordingly.Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection, communication controlled protection, integrated short circuit model
Procedia PDF Downloads 9711373 Application of Mathematical Models for Conducting Long-Term Metal Fume Exposure Assessments for Workers in a Shipbuilding Factory
Authors: Shu-Yu Chung, Ying-Fang Wang, Shih-Min Wang
Abstract:
To conduct long-term exposure assessments are important for workers exposed to chemicals with chronic effects. However, it usually encounters with several constrains, including cost, workers' willingness, and interference to work practice, etc., leading to inadequate long-term exposure data in the real world. In this study, an integrated approach was developed for conducting long-term exposure assessment for welding workers in a shipbuilding factory. A laboratory study was conducted to yield the fume generation rates under various operating conditions. The results and the measured environmental conditions were applied to the near field/far field (NF/FF) model for predicting long term fume exposures via the Monte Carlo simulation. Then, the predicted long-term concentrations were used to determine the prior distribution in Bayesian decision analysis (BDA). Finally, the resultant posterior distributions were used to assess the long-term exposure and serve as basis for initiating control strategies for shipbuilding workers. Results show that the NF/FF model was a suitable for predicting the exposures of metal contents containing in welding fume. The resultant posterior distributions could effectively assess the long-term exposures of shipbuilding welders. Welders' long-term Fe, Mn and Pb exposures were found with high possibilities to exceed the action level indicating preventive measures should be taken for reducing welders' exposures immediately. Though the resultant posterior distribution can only be regarded as the best solution based on the currently available predicting and monitoring data, the proposed integrated approach can be regarded as a possible solution for conducting long term exposure assessment in the field.Keywords: Bayesian decision analysis, exposure assessment, near field and far field model, shipbuilding industry, welding fume
Procedia PDF Downloads 14411372 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence
Procedia PDF Downloads 7911371 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 33911370 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India
Authors: Jenifer Alam, Rima Chatterjee
Abstract:
Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.Keywords: Eaton, strain, stress, poroelastic model
Procedia PDF Downloads 220