Search results for: neighborhood effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15056

Search results for: neighborhood effect

9596 The Effect of Bisphenol A and Its Selected Analogues on Antioxidant Enzymes Activity in Human Erythrocytes

Authors: Aneta Maćczak, Bożena Bukowska, Jaromir Michałowicz

Abstract:

Bisphenols are one of the most widely used chemical compounds worldwide. They are used in the manufacturing of polycarbonates, epoxy resins and thermal paper which are applied in plastic containers, bottles, cans, newspapers, receipt and other products. Among these compounds, bisphenol A (BPA) is produced in the highest amounts. There are concerns about endocrine impact of BPA and its other toxic effects including hepatotoxicity, neurotoxicity and carcinogenicity on human organism. Moreover, BPA is supposed to increase the incidence the obesity, diabetes and heart disease. For this reason the use of BPA in the production of plastic infant feeding bottles and some other consumers products has been restricted in the European Union and the United States. Nowadays, BPA analogues like bisphenol F (BPF) and bisphenol S (BPS) have been developed as alternative compounds. The replacement of BPA with other bisphenols contributed to the increase of the exposure of human population to these substances. Toxicological studies have mainly focused on BPA. In opposite, a small number of studies concerning toxic effects of BPA analogues have been realized, which makes impossible to state whether those substituents are safe for human health. Up to now, the mechanism of bisphenols action on the erythrocytes has not been elucidated. That is why, the aim of this study was to assess the effect of BPA and its selected analogues such as BPF and BPS on the activity of antioxidant enzymes, i.e. catalase (EC 1.11.1.6.), glutathione peroxidase (E.C.1.11.1.9) and superoxide dismutase (EC.1.15.1.1) in human erythrocytes. Red blood cells in respect to their function (transport of oxygen) and very well developed enzymatic and non-enzymatic antioxidative system, are useful cellular model to assess changes in redox balance. Erythrocytes were incubated with BPA, BPF and BPS in the concentration ranging from 0.5 to 100 µg/ml for 24 h. The activity of catalase was determined by the method of Aebi (1984). The activity of glutathione peroxidase was measured according to the method described by Rice-Evans et al. (1991), while the activity of superoxide dismutase (EC.1.15.1.1) was determined by the method of Misra and Fridovich (1972). The results showed that BPA and BPF caused changes in the antioxidative enzymes activities. BPA decreased the activity of examined enzymes in the concentration of 100 µg/ml. We also noted that BPF decreased the activity of catalase (5-100 µg/ml), glutathione peroxidase (50-100 µg/ml) and superoxide dismutase (25-100 µg/ml), while BPS did not cause statistically significant changes in investigated parameters. The obtained results suggest that BPA and BPF disrupt redox balance in human erythrocytes but the observed changes may occur in human organism only during occupational or subacute exposure to these substances.

Keywords: antioxidant enzymes, bisphenol A, bisphenol a analogues, human erythrocytes

Procedia PDF Downloads 471
9595 Oleic Acid Enhances Hippocampal Synaptic Efficacy

Authors: Rema Vazhappilly, Tapas Das

Abstract:

Oleic acid is a cis unsaturated fatty acid and is known to be a partially essential fatty acid due to its limited endogenous synthesis during pregnancy and lactation. Previous studies have demonstrated the role of oleic acid in neuronal differentiation and brain phospholipid synthesis. These evidences indicate a major role for oleic acid in learning and memory. Interestingly, oleic acid has been shown to enhance hippocampal long term potentiation (LTP), the physiological correlate of long term synaptic plasticity. However the effect of oleic acid on short term synaptic plasticity has not been investigated. Short term potentiation (STP) is the physiological correlate of short term synaptic plasticity which is the key underlying molecular mechanism of short term memory and neuronal information processing. STP in the hippocampal CA1 region has been known to require the activation of N-methyl-D-aspartate receptors (NMDARs). The NMDAR dependent hippocampal STP as a potential mechanism for short term memory has been a subject of intense interest for the past few years. Therefore in the present study the effect of oleic acid on NMDAR dependent hippocampal STP was determined in mouse hippocampal slices (in vitro) using Multi-electrode array system. STP was induced by weak tetanic Stimulation (one train of 100 Hz stimulations for 0.1s) of the Schaffer collaterals of CA1 region of the hippocampus in slices treated with different concentrations of oleic acid in presence or absence of NMDAR antagonist D-AP5 (30 µM) . Oleic acid at 20 (mean increase in fEPSP amplitude = ~135 % Vs. Control = 100%; P<0.001) and 30 µM (mean increase in fEPSP amplitude = ~ 280% Vs. Control = 100%); P<0.001) significantly enhanced the STP following weak tetanic stimulation. Lower oleic acid concentrations at 10 µM did not modify the hippocampal STP induced by weak tetanic stimulation. The hippocampal STP induced by weak tetanic stimulation was completely blocked by the NMDA receptor antagonist D-AP5 (30µM) in both oleic acid and control treated hippocampal slices. This lead to the conclusion that the hippocampal STP elicited by weak tetanic stimulation and enhanced by oleic acid was NMDAR dependent. Together these findings suggest that oleic acid may enhance the short term memory and neuronal information processing through the modulation of NMDAR dependent hippocampal short-term synaptic plasticity. In conclusion this study suggests the possible role of oleic acid to prevent the short term memory loss and impaired neuronal function throughout development.

