Search results for: distance measurement error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6229

Search results for: distance measurement error

859 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait

Authors: Badriya Almutairi, Ashraf El-Hamalawi

Abstract:

Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.

Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy

Procedia PDF Downloads 305
858 Numerical Simulation of the Fractional Flow Reserve in the Coronary Artery with Serial Stenoses of Varying Configuration

Authors: Mariia Timofeeva, Andrew Ooi, Eric K. W. Poon, Peter Barlis

Abstract:

Atherosclerotic plaque build-up, commonly known as stenosis, limits blood flow and hence oxygen and nutrient supplies to the heart muscle. Thus, assessment of its severity is of great interest to health professionals. Numerical simulation of the fractional flow reserve (FFR) has proved to be well correlated with invasively measured FFR used for physiological assessment of the severity of coronary stenosis in arteries. Atherosclerosis may impact the diseased artery in several locations causing serial stenoses, which is a complicated subset of coronary artery disease that requires careful treatment planning. However, hemodynamic of the serial sequential stenoses in coronary arteries has not been extensively studied. The hemodynamics of the serial stenoses is complex because the stenoses in the series interact and affect the flow through each other. To address this, serial stenoses in a 3.4 mm left anterior descending (LAD) artery are examined in this study. Two diameter stenoses (DS) are considered, 30 and 50 percent of the reference diameter. Serial stenoses configurations are divided into three groups based on the order of the stenoses in the series, spacing between them, and deviation of the stenoses’ symmetry (eccentricity). A patient-specific pulsatile waveform is used in the simulations. Blood flow within the stenotic artery is assumed to be laminar, Newtonian, and incompressible. Results for the FFR are reported. Based on the simulation results, it can be deduced that the larger drop in pressure (smaller value of the FFR) is expected when the percentage of the second stenosis in the series is bigger. Varying the distance between the stenoses affects the location of the maximum drop in the pressure, while the minimal FFR in the artery remains unchanged. Eccentric serial stenoses are characterized by a noticeably larger decrease in pressure through the stenoses and by the development of the chaotic flow downstream of the stenoses. The largest drop in the pressure (about 4% difference compared to the axisymmetric case) is obtained for the serial stenoses, where both the stenoses are highly eccentric with the centerlines deflected to the different sides of the LAD. In conclusion, varying configuration of the sequential serial stenoses results in a different distribution of FFR through the LAD. Results presented in this study provide insight into the clinical assessment of the severity of the coronary serial stenoses, which is proved to depend on the relative position of the stenoses and the deviation of the stenoses’ symmetry.

Keywords: computational fluid dynamics, coronary artery, fractional flow reserve, serial stenoses

Procedia PDF Downloads 182
857 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field

Authors: Buruk Kitachew Wossenyeleh

Abstract:

Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.

Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation

Procedia PDF Downloads 152
856 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information

Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa

Abstract:

The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.

Keywords: current density, faults, very low frequency, zonation

Procedia PDF Downloads 175
855 Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling

Authors: Dar-Bin Shieh, Gwo-Bin Lee, Chen-Ming Chang, Chen Sheng Yeh, Chih-Chia Huang, Tsung-Ju Li

Abstract:

Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases.

Keywords: mitochondrial DNA, micro-electro-mechanical-system, magnetophotonics, PCR

Procedia PDF Downloads 218
854 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 37
853 What Are the Problems in the Case of Analysis of Selenium by Inductively Coupled Plasma Mass Spectrometry in Food and Food Raw Materials?

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Dávid Andrási

Abstract:

For analysis of elements in different food, feed and food raw material samples generally a flame atomic absorption spectrometer (FAAS), a graphite furnace atomic absorption spectrometer (GF-AAS), an inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma mass spectrometer (ICP-MS) are applied. All the analytical instruments have different physical and chemical interfering effects analysing food and food raw material samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays, it is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium (arsenic, germanium, vanadium, and chromium). To elaborate an analytical method for selenium with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) isobaric elemental, 2) isobaric molecular, and 3) physical interferences. Analysing food and food raw material samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food, feed and food raw material samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of selenium. So finally we could find “opportunities” to decrease the error of selenium analysis. To analyse selenium in food, feed and food raw material samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of Se, which can be corrected using internal standard (arsenic or tellurium).