Keywords: oleic acid, short-term potentiation, memory, field excitatory post synaptic potentials, NMDA receptor

Procedia PDF Downloads 335
9594 Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves

Authors: Thabiso M. Sebolai, Victor Mlambo, Solomon Tefera, Othusitse R. Madibela

Abstract:

In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons.

Keywords: browse plants, chemical composition, harvesting heights, phenolics

Procedia PDF Downloads 143
9593 Identification of 332G>A Polymorphism in Exon 3 of the Leptin Gene and Partially Effects on Body Size and Tail Dimension in Sanjabi Sheep

Authors: Roya Bakhtiar, Alireza Abdolmohammadi, Hadi Hajarian, Zahra Nikousefat, Davood, Kalantar-Neyestanaki

Abstract:

The objective of the present study was to determine the polymorphism in the leptin (332G>A) and its association with biometric traits in Sanjabi sheep. For this purpose, blood samples from 96 rams were taken, and tail length, width tail, circumference tail, body length, body width, and height were simultaneously recorded. PCR was performed using specific primer to amplify 463 bp fragment including exon 3 of leptin gene, and PCR products were digested by Cail restriction enzymes. The 332G>A (at 332th nucleotide of exon 3 leptin gene) that caused an amino acid change from Arg to Gln was detected by Cail (CAGNNNCTG) endonuclease, as the endonuclease cannot cut this region if G nucleotide is located in this position. Three genotypes including GG (463), GA (463, 360and 103 bp) and GG (360 bp and 103 bp) were identified after digestion by enzyme. The estimated frequencies of three genotypes including GG, GA, and AA for 332G>A locus were 0.68, 0.29 and 0.03 and those were 0.18 and 0.82 for A and G alleles, respectively. In the current study, chi-square test indicated that 332G>A positions did not deviate from the Hardy–Weinberg (HW) equilibrium. The most important reason to show HW equation was that samples used in this study belong to three large local herds with a traditional breeding system having random mating and without selection. Shannon index amount was calculated which represent an average genetic variation in Sanjabi rams. Also, heterozygosity estimated by Nei index indicated that genetic diversity of mutation in the leptin gene is moderate. Leptin gene polymorphism in the 332G>A had significant effect on body length (P<0.05) trait, and individuals with GA genotype had significantly the higher body length compared to other individuals. Although animals with GA genotype had higher body width, this difference was not statistically significant (P>0.05). This non-synonymous SNP resulted in different amino acid changes at codon positions111(R/Q). As leptin activity is localized, at least in part, in domains between amino acid residues 106-1406, it is speculated that the detected SNP at position 332 may affect the activity of leptin and may lead to different biological functions. Based to our results, due to significant effect of leptin gene polymorphism on body size traits, this gene may be used a candidate gene for improving these traits.

Keywords: body size, Leptin gene, PCR-RFLP, Sanjabi sheep

Procedia PDF Downloads 341
9592 Experimental Design in Extraction of Pseudomonas sp. Protease from Fermented Broth by Polyethylene Glycol/Citrate Aqueous Two-Phase System

Authors: Omar Pillaca-Pullo, Arturo Alejandro-Paredes, Carol Flores-Fernandez, Marijuly Sayuri Kina, Amparo Iris Zavaleta

Abstract:

Aqueous two-phase system (ATPS) is an interesting alternative for separating industrial enzymes due to it is easy to scale-up and low cost. Polyethylene glycol (PEG) mixed with potassium phosphate or magnesium sulfate is one of the most frequently polymer/salt ATPS used, but the consequences of its use is a high concentration of phosphates and sulfates in wastewater causing environmental issues. Citrate could replace these inorganic salts due to it is biodegradable and does not produce toxic compounds. On the other hand, statistical design of experiments is widely used for ATPS optimization and it allows to study the effects of the involved variables in the purification, and to estimate their significant effects on selected responses and interactions. The 24 factorial design with four central points (20 experiments) was employed to study the partition and purification of proteases produced by Pseudomonas sp. in PEG/citrate ATPS system. ATPS was prepared with different sodium citrate concentrations [14, 16 and 18% (w/w)], pH values (7, 8 and 9), PEG molecular weight (2,000; 4,000 and 6,000 g/mol) and PEG concentrations [18, 20 and 22 % (w/w)]. All system components were mixed with 15% (w/w) of the fermented broth and deionized water was added to a final weight of 12.5 g. Then, the systems were mixed and kept at room temperature until to reach two-phases separation. Volumes of the top and bottom phases were measured, and aliquots from both phases were collected for subsequent proteolytic activity and total protein determination. Influence of variables such as PEG molar mass (MPEG), PEG concentration (CPEG), citrate concentration (CSal) and pH were evaluated on the following responses: purification factor (PF), activity yield (Y), partition coefficient (K) and selectivity (S). STATISTICA program version 10 was used for the analysis. According to the obtained results, higher levels of CPEG and MPEG had a positive effect on extraction, while pH did not influence on the process. On the other hand, the CSal could be related with low values of Y because of the citrate ions have a negative effect on solubility and enzymatic structure. The optimum values of Y (66.4 %), PF (1.8), K (5.5) and S (4.3) were obtained at CSal (18%), MPEG (6,000 g/mol), CPEG (22%) and pH 9. These results indicated that the PEG/citrate system is accurate to purify these Pseudomonas sp. proteases from fermented broth as a first purification step.

Keywords: citrate, polyethylene glycol, protease, Pseudomonas sp

Procedia PDF Downloads 194
9591 Methanation Catalyst for Low CO Concentration

Authors: Hong-Fang Ma, Cong-yi He, Hai-Tao Zhang, Wei-Yong Ying, Ding-Ye Fang

Abstract:

A Ni-based catalyst supported by γ-Al2O3 was prepared by impregnation method, and the catalyst was used in a low CO and CO2 concentration methanation system. The effect of temperature, pressure and space velocity on the methanation reaction was investigated in an experimental fixed-bed reactor. The methanation reaction was operated at the conditions of 190-240°C, 3000-24000ml•g-1•h-1 and 1.5-3.5MPa. The results show that temperature and space velocity play important role on the reaction. With the increase of reaction temperature the CO and CO2 conversion increase and the selectivity of CH4 increase. And with the increase of the space velocity the conversion of CO and CO2 and the selectivity of CH4 decrease sharply.

Keywords: coke oven gas, methanntion, catalyst, fixed bed, performance

Procedia PDF Downloads 402
9590 A Cognitive Training Program in Learning Disability: A Program Evaluation and Follow-Up Study

Authors: Krisztina Bohacs, Klaudia Markus

Abstract:

To author’s best knowledge we are in absence of studies on cognitive program evaluation and we are certainly short of programs that prove to have high effect sizes with strong retention results. The purpose of our study was to investigate the effectiveness of a comprehensive cognitive training program, namely BrainRx. This cognitive rehabilitation program target and remediate seven core cognitive skills and related systems of sub-skills through repeated engagement in game-like mental procedures delivered one-on-one by a clinician, supplemented by digital training. A larger sample of children with learning disability were given pretest and post-test cognitive assessments. The experimental group completed a twenty-week cognitive training program in a BrainRx center. A matched control group received another twenty-week intervention with Feuerstein’s Instrumental Enrichment programs. A second matched control group did not receive training. As for pre- and post-test, we used a general intelligence test to assess IQ and a computer-based test battery for assessing cognition across the lifespan. Multiple regression analyses indicated that the experimental BrainRx treatment group had statistically significant higher outcomes in attention, working memory, processing speed, logic and reasoning, auditory processing, visual processing and long-term memory compared to the non-treatment control group with very large effect sizes. With the exception of logic and reasoning, the BrainRx treatment group realized significantly greater gains in six of the above given seven cognitive measures compared to the Feuerstein control group. Our one-year retention measures showed that all the cognitive training gains were above ninety percent with the greatest retention skills in visual processing, auditory processing, logic, and reasoning. The BrainRx program may be an effective tool to establish long-term cognitive changes in case of students with learning disabilities. Recommendations are made for treatment centers and special education institutions on the cognitive training of students with special needs. The importance of our study is that targeted, systematic, progressively loaded and intensive brain training approach may significantly change learning disabilities.

Keywords: cognitive rehabilitation training, cognitive skills, learning disability, permanent structural cognitive changes

Procedia PDF Downloads 202
9589 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity

Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate

Abstract:

An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.

Keywords: Curcumin, chitosan, nanoparticles, anticancer activity

Procedia PDF Downloads 178
9588 RussiAnglicized© Slang and Translation: A Clockwork Orange Tick-Tock

Authors: Mahnaz Movahedi

Abstract:

Slang argot plays a fundamental role in Burgess’ teenage special sociolect in his novel A Clockwork Orange, offered a wide variety of instances to be analyzed. Consequently, translation of the notions and keeping the effect would be of great importance. Burgess named his interesting RussiAnglicized©-slang word as Nadsat, stands for –teen, mostly derived from Russian and Cockney rhyming. The paper discusses the lexical origin and Persian translation of his weird slang words illustrating a teenage-gang argot. The product depicts creativity but mistranslation that leads to the loss of slang meaning load and atmosphere in the target text.

Keywords: argot, mistranslation, slang, sociolect

Procedia PDF Downloads 252
9587 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite

Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri

Abstract:

Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.

Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity

Procedia PDF Downloads 259
9586 Prospects of Regenerative Medicine with Human Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cell Sheets: Achievements and Future Outlook in Clinical Trials for Myopic Chorioretinal Atrophy

Authors: Norimichi Nagano, Yoshio Hirano, Tsutomu Yasukawa

Abstract:

Mesenchymal stem cells are thought to confer neuroprotection, facilitate tissue regeneration and exert their effects on retinal degenerative diseases, however, adverse events such as proliferative vitreoretinopathy and preretinal membrane disease associated with cell suspension transplantation have also been reported. We have recently developed human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) sheets through our proprietary sheet transformation technique, which could potentially mitigate these adverse events. To clarify the properties of our adMSC sheets named PAL-222, we performed in vitro studies such as viability testing, cytokine secretions by ELISA, immunohistochemical study, and migration assay. The viability of the cells exceeded 70%. Vascular Endothelial Growth Factor (VEGF) and Pigment Epithelium-Derived Factor (PEDF), which are quite important cytokines for the retinal area, were observed. PAL-222 expressed type I collagen, a strength marker, type IV collagen, a marker of the basement membrane, and elastin, an elasticity marker. Finally, the migration assay was performed and showed negative, which means that PAL-222 is stably kept in the topical area and does not come to pieces. Next, to evaluate the efficacy in vivo, we transplanted PAL-222 into the subretinal space of the eye of Royal College of Surgeons rats with congenital retinal degeneration and assessed it for three weeks after transplantation. We confirmed that PAL-222 suppressed the decrease in the thickness of the outer nuclear layer, which means that the photoreceptor protective effect treated with PAL-222 was significantly higher than that in the sham group. (p < 0.01). This finding demonstrates that PAL-222 showed their retinoprotective effect in a model of congenital retinal degeneration. As the study suggested the efficacy of PAL-222 in both in vitro and in vivo studies, we are presently engaged in clinical trials of PAL-222 for myopic chorioretinal atrophy, which is one of the retinal degenerative diseases, for the purpose of regenerative medicine.

Keywords: cell sheet, clinical trial, mesenchymal stem cell, myopic chorioretinal atrophy

Procedia PDF Downloads 92
9585 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature

Authors: Josef Novák, Alena Kohoutková

Abstract:

The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.

Keywords: elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation

Procedia PDF Downloads 339
9584 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss

Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy

Abstract:

One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.

Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.

Procedia PDF Downloads 342
9583 Effect of a Chatbot-Assisted Adoption of Self-Regulated Spaced Practice on Students' Vocabulary Acquisition and Cognitive Load

Authors: Ngoc-Nguyen Nguyen, Hsiu-Ling Chen, Thanh-Truc Lai Huynh

Abstract:

In foreign language learning, vocabulary acquisition has consistently posed challenges to learners, especially for those at lower levels. Conventional approaches often fail to promote vocabulary learning and ensure engaging experiences alike. The emergence of mobile learning, particularly the integration of chatbot systems, has offered alternative ways to facilitate this practice. Chatbots have proven effective in educational contexts by offering interactive learning experiences in a constructivist manner. These tools have caught attention in the field of mobile-assisted language learning (MALL) in recent years. This research is conducted in an English for Specific Purposes (ESP) course at the A2 level of the CEFR, designed for non-English majors. Participants are first-year Vietnamese students aged 18 to 20 at a university. This quasi-experimental study follows a pretest-posttest control group design over five weeks, with two classes randomly assigned as the experimental and control groups. The experimental group engages in chatbot-assisted spaced practice with SRL components, while the control group uses the same spaced practice without SRL. The two classes are taught by the same lecturer. Data are collected through pre- and post-tests, cognitive load surveys, and semi-structured interviews. The combination of self-regulated learning (SRL) and distributed practice, grounded in the spacing effect, forms the basis of the present study. SRL elements, which concern goal setting and strategy planning, are integrated into the system. The spaced practice method, similar to those used in widely recognized learning platforms like Duolingo and Anki flashcards, spreads out learning over multiple sessions. This study’s design features quizzes progressively increasing in difficulty. These quizzes are aimed at targeting both the Recognition-Recall and Comprehension-Use dimensions for a comprehensive acquisition of vocabulary. The mobile-based chatbot system is built using Golang, an open-source programming language developed by Google. It follows a structured flow that guides learners through a series of 4 quizzes in each week of teacher-led learning. The quizzes start with less cognitively demanding tasks, such as multiple-choice questions, before moving on to more complex exercises. The integration of SRL elements allows students to self-evaluate the difficulty level of vocabulary items, predict scores achieved, and choose appropriate strategy. This research is part one of a two-part project. The initial findings will determine the development of an upgraded chatbot system in part two, where adaptive features in response to the integration of SRL components will be introduced. The research objectives are to assess the effectiveness of the chatbot-assisted approach, based on the combination of spaced practice and SRL, in improving vocabulary acquisition and managing cognitive load, as well as to understand students' perceptions of this learning tool. The insights from this study will contribute to the growing body of research on mobile-assisted language learning and offer practical implications for integrating chatbot systems with spaced practice into educational settings to enhance vocabulary learning.

Keywords: mobile learning, mobile-assisted language learning, MALL, chatbots, vocabulary learning, spaced practice, spacing effect, self-regulated learning, SRL, self-regulation, EFL, cognitive load

Procedia PDF Downloads 20
9582 Influence of Freeze-Thaw Cycles on Protein Integrity and Quality of Chicken Meat

Authors: Nafees Ahmed, Nur Izyani Kamaruzman, Saralla Nathan, Mohd Ezharul Hoque Chowdhury, Anuar Zaini Md Zain, Iekhsan Othman, Sharifah Binti Syed Hassan

Abstract:

Meat quality is always subject to consumer scrutiny when purchasing from retail markets on mislabeling as fresh meat. Various physiological and biochemical changes influence the quality of meat. As a major component of muscle tissue, proteins play a major role in muscle foods. In meat industry, freezing is the most common form of storage of meat products. Repeated cycles of freezing and thawing are common in restaurants, kitchen, and retail outlets and can also occur during transportation or storage. Temperature fluctuation is responsible for physical, chemical, and biochemical changes. Repeated cycles of ‘freeze-thaw’ degrade the quality of meat by stimulating the lipid oxidation and surface discoloration. The shelf life of meat is usually determined by its appearance, texture, color, flavor, microbial activity, and nutritive value and is influenced by frozen storage and subsequent thawing. The main deterioration of frozen meat during storage is due to protein. Due to the large price differences between fresh and frozen–thawed meat, it is of great interest to consumer to know whether a meat product is truly fresh or not. Researchers have mainly focused on the reduction of moisture loss due to freezing and thawing cycles of meat. The water holding capacity (WHC) of muscle proteins and reduced water content are key quality parameters of meat that ultimately changes color and texture. However, there has been limited progress towards understanding the actual mechanisms behind the meat quality changes under the freeze–thaw cycles. Furthermore, effect of freeze-thaw process on integrity of proteins is ignored. In this paper, we have studied the effect of ‘freeze-thawing’ on physicochemical changes of chicken meat protein. We have assessed the quality of meat by pH, spectroscopic measurements, Western Blot. Our results showed that increase in freeze-thaw cycles causes changes in pH. Measurements of absorbance (UV-visible and IR) indicated the degradation of proteins. The expression of various proteins (CREB, AKT, MAPK, GAPDH, and phosphorylated forms) were performed using Western Blot. These results indicated the repeated cycles of freeze-thaw is responsible for deterioration of protein, thus causing decrease in nutritious value of meat. It damges the use of these products in Islamic Sharia.

Keywords: chicken meat, freeze-thaw, halal, protein, western blot

Procedia PDF Downloads 410
9581 Study of Durability of Porous Polymer Materials, Glass-Fiber-Reinforced Polyurethane Foam (R-PUF) in MarkIII Containment Membrane System

Authors: Florent Cerdan, Anne-Gaëlle Denay, Annette Roy, Jean-Claude Grandidier, Éric Laine

Abstract:

The insulation of MarkIII membrane of the Liquid Natural Gas Carriers (LNGC) consists of a load- bearing system made of panels in reinforced polyurethane foam (R-PUF). During the shipping, the cargo containment shall be potentially subject to risk events which can be water leakage through the wall ballast tank. The aim of these present works is to further develop understanding of water transfer mechanisms and water effect on properties of R-PUF. This multi-scale approach contributes to improve the durability. Macroscale / Mesoscale Firstly, the use of the gravimetric technique has allowed to define, at room temperature, the water transfer mechanisms and kinetic diffusion, in the R-PUF. The solubility follows a first kinetic fast growing connected to the water absorption by the micro-porosity, and then evolves linearly slowly, this second stage is connected to molecular diffusion and dissolution of water in the dense membranes polyurethane. Secondly, in the purpose of improving the understanding of the transfer mechanism, the study of the evolution of the buoyant force has been established. It allowed to identify the effect of the balance of total and partial pressure of mixture gas contained in pores surface. Mesoscale / Microscale The differential scanning calorimetry (DSC) and Dynamical Mechanical Analysis (DMA), have been used to investigate the hydration of the hard and soft segments of the polyurethane matrix. The purpose was to identify the sensitivity of these two phases. It been shown that the glass transition temperatures shifts towards the low temperatures when the solubility of the water increases. These observations permit to conclude to a plasticization of the polymer matrix. Microscale The Fourier Transform Infrared (FTIR) study has been used to investigate the characterization of functional groups on the edge, the center and mid-way of the sample according the duration of submersion. More water there is in the material, more the water fix themselves on the urethanes groups and more specifically on amide groups. The pic of C=O urethane shifts at lower frequencies quickly before 24 hours of submersion then grows slowly. The intensity of the pic decreases more flatly after that.

Keywords: porous materials, water sorption, glass transition temperature, DSC, DMA, FTIR, transfer mechanisms

Procedia PDF Downloads 529
9580 Acceleration of DNA Hybridization Using Electroosmotic Flow

Authors: Yun-Hsiang Wang, Huai-Yi Chen, Kin Fong Lei

Abstract:

Deoxyribonucleic acid (DNA) hybridization is a common technique used in genetic assay widely. However, the hybridization ratio and rate are usually limited by the diffusion effect. Here, microfluidic electrode platform producing electroosmosis generated by alternating current signal has been proposed to enhance the hybridization ratio and rate. The electrode was made of aurum fabricated by microfabrication technique. Thiol-modified oligo probe was immobilized on the electrode for specific capture of target, which is modified by fluorescent tag. Alternative electroosmosis can induce local microfluidic vortexes to accelerate DNA hybridization. This study provides a strategy to enhance the rate of DNA hybridization in the genetic assay.

Keywords: DNA hybridization, electroosmosis, electrical enhancement, hybridization ratio

Procedia PDF Downloads 383
9579 Magnetomechanical Effects on MnZn Ferrites

Authors: Ibrahim Ellithy, Mauricio Esguerra, , Rewanth Radhakrishnan

Abstract:

In this study, the effects of hydrostatic stress on the magnetic properties of MnZn ferrite rings of different power grades, were measured and analyzed in terms of the magneto-mechanical effect on core losses was modeled via the Hodgdon-Esguerra hysteresis model. The results show excellent agreement with the model and a correlation between the permeability drop and the core loss increase in dependence of the material grade properties. These results emphasize the vulnerabilities of MnZn ferrites when subjected to mechanical perturbations, especially in real-world scenarios like under-road embedding for WPT.

Keywords: hydrostatic stress, power ferrites, core losses, wireless power transfer

Procedia PDF Downloads 70
9578 Effect of Women`s Autonomy on Unmet Need for Contraception and Family Size in India

Authors: Anshita Sharma

Abstract:

India is one of the countries to initiate family planning with intention to control the growing population by reducing fertility. In effort to this, India had introduced the National family planning programme in 1952. The level of unmet need in India shows a reducing trend with increasing effectiveness of family planning services as in NFHS-1 the unmet need for limiting, spacing and total was 46 percent, 14 percent & 9 percent, respectively. The demand for spacing has reduced to at 8 percent, 8 percent for limiting and total unmet need was 16 percent in NFHS-2. The total unmet need has reduced to 13 percent in NFHS-3 for all currently married women and the demand for limiting and spacing is 7 percent and 6 percent respectively. The level of unmet need in India shows a reducing trend with increasing effectiveness of family planning services. Despite the progress, there is chunk of women who are deprived of controlling unintended and unwanted pregnancies. The present paper examines the socio-cultural and economic and demographic correlates of unmet need for contraception in India. It also examines the effect of women’s autonomy and unmet need for contraception on family size among different socio-economic groups of population. It uses data from national family health survey-3 carried out in 2005-06 and employs bi-variate techniques and multivariate techniques for analysis. The multiple regression analysis has done to seek the level and direction of relationship among various socio-economic and demographic factors. The result reveals that women with higher level of education and economic status have low level of unmet need for family planning. Women living in non-nuclear family have high unmet need for spacing and women living in nuclear family have high unmet need for limiting and family size is slightly higher of women of nuclear family. In India, the level of autonomy varies at different life point; usually women with higher age enjoy higher autonomy than their junior female member in the family. The finding shows that women with higher autonomy have large family size counter to women with low autonomy have low family size. Unmet need for family planning decrease with women’s increasing exposure to mass- media. The demographic factors like experience of child loss are directly related to family size. Women who experience higher child loss have low unmet need for spacing and limiting. Thus, It is established with the help that women’s autonomy status play substantial role in fulfilling demand of contraception for limiting and spacing which affect the family size.

Keywords: family size, socio-economic correlates, unmet need for limiting, unmet need for spacing, women`s autonomy

Procedia PDF Downloads 267
9577 Parametric Estimation of U-Turn Vehicles

Authors: Yonas Masresha Aymeku

Abstract:

The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity.

Keywords: geometric, guiddelines, median, vehicles

Procedia PDF Downloads 68
9576 Direct and Residual Effects of Boron and Zinc on Growth and Nutrient Status of Rice and Wheat Crop

Authors: M. Saleem, M. Shahnawaz, A. W. Gandahi, S. M. Bhatti

Abstract:

The micronutrients boron and zinc deficiencies are extensive in the areas of rice-wheat cropping system. Optimum levels of these nutrients in soil are necessary for healthy crop growth. Since rice and wheat are major staple food of worlds’ populace, the higher yields and nutrition status of these crops has direct effect on the health of human being and economy of the country. A field study was conducted to observe the direct and residual effect of two selected micronutrients boron (B) and zinc (Zn)) on rice and wheat crop growth and its grain nutrient status. Each plot received either B or Zn at the rates of 0, 1, 2, 3 and 4 kg B ha⁻¹, and 5, 10, 15 and 20 kg Zn ha⁻¹, combined B and Zn application at 1 kg B and 5 kg Zn ha⁻¹, 2 kg B and 10 kg Zn ha⁻¹. Colemanite ore were used as source of B and zinc sulfate for Zn. The second season wheat crop was planted in the same plots after the interval period of 30 days and during this time gap soil was fallow. Boron and Zn application significantly enhanced the plant height, number of tillers, Grains panicle⁻¹ seed index fewer empty grains panicle⁻¹ and yield of rice crop at all defined levels as compared to control. The highest yield (10.00 tons/ha) was recorded at 2 Kg B, 10 Kg Zn ha⁻¹ rates. Boron and Zn concentration in grain and straw significantly increased. The application of B also improved the nutrition status of rice as B, protein and total carbohydrates content of grain augmented. The analysis of soil samples collected after harvest of rice crop showed that the B and Zn content in post-harvest soil samples was high in colemanite and zinc sulfate applied plots. The residual B and Zn were also effectual for the second season wheat crop, as the growth parameters plant height, number of tillers, earhead length, weight 1000 grains, B and Zn content of grain significantly improved. The highest wheat grain yield (4.23 tons/ha) was recorded at the residual rates of 2 kg B and 10 kg Zn ha⁻¹ than the other treatments. This study showed that one application of B and Zn can increase crop yields for at least two consecutive seasons and the mineral colemanite can confidently be used as source of B for rice crop because very small quantities of these nutrients are consumed by first season crop and remaining amount was present in soil which were used by second season wheat crop for healthy growth. Consequently, there is no need to apply these micronutrients to the following crop when it is applied on the previous one.

Keywords: residual boron, zinc, rice, wheat

Procedia PDF Downloads 155
9575 Kinetics and Mechanism of Oxidation of Some Amino Acids by Peroxodisulphate

Authors: Abdelmahmod Saad

Abstract:

In this study two amino acids were chosen (DL.alanine,DL.serine) to determine their effect on dissociation of S2O8-2 ino. As the reaction was very slow, Ag+ ino was used as a catalyst. The kinetics measurement showed that the reactions in both cases were found in the first order with respect to S2O8-2, half order with respect to Ag+ and zero order with respect to substrates. Mechanisms were proposed for these reactions according to the determined orders. The energy of activation (AE) was determined for each reaction, and was found to by 30.50 k JmoI-1 in case of DL. Serine and 24.40 k JmoI-1 in case of DL.alanine.

Keywords: mechanism, oxidation, amino acids, peroxodisulphate

Procedia PDF Downloads 512
9574 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube

Authors: Shengjun Zhang, Xu Cheng, Feng Shen

Abstract:

The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.

Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy

Procedia PDF Downloads 350
9573 An Emphasis on Creativity-Speak Words Increases Crowdfunding Success

Authors: Trayan Kushev, E. Shaunn Mattingly, Andrew S. Manikas

Abstract:

This study utilizes computer-aided text analysis (CATA) on the descriptions of 248,614 Kickstarter crowdfunding campaigns to reveal that backers are more likely to provide funding to projects that contain a higher percentage of creativity-speak words. Further, this relationship is observed to be stronger for product-based campaigns (e.g., games, technology, design) and weaker for content-based campaigns (e.g., film, music, publishing). In addition, both positive linguistic tone and the use of words expressing gratitude in the text of the campaign strengthen the positive effect of creativity-speak on campaign success.

Keywords: creativity-speak, crowdfunding, entrepreneurship, gratitude, tone

Procedia PDF Downloads 79
9572 The Effect of Nanoclay on the Hydraulic Conductivity of Clayey Sand Soils

Authors: Javad Saeidaskari, Mohammad Hassan Baziar

Abstract:

Soil structures have been frequently damaged during piping, earthquake and other types of failures. As far as adverse circumstances were developed subsequent to piping or other similar failure types, hydraulic parameters of soil such as hydraulic conductivity should be considered. As a result, acquiring an approach to diminish soil permeability is inevitable. There are many ground improvement methods to reduce seepage, which are classified under soil treatment and stabilization methods. Recently, one of the soil improvement methods is known as nanogeotechnology. This study aims to investigate the influence of Cloisite 30B nanoclay on permeability of compacted clayey sand soils. The samples are prepared by mixing two soil types, including Kaolin clay and Firouzkooh sand, in 1:9 and 1:5 clay:sand (by mass) proportions. In experimental procedure, initially, the optimum water content and maximum dry unit weight of each samples were obtained for compaction. Then, series of permeability tests were conducted by triaxial apparatus on prepared specimens with identical relative density of 95% of maximum dry density and water content of 1% wet of optimum for different weight percentages of nanoclay (1% to 4%). Therefore, in this paper, the effect of time on treated specimen was appraised, as well as two approaches of manual mixing and ball milling were compared to reveal the importance of dispersion issue. The results show that adding nanoclay up to 3%, as its optimum content, causes notable reduction in permeability (1.60e-03 to 5.51e-05 cm/s and 3.32e-04 to 8.44e-07 cm/s in samples with 1:9 and 1:5 mixture proportions, respectively). The hydraulic conductivity of treated clayey sand (1:5 mixture proportion with 3% nanoclay) decreases gradually from 8.44e-07 to 3.00e-07 cm/s within 90 days and then tends to be consistent. The influence of mixing method on permeability results shows that the utilization of ball mill mixing effectively leads to lower values than those of manual mixing, in other words, by adding 3% nanoclay, hydraulic conductivity of specimen declines from 8.44e-07 to 2.00e-07 cm/s. In order to evaluate the interaction between soil particles and, to ensure proper dispersion of nanoparticles through clayey sand mixture, they were magnified by means of scanning electron microscope (SEM). In conclusion, the nanoclay particles in vicinity of moisture can cause soil stabilization to prevent water penetration, which eventually result in lower usage of clay and operation costs.

Keywords: nanoclay, cloisite 30b, clayey sand, hydraulic conductivity

Procedia PDF Downloads 349
9571 The Effect of Dissociation in Bipolar Disorder: An EEG Power Analysis

Authors: Merve Cebi, Turker Tekin Erguzel, Gokben Hizli Sayar

Abstract:

Understanding the biological mechanisms of dissociation in patients with bipolar disorder is important for developing new treatment approaches for the disorder as well as using the appropriate treatment strategies. In this study, we compared EEG power and coherence values for alpha, theta and beta frequency bands between patients having bipolar disorder with dissociation as compared to the bipolar patients without dissociation. Accordingly, we did not find any statistically significant difference in either the absolute or the relative power between the groups. Coherence values were not found to be statistically different, as well. Therefore, our results demonstrated that the existence of dissociation did not influence electrophysiological correlates in bipolar disorder.

Keywords: bipolar disorder, dissociation, absolute power, coherence

Procedia PDF Downloads 584
9570 Ownership Concentration and Payout Policy: Evidence from France

Authors: Asma Bentaifa

Abstract:

This paper investigates the effect of ownership concentration and especially the presence of controlling shareholders on the firm’s payout decisions. Using a sample of 870 French companies during 2007 to 2012, we find that the share of dividends in total payout is negatively correlated with the size of cash flow held by controlling shareholder, and positively related to the divergence between voting rights and cash flow rights of largest shareholders. We also document that controlled firms tend to prefer dividends over repurchases to mitigate conflicts between controlling shareholders and minority shareholders related to the presence of control enhancing devices.

Keywords: ownership, payout policy, dividend, minority expropriation

Procedia PDF Downloads 221
9569 The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in Shale-Gas Reservoirs

Authors: T. Topór, A. Derkowski, P. Ziemiański

Abstract:

Formation of organic matter (OM)-hosted nanopores upon thermal maturation are one of the key factor controlling methane storage potential in unconventional shale-gas reservoirs. In this study, the subcritical CO₂ and N₂ gas adsorption measurements combined with scanning electron microscopy and supercritical methane adsorption have been used to characterize pore system and methane storage potential in black shales from the Baltic Basin (Poland). The samples were collected from a virtually equivalent Llandovery strata across the basin and represent a complete digenetic sequence, from thermally immature to overmature. The results demonstrate that the thermal maturation is a dominant mechanism controlling the formation of OM micro- and mesopores in the Baltic Basin shales. The formation of micro- and mesopores occurs in the oil window (vitrinite reflectance; leavedVR; ~0.5-0.9%) as a result of oil expulsion from kerogenleft OM highly porous. The generated hydrocarbons then turn into solid bitumen causing pore blocking and substantial decrease in micro- and mesopore volume in late-mature shales (VR ~0.9-1.2%). Both micro- and mesopores are regenerated in a middle of the catagenesis range (VR 1.4-1.9%) due to secondary cracking of OM and gas formation. The micropore volume in investigated shales is almost exclusively controlled by the OM content. The contribution of clay minerals to micropore volume is insignificant and masked by a strong contribution from OM. Methane adsorption capacity in the Baltic Basin shales is predominantly controlled by microporous OM with pores < 1.5 nm. The mesopore volume (2-50 nm) and mesopore surface area have no effect on methane sorption behavior. The adsorbed methane density equivalent, calculated as absolute methane adsorption divided by micropore volume, reviled a decrease of the methane loading potential in micropores with increasing maturity. The highest methane loading potential in micropores is observed for OM before metagenesis (VR < 2%), where the adsorbed methane density equivalent is greater than the density of liquid methane. This implies that, in addition to physical adsorption, absorption of methane in OM may occur before metagenesis. After OM content reduction using NaOCl solution methane adoption capacity substantially decreases, suggesting significantly greater adsorption potential for OM microstructure than for the clay minerals matrix.

Keywords: maturation, methane sorption, organic matter, porosity, shales

Procedia PDF Downloads 236
9568 Computational Fluid Dynamics Analysis of Sit-Ski Aerodynamics in Crosswind Conditions

Authors: Lev Chernyshev, Ekaterina Lieshout, Natalia Kabaliuk

Abstract:

Sit-skis enable individuals with limited lower limb or core movement to ski unassisted confidently. The rise in popularity of the Winter Paralympics has seen an influx of engineering innovation, especially for the Downhill and Super-Giant Slalom events, where the athletes achieve speeds as high as 160km/h. The growth in the sport has inspired recent research into sit-ski aerodynamics. Crosswinds are expected in mountain climates and, therefore, can greatly impact a skier's maneuverability and aerodynamics. This research investigates the impact of crosswinds on the drag force of a Paralympic sit-ski using Computational Fluid Dynamics (CFD). A Paralympic sit-ski with a model of a skier, a leg cover, a bucket seat, and a simplified suspension system was used for CFD analysis in ANSYS Fluent. The hybrid initialisation tool and the SST k–ω turbulence model were used with two tetrahedral mesh bodies of influence. The crosswinds (10, 30, and 50 km/h) acting perpendicular to the sit-ski's direction of travel were simulated, corresponding to the straight-line skiing speeds of 60, 80, and 100km/h. Following the initialisation, 150 iterations for both first and second order steady-state solvers were used, before switching to a transient solver with a computational time of 1.5s and a time step of 0.02s, to allow the solution to converge. CFD results were validated against wind tunnel data. The results suggested that for all crosswind and sit-ski speeds, on average, 64% of the total drag on the ski was due to the athlete's torso. The suspension was associated with the second largest overall sit-ski drag force contribution, averaging at 27%, followed by the leg cover at 10%. While the seat contributed a negligible 0.5% of the total drag force, averaging at 1.2N across the conditions studied. The effect of the crosswind increased the total drag force across all skiing speed studies, with the drag on the athlete's torso and suspension being the most sensitive to the changes in the crosswind magnitude. The effect of the crosswind on the ski drag reduced as the simulated skiing speed increased: for skiing at 60km/h, the drag force on the torso increased by 154% with the increase of the crosswind from 10km/h to 50km/h; whereas, at 100km/h the corresponding drag force increase was halved (75%). The analysis of the flow and pressure field characteristics for a sit-ski in crosswind conditions indicated the flow separation localisation and wake size correlated with the magnitude and directionality of the crosswind relative to straight-line skiing. The findings can inform aerodynamic improvements in sit-ski design and increase skiers' medalling chances.

Keywords: sit-ski, aerodynamics, CFD, crosswind effects

Procedia PDF Downloads 66
9567 Antimicrobial Activity of Oil Extracted from the Almonds of the Fruits of Argania spinosa in the West of Algeria (Mostaganem)

Authors: Nassima Behidj-Benyounes, Nadjiba Chebouti, Thoraya Dahmane, Amina Henni

Abstract:

This work examines the study of the antimicrobrial effect of oil extracted from the seeds of Argania spinosa L. (Sapotaceae) in the area of Stida (Mostaganem). This natural substance is extracted by using the Soxhlet. The antimicrobial activity of this oil is evaluated on several microorganisms. It has been tested on five bacterial strains; Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis and Staphylococcus aureus. The extract has been studied by using Candida albicans. It should be noted that these agents are characterized by a high frequency of contamination and pathogenicity. Through this study, we note that these microorganisms are moderately sensitive to the argan oil.

Keywords: Argania spinosa, oil, several microorganisms, almonds, antimicrobial activity

Procedia PDF Downloads 416