Keywords: selenium, ICP-MS, food, food raw material

Procedia PDF Downloads 508
852 The Voiceless Dental- Alveolar Common Augment in Arabic and Other Semitic Languages, a Morphophonemic Comparison

Authors: Tarek Soliman Mostafa Soliman Al-Nana'i

Abstract:

There are non-steady voiced augments in the Semitic languages, and in the morphological and structural augmentation, two sounds were augments in all Semitic languages at the level of the spoken language and two letters at the level of the written language, which are the hamza and the ta’. This research studies only the second of them; Therefore, we defined it as “The Voiceless Dental- alveolar common augment” (VDACA) to distinguish it from the glottal sound “Hamza”, first, middle, or last, in a noun or in a verb, in Arabic and its equivalent in the Semitic languages. What is meant by “VDACA” is the ta’ that is in addition to the root of the word at the morphological level: the word “voiceless” takes out the voiced sounds that we studied before, and the “dental- alveolar common augment” takes out the laryngeal sound of them, which is the “Hamza”: and the word “common” brings out the uncommon voiceless sounds, which are sīn, shīn, and hā’. The study is limited to the ta' alone among the Arabic sounds, and this title faced a problem in identifying it with the ta'. Because the designation of the ta is not the same in most Semitic languages. Hebrew, for example, has “tav” and is pronounced with the voiced fa (v), which is not in Arabic. It is called different names in other Semitic languages, such as “taw” or “tAu” in old Syriac. And so on. This goes hand in hand with the insistence on distance from the written level and the reference to the phonetic aspect in this study that is closely and closely linked to the morphological level. Therefore, the study is “morphophonemic”. What is meant by Semitic languages in this study are the following: Akkadian, Ugaritic, Hebrew, Syriac, Mandaean, Ge'ez, and Amharic. The problem of the study is the agreement or difference between these languages in the position of that augment, first, middle, or last. And in determining the distinguishing characteristics of each language from the other. As for the study methodology, it is determined by the comparative approach in Semitic languages, which is based on the descriptive approach for each language. The study is divided into an introduction, four sections, and a conclusion: Introduction: It included the subject of the study, its importance, motives, problem, methodology, and division. The first section: VDACA as a non-common phoneme. The second: VDACA as a common phoneme. The third: VDACA as a functional morpheme. The fourth section: Commentary and conclusion with the most important results. The positions of VDACA in Arabic and other Semitic languages, and in nouns and verbs, were limited to first, middle, and last. The research identified the individual addition, which is common with other augments, and the research proved that this augmentation is constant in all Semitic languages, but there are characteristics that distinguish each language from the other.

Keywords: voiceless -, dental- alveolar, augment, Arabic - semitic languages

Procedia PDF Downloads 73
851 Improvement of Cardiometabolic after 8 Weeks of Weight Loss Intervention

Authors: Boris Bajer, Andrea Havranova, Miroslav Vlcek, Richard Imrich, Adela Penesova

Abstract:

Lifestyle interventions can prevent the deterioration of impaired glucose tolerance to manifest type 2 diabetes, and also prevent cardiovascular diseases, as it showed many studies (the Finnish Diabetes Prevention Study, Diabetes Prevention Program (DPP), . the China Da Qing Diabetes Prevention Study, etc.) Therefore the aim of our study was to compare the effect of intensified lifestyle intervention on cardiometabolic parameters. Methods: It is an ongoing randomized interventional clinical study (NCT02325804) focused on the reduction of body weight/fat. Intervention: hypocaloric diet (30% restriction of calories) and physical activity 150 minutes/week. Before and after 8 weeks of intervention all patients underwent complete medical examination (measurement of physical fitness, resting metabolic rate (RMR), body composition analysis, oral glucose tolerance test, parameters of lipid metabolism, and other cardiometabolic risk factors. Results: So far 39 patients finished the intervention. The average reduction of body weight was 6,8 + 4,9 kg (0-15 kg; p=0,0006), accompanied with significant reduction of body fat percentage (p ≤ 0,0001), amount of fat mass (p=0,03), waist circumference (p=0.02). Amount of lean mass and RMR remained unchanged. Heart rate (p=0,02), systolic and diastolic blood pressure was reduced (p=0,01 p=0,02 resp.) as well as insulin sensitivity was improved. Lipid parameters also changed - cholesterol, LDL decreased (p=0,05, p=0,04 resp.), while triglycerides showed tendency to decrease (p=0,055). Liver function improved, alanine aminotrasnferase (ALT) were reduced (p=0,01). Physical fitness significantly improved (as measure VO2 max (p=0,02). Conclusion: Results of our study are in line with previous results about the beneficial effect of intensive lifestyle changes on the reduction of cardiometabolic risk factors and improvement of liver function. Supported by grants APVV 15-0228; VEGA 2/0161/16

Keywords: obesity, weight loss, diet lipids, blood pressure, liver enzymes

Procedia PDF Downloads 166
850 Health Seeking Manners of Road Traffic Accident Victims: A Qualitative Study

Authors: Mohammad Mahbub Alam Talukder, Shahnewaz, Hasanat-E-Rabbi, Mohammed Nazrul Islam

Abstract:

Road traffic accident is a global problem which is severe in the developing countries like Bangladesh. In consequence, in developing countries road trauma has now been recognized as an increasing public health hazards and economic burning issue. And after road traffic accidents the lack of management and economic costs related with health seeking behavior have a disproportionate impact on lower income groups, thus contributing to the persistence of poverty in conjunction with disability. This cross sectional study, carried out during July 2012 to June 2013, aimed to explore health seeking decision and culture of handling the road traffic accident related victims, as taken from experiences of the poor disabled people of slum dwellers of Dhaka city. The present study has been designed based on qualitative techniques such as in-depth interview and case studies. Additionally, a survey questionnaire was used to collect the demographic characteristics of the study population (n=150) and to select participants purposely for in-depth interview (n=50) and case study (n=30). Content analysis of qualitative data was done through theme coding and matrix analysis of case study was done to use relevant verbatim. Most of the time the health seeking decision totally depended on the surrounded people of the accidental place, their knowledge, awareness and remaining facility and capacity regarding proper management of the victims. However, most of the cases the victims did not get any early treatment and it took 2-12 hours to get even the first aid because of distance, shortage of money, lack of availability of getting the aid, lack of mass awareness etc. Under the reality of discriminated and unaffordable health service provision better treatment could not turn out due to economic inability of the poor victims. To avoid the severe trauma, treatment delay must be reduced by providing first aid within very short time and to do so, mass awareness campaign is necessary for handing the victims. Moreover, necessary measures should be taken to ensure cost free health service provision to treat the chronic disabled condition of the road traffic accident related poor victims.

Keywords: accident, injury, disabled, qualitative, slum

Procedia PDF Downloads 364
849 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: body composition, diet, exercise, protein

Procedia PDF Downloads 225
848 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 105
847 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
846 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring

Authors: Mamoon Masud, Suleman Mazhar

Abstract:

Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.

Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking

Procedia PDF Downloads 147
845 Destigmatising Generalised Anxiety Disorder: The Differential Effects of Causal Explanations on Stigma

Authors: John McDowall, Lucy Lightfoot

Abstract:

Stigma constitutes a significant barrier to the recovery and social integration of individuals affected by mental illness. Although there is some debate in the literature regarding the definition and utility of stigma as a concept, it is widely accepted that it comprises three components: stereotypical beliefs, prejudicial reactions, and discrimination. Stereotypical beliefs describe the cognitive knowledge-based component of stigma, referring to beliefs (often negative) about members of a group that is based on cultural and societal norms (e.g. ‘People with anxiety are just weak’). Prejudice refers to the affective/evaluative component of stigma and describes the endorsement of negative stereotypes and the resulting negative emotional reactions (e.g. ‘People with anxiety are just weak, and they frustrate me’). Discrimination refers to the behavioural component of stigma, which is arguably the most problematic, as it exerts a direct effect on the stigmatized person and may lead people to behave in a hostile or avoidant way towards them (i.e. refusal to hire them). Research exploring anti-stigma initiatives focus primarily on an educational approach, with the view that accurate information will replace misconceptions and decrease stigma. Many approaches take a biogenetic stance, emphasising brain and biochemical deficits - the idea being that ‘mental illness is an illness like any other.' While this approach tends to effectively reduce blame, it has also demonstrated negative effects such as increasing prognostic pessimism, the desire for social distance and perceptions of stereotypes. In the present study 144 participants were split into three groups and read one of three vignettes presenting causal explanations for Generalised Anxiety Disorder (GAD): One explanation emphasized biogenetic factors as being important in the etiology of GAD, another emphasised psychosocial factors (e.g. aversive life events, poverty, etc.), and a third stressed the adaptive features of the disorder from an evolutionary viewpoint. A variety of measures tapping the various components of stigma were administered following the vignettes. No difference in stigma measures as a function of causal explanation was found. People who had contact with mental illness in the past were significantly less stigmatising across a wide range of measures, but this did not interact with the type of causal explanation.

Keywords: generalised anxiety disorder, discrimination, prejudice, stigma

Procedia PDF Downloads 286
844 The Effect of Motivation of Chinese Tourists to Visit North Korea on Their Revisit Intention: Focused on the Tourists with the Experience of Visiting North Korea

Authors: Kim Jin-OK, Lee Jin-Eui, Han Seung-Hoon, Kim Nam-Jo

Abstract:

This study aimed to analyze the effect of the motivation of Chinese tourists to visit North Korea on their decision making process. Chinese tourists account for a considerable portion of foreign tourists in the world, while North Korea is the favorite tourist attraction of Chinese tourists. The motivation to visit North Korea was divided into three factors: the redness, which is the modern cultural heritage of Communism based on the red tourism accounting for the significant portion of domestic tourism, the novelty of the special environment of North Korean society, and the convenience of tour to North Korea in terms of geographical distance and policy of China. Red tourism refers to visiting the places of revolutionary events, monuments, artifacts and the residences of previous communist leaders, and other places related to the past Chinese Communist Party. As a revolutionary tourism, red tourism has recently been taking place in the old communist countries to recall their memories on the revolutionary places in China, as well as in North Korea, Vietnam, Cambodia, Russia, Bulgaria, Cuba, etc. In order to examine the effect of the segmented motivations on the revisit intention of Chinese tourists who have experienced a tour to North Korea, this study employed the model of goal-directed behavior, a model developed by adding a variable of emotion to the theory of planned behavior, which has a strong explanatory power on the decision making process of people in social science. For achieving the aim of the study, the data was collected through the survey in Dandong, China against Chinese tourists who have visited North Korea. The results of this study found that not only the novelty of North Korea, but also the redness, which accounts for the largest proportion in the domestic tourism, are significantly affecting overseas tour of Chinese tourists at this time point where overseas tour of Chinese tourists continue to increase. The results, therefore, suggest that the old communist countries, including those in Asia, need an emotional promotion strategy that stimulates nostalgia by focusing on the redness of the modern cultural heritage of Communism to attract Chinese tourists.

Keywords: model of goal-directed behavior, modern cultural heritage, North Korea, red tourism

Procedia PDF Downloads 309
843 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment

Authors: Bulcha Belay Etana

Abstract:

Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.

Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile

Procedia PDF Downloads 135
842 The Analysis of Drill Bit Optimization by the Application of New Electric Impulse Technology in Shallow Water Absheron Peninsula

Authors: Ayshan Gurbanova

Abstract:

Despite based on the fact that drill bit which is the smallest part of bottom hole assembly costs only in between 10% and 15% of the total expenses made, they are the first equipment that is in contact with the formation itself. Hence, it is consequential to choose the appropriate type and dimension of drilling bit, which will prevent majority of problems by not demanding many tripping procedure. However, within the advance in technology, it is now seamless to be beneficial in the terms of many concepts such as subsequent time of operation, energy, expenditure, power and so forth. With the intention of applying the method to Azerbaijan, the field of Shallow Water Absheron Peninsula has been suggested, where the mainland has been located 15 km away from the wildcat wells, named as “NKX01”. It has the water depth of 22 m as indicated. In 2015 and 2016, the seismic survey analysis of 2D and 3D have been conducted in contract area as well as onshore shallow water depth locations. With the aim of indicating clear elucidation, soil stability, possible submersible dangerous scenarios, geohazards and bathymetry surveys have been carried out as well. Within the seismic analysis results, the exact location of exploration wells have been determined and along with this, the correct measurement decisions have been made to divide the land into three productive zones. In the term of the method, Electric Impulse Technology (EIT) is based on discharge energies of electricity within the corrosivity in rock. Take it simply, the highest value of voltages could be created in the less range of nano time, where it is sent to the rock through electrodes’ baring as demonstrated below. These electrodes- higher voltage powered and grounded are placed on the formation which could be obscured in liquid. With the design, it is more seamless to drill horizontal well based on the advantage of loose contact of formation. There is also no chance of worn ability as there are no combustion, mechanical power exist. In the case of energy, the usage of conventional drilling accounts for 1000 𝐽/𝑐𝑚3 , where this value accounts for between 100 and 200 𝐽/𝑐𝑚3 in EIT. Last but not the least, from the test analysis, it has been yielded that it achieves the value of ROP more than 2 𝑚/ℎ𝑟 throughout 15 days. Taking everything into consideration, it is such a fact that with the comparison of data analysis, this method is highly applicable to the fields of Azerbaijan.

Keywords: drilling, drill bit cost, efficiency, cost

Procedia PDF Downloads 74
841 Self-Esteem on University Students by Gender and Branch of Study

Authors: Antonio Casero Martínez, María de Lluch Rayo Llinas

Abstract:

This work is part of an investigation into the relationship between romantic love and self-esteem in college students, performed by the students of matter "methods and techniques of social research", of the Master Gender at the University of Balearic Islands, during 2014-2015. In particular, we have investigated the relationships that may exist between self-esteem, gender and field of study. They are known as gender differences in self-esteem, and the relationship between gender and branch of study observed annually by the distribution of enrolment in universities. Therefore, in this part of the study, we focused the spotlight on the differences in self-esteem between the sexes through the various branches of study. The study sample consists of 726 individuals (304 men and 422 women) from 30 undergraduate degrees that the University of the Balearic Islands offers on its campus in 2014-2015, academic year. The average age of men was 21.9 years and 21.7 years for women. The sampling procedure used was random sampling stratified by degree, simple affixation, giving a sampling error of 3.6% for the whole sample, with a confidence level of 95% under the most unfavorable situation (p = q). The Spanish translation of the Rosenberg Self-Esteen Scale (RSE), by Atienza, Moreno and Balaguer was applied. The psychometric properties of translation reach a test-retest reliability of 0.80 and an internal consistency between 0.76 and 0.87. In this paper we have obtained an internal consistency of 0.82. The results confirm the expected differences in self-esteem by gender, although not in all branches of study. Mean levels of self-esteem in women are lower in all branches of study, reaching statistical significance in the field of Science, Social Sciences and Law, and Engineering and Architecture. However, analysed the variability of self-esteem by the branch of study within each gender, the results show independence in the case of men, whereas in the case of women find statistically significant differences, arising from lower self-esteem of Arts and Humanities students vs. the Social and legal Sciences students. These findings confirm the results of numerous investigations in which the levels of female self-esteem appears always below the male, suggesting that perhaps we should consider separately the two populations rather than continually emphasize the difference. The branch of study, for its part has not appeared as an explanatory factor of relevance, beyond detected the largest absolute difference between gender in the technical branch, one in which women are historically a minority, ergo, are no disciplinary or academic characteristics which would explain the differences, but the differentiated social context that occurs within it.

Keywords: study branch, gender, self-esteem, applied psychology

Procedia PDF Downloads 465
840 Exploring Language Attrition Through Processing: The Case of Mising Language in Assam

Authors: Chumki Payun, Bidisha Som

Abstract:

The Mising language, spoken by the Mising community in Assam, belongs to the Tibeto-Burman family of languages. This is one of the smaller languages of the region and is facing endangerment due to the dominance of the larger languages, like Assamese. The language is spoken in close in-group scenarios and is gradually losing ground to the dominant languages, partly also due to the education setup where schools use only dominant languages. While there are a number of factors for the current contemporary status of the language, and those can be studied using sociolinguistic tools, the current work aims to contribute to the understanding of language attrition through language processing in order to establish if the effect of second language dominance is more than mere ‘usage’ patterns and has an impact on cognitive strategies. When bilingualism spreads widely in society and results in a language shift, speakers perform people often do better in their second language (L2) than in their first language (L1) across a variety of task settings, in both comprehension and production tasks. This phenomenon was investigated in the case of Mising-Assamese bilinguals, using a picture naming task, in two districts of Jorhat and Tinsukia in Assam, where the relative dominance of L2 is slightly different. This explorative study aimed to investigate if the L2 dominance is visible in their performance and also if the pattern is different in the two different places, thus pointing to the degree of language loss in this case. The findings would have implications for native language education, as education in one’s mother tongue can help reverse the effect of language attrition helping preserve the traditional knowledge system. The hypothesis was that due to the dominance of the L2, subjects’ performance in the task would be better in Assamese than that of Missing. The experiment: Mising-Assamese bilingual participants (age ranges 21-31; N= 20 each from both districts) had to perform a picture naming task in which participants were shown pictures of familiar objects and asked to name them in four scenarios: (a) only in Mising; (b) only in Assamese; (c) a cued mix block: an auditory cue determines the language in which to name the object, and (d) non-cued mix block: participants are not given any specific language cues, but instructed to name the pictures in whichever language they feel most comfortable. The experiment was designed and executed using E-prime 3.0 and was conducted responses were recorded using the help of a Chronos response box and was recorded with the help of a recorder. Preliminary analysis reveals the presence of dominance of L2 over L1. The paper will present a comparison of the response latency, error analysis, and switch cost in L1 and L2 and explain the same from the perspective of language attrition.

Keywords: bilingualism, language attrition, language processing, Mising language.

Procedia PDF Downloads 23
839 Examination of How Do Smart Watches Influence the Market of Luxury Watches with Particular Regard of the Buying-Reasons

Authors: Christopher Benedikt Jakob

Abstract:

In our current society, there is no need to take a look at the wristwatch to know the exact time. Smartphones, the watch in the car or the computer watch, inform us about the time too. Over hundreds of years, luxury watches have held a fascination for human beings. Consumers buy watches that cost thousands of euros, although they could buy much cheaper watches which also fulfill the function to indicate the correct time. This shows that the functional value has got a minor meaning with reference to the buying-reasons as regards luxury watches. For a few years, people have an increased demand to track data like their walking distance per day or to track their sleep for example. Smart watches enable consumers to get information about these data. There exists a trend that people intend to optimise parts of their social life, and thus they get the impression that they are able to optimise themselves as human beings. With the help of smart watches, they are able to optimise parts of their productivity and to realise their targets at the same time. These smart watches are also offered as luxury models, and the question is: how will customers of traditional luxury watches react? Therefore this study has the intention to give answers to the question why people are willing to spend an enormous amount of money on the consumption of luxury watches. The self-expression model, the relationship basis model, the functional benefit representation model and the means-end-theory are chosen as an appropriate methodology to find reasons why human beings purchase specific luxury watches and luxury smart watches. This evaluative approach further discusses these strategies concerning for example if consumers buy luxury watches/smart watches to express the current self or the ideal self and if human beings make decisions on expected results. The research critically evaluates that relationships are compared on the basis of their advantages. Luxury brands offer socio-emotional advantages like social functions of identification and that the strong brand personality of luxury watches and luxury smart watches helps customers to structure and retrieve brand awareness which simplifies the process of decision-making. One of the goals is to identify if customers know why they like specific luxury watches and dislike others although they are produced in the same country and cost comparable prices. It is very obvious that the market for luxury watches especially for luxury smart watches is changing way faster than it has been in the past. Therefore the research examines the market changing parameters in detail.

Keywords: buying-behaviour, brand management, consumer, luxury watch, smart watch

Procedia PDF Downloads 210
838 Effect of Downstream Pressure in Tuning the Flow Control Orifices of Pressure Fed Reaction Control System Thrusters

Authors: Prakash M.N, Mahesh G, Muhammed Rafi K.M, Shiju P. Nair

Abstract:

Introduction: In launch vehicle missions, Reaction Control thrusters are being used for the three-axis stabilization of the vehicle during the coasting phases. A pressure-fed propulsion system is used for the operation of these thrusters due to its less complexity. In liquid stages, these thrusters are designed to draw propellant from the same tank used for the main propulsion system. So in order to regulate the propellant flow rates of these thrusters, flow control orifices are used in feed lines. These orifices are calibrated separately as per the flow rate requirement of individual thrusters for the nominal operating conditions. In some missions, it was observed that the thrusters were operated at higher thrust than nominal. This point was addressed through a series of cold flow and hot tests carried out in-ground and this paper elaborates the details of the same. Discussion: In order to find out the exact reason for this phenomenon, two flight configuration thrusters were identified and hot tested in the ground with calibrated orifices and feed lines. During these tests, the chamber pressure, which is directly proportional to the thrust, is measured. In both cases, chamber pressures higher than the nominal by 0.32bar to 0.7bar were recorded. The increase in chamber pressure is due to an increase in the oxidizer flow rate of both the thrusters. Upon further investigation, it is observed that the calibration of the feed line is done with ambient pressure downstream. But in actual flight conditions, the orifices will be subjected to operate with 10 to 11bar pressure downstream. Due to this higher downstream pressure, the flow through the orifices increases and thereby, the thrusters operate with higher chamber pressure values. Conclusion: As part of further investigatory tests, two numbers of fresh thrusters were realized. Orifice tuning of these thrusters was carried out in three different ways. In the first trial, the orifice tuning was done by simulating 1bar pressure downstream. The second trial was done with the injector assembled downstream. In the third trial, the downstream pressure equal to the flight injection pressure was simulated downstream. Using these calibrated orifices, hot tests were carried out in simulated vacuum conditions. Chamber pressure and flow rate values were exactly matching with the prediction for the second and third trials. But for the first trial, the chamber pressure values obtained in the hot test were more than the prediction. This clearly shows that the flow is detached in the 1st trial and attached for the 2nd & 3rd trials. Hence, the error in tuning the flow control orifices is pinpointed as the reason for this higher chamber pressure observed in flight.

Keywords: reaction control thruster, propellent, orifice, chamber pressure

Procedia PDF Downloads 201
837 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence

Authors: Carolina Zambrana, Grover Zurita

Abstract:

The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.

Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence

Procedia PDF Downloads 79
836 Modal Composition and Tectonic Provenance of the Sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa

Authors: Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Petrography of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province of South Africa have been investigated on composition, provenance and influence of weathering conditions. Petrographic studies based on quantitative analysis of the detrital minerals revealed that the sandstones are composed mostly of quartz, feldspar and lithic fragments of metamorphic and sedimentary rocks. The sandstones have an average framework composition of 24.3% quartz, 19.3% feldspar, 26.1% rock fragments, and 81.33% of the quartz grains are monocrystalline. These sandstones are generally very fine to fine grained, moderate to well sorted, and subangular to subrounded in shape. In addition, they are compositionally immature and can be classified as feldspathic wacke and lithic wacke. The absence of major petrographically distinctive compositional variations in the sandstones perhaps indicate homogeneity of their source. As a result of this, it is inferred that the transportation distance from the source area was quite short and the main mechanism of transportation was by river systems to the basin. The QFL ternary diagrams revealed dissected and transitional arc provenance pointing to an active margin and uplifted basement preserving the signature of a recycled provenance. This is an indication that the sandstones were derived from a magmatic arc provenance. Since magmatic provenance includes transitional arc and dissected arc, it also shows that the source area of the Ecca sediments had a secondary sedimentary and metasedimentary rocks from a marginal belt that developed as a result of rifting. The weathering diagrams and semi-quantitative weathering index indicate that the Ecca sandstones are mostly from a plutonic source area, with climatic conditions ranging from arid to humid. The compositional immaturity of the sandstones is suggested to be due to weathering or recycling and low relief or short transport from the source area. The detrital modal compositions of these sandstones are related to back arc to island and continental margin arc. The origin and deposition of the Ecca sandstones are due to low-moderate weathering, recycling of pre-existing rocks, erosion and transportation of debris from the orogeny of the Cape Fold Belt.

Keywords: petrography, tectonic setting, provenance, Ecca Group, Karoo Basin

Procedia PDF Downloads 433
835 Perceptions and Expectations by Participants of Monitoring and Evaluation Short Course Training Programmes in Africa

Authors: Mokgophana Ramasobana

Abstract:

Background: At the core of the demand to utilize evidence-based approaches in the policy-making cycle, prioritization of limited financial resources and results driven initiatives is the urgency to develop a cohort of competent Monitoring and Evaluation (M&E) practitioners and public servants. The ongoing strides in the evaluation capacity building (ECB) initiatives are a direct response to produce the highly-sought after M&E skills. Notwithstanding the rapid growth of M&E short courses, participants perceived value and expectation of M&E short courses as a panacea for ECB have not been empirically quantified or measured. The objective of this article is to explicitly illustrate the importance of measuring ECB interventions and understanding what works in ECB and why it works. Objectives: This article illustrates the importance of establishing empirical ECB measurement tools to evaluate ECB interventions in order to ascertain its contribution to the broader evaluation practice. Method: The study was primarily a desktop review of existing literature, juxtaposed by a survey of the participants across the African continent based on the 43 M&E short courses hosted by the Centre for Learning on Evaluation and Results Anglophone Africa (CLEAR-AA) in collaboration with the Department of Planning Monitoring and Evaluation (DPME) Results: The article established that participants perceive short course training as a panacea to improve their M&E practical skill critical to executing their organizational duties. In tandem, participants are likely to demand customized training as opposed to general topics in Evaluation. However, the organizational environments constrain the application of the newly acquired skills. Conclusion: This article aims to contribute to the 'how to' measure ECB interventions discourse and contribute towards the improvement to evaluate ECB interventions. The study finds that participants prefer training courses with longer duration to cover more topics. At the same time, whilst organizations call for customization of programmes, the study found that individual participants demand knowledge of generic and popular evaluation topics.

Keywords: evaluation capacity building, effectiveness and training, monitoring and evaluation (M&E) short course training, perceptions and expectations

Procedia PDF Downloads 128
834 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
833 Oral Supplementation of Sweet Orange Extract “Citrus Sinensis” as Substitute for Synthetic Vitamin C on Transported Pullets in Humid Tropics

Authors: Mathew O. Ayoola, Foluke Aderemi, Tunde E. Lawal, Opeyemi Oladejo, Micheal A. Abiola

Abstract:

Food animals reared for meat require transportation during their life cycle. The transportation procedures could initiate stressors capable of disrupting the physiological homeostasis. Such stressors associated with transportation may include; loading and unloading, crowding, environmental temperature, fear, vehicle motion/vibration, feed / water deprivation, and length of travel. This may cause oxidative stress and damage to excess free radicals or reactive oxygen species (ROS). In recent years, the application of natural products as a substitute for synthetic electrolytes and tranquilizers as anti-stress agents during the transportation is yet under investigation. Sweet orange, a predominant fruit in humid tropics, has been reported to have a good content of vitamin C (Ascorbic acid). Vitamin C, which is an active ingredient in orange juice, plays a major role in the biosynthesis of Corticosterone, a hormone that enhances energy supply during transportation and heat stress. Ninety-six, 15weeks, Isa brown pullets were allotted to four (4) oral treatments; sterile water (T1), synthetic vit C (T2), 30ml orange/liter of water (T3), 50ml orange/1 liter (T4). Physiological parameters; body temperature (BTC), rectal temperature (RTC), respiratory rate (RR), and panting rate (PR) were measured pre and post-transportation. The birds were transported with a specialized vehicle for a distance of 50km at a speed of 60 km/hr. The average environmental THI and within the vehicle was 81.8 and 74.6, respectively, and the average wind speed was 11km/hr. Treatments and periods had a significant (p>0.05) effect on all the physiological parameters investigated. Birds on T1 are significantly (p<0.05) different as compared to T2, T3, and T4. Values recorded post-transportation are significantly (p<0.05) higher as compared to pre-transportation for all parameters. In conclusion, this study showed that transportation as a stressor can affect the physiological homeostasis of pullets. Oral supplementation of electrolytes or tranquilizers is essential as an anti-stress during transportation. The application of the organic product in form of sweet orange could serve as a suitable alternative for the synthetic vitamin C.

Keywords: physiological, pullets, sweet orange, transportation stress, and vitamin C

Procedia PDF Downloads 120
832 Proposal of a Rectenna Built by Using Paper as a Dielectric Substrate for Electromagnetic Energy Harvesting

Authors: Ursula D. C. Resende, Yan G. Santos, Lucas M. de O. Andrade

Abstract:

The recent and fast development of the internet, wireless, telecommunication technologies and low-power electronic devices has led to an expressive amount of electromagnetic energy available in the environment and the smart applications technology expansion. These applications have been used in the Internet of Things devices, 4G and 5G solutions. The main feature of this technology is the use of the wireless sensor. Although these sensors are low-power loads, their use imposes huge challenges in terms of an efficient and reliable way for power supply in order to avoid the traditional battery. The radio frequency based energy harvesting technology is especially suitable to wireless power sensors by using a rectenna since it can be completely integrated into the distributed hosting sensors structure, reducing its cost, maintenance and environmental impact. The rectenna is an equipment composed of an antenna and a rectifier circuit. The antenna function is to collect as much radio frequency radiation as possible and transfer it to the rectifier, which is a nonlinear circuit, that converts the very low input radio frequency energy into direct current voltage. In this work, a set of rectennas, mounted on a paper substrate, which can be used for the inner coating of buildings and simultaneously harvest electromagnetic energy from the environment, is proposed. Each proposed individual rectenna is composed of a 2.45 GHz patch antenna and a voltage doubler rectifier circuit, built in the same paper substrate. The antenna contains a rectangular radiator element and a microstrip transmission line that was projected and optimized by using the Computer Simulation Software (CST) in order to obtain values of S11 parameter below -10 dB in 2.45 GHz. In order to increase the amount of harvested power, eight individual rectennas, incorporating metamaterial cells, were connected in parallel forming a system, denominated Electromagnetic Wall (EW). In order to evaluate the EW performance, it was positioned at a variable distance from the internet router, and a 27 kΩ resistive load was fed. The results obtained showed that if more than one rectenna is associated in parallel, enough power level can be achieved in order to feed very low consumption sensors. The 0.12 m2 EW proposed in this work was able to harvest 0.6 mW from the environment. It also observed that the use of metamaterial structures provide an expressive growth in the amount of electromagnetic energy harvested, which was increased from 0. 2mW to 0.6 mW.

Keywords: electromagnetic energy harvesting, metamaterial, rectenna, rectifier circuit

Procedia PDF Downloads 167
831 A Measurement and Motor Control System for Free Throw Shots in Basketball Using Gyroscope Sensor

Authors: Niloofar Zebarjad

Abstract:

This research aims at finding a tool to provide basketball players with real-time audio feedback on their shooting form in free throw shots. Free throws played a pivotal role in taking the lead in fierce competitions. The major problem in performing an accurate free throw seems to be improper training. Since the arm movement during the free throw shot is complex, the coach or the athlete might miss the movement details during practice. Hence, there is a necessity to create a system that measures arm movements' critical characteristics and control for improper kinematics. The proposed setup in this study quantifies arm kinematics and provides real-time feedback as an audio signal consisting of a gyroscope sensor. Spatial shoulder angle data are transmitted in a mobile application in real-time and can be saved and processed for statistical and analysis purposes. The proposed system is easy to use, inexpensive, portable, and real-time applicable. Objectives: This research aims to modify and control the free throw using audio feedback and determine if and to what extent the new setup reduces errors in arm formations during throws and finally assesses the successful throw rate. Methods: One group of elite basketball athletes and two novice athletes (control and study group) participated in this study. Each group contains 5 participants being studied in three separate sessions over a week. Results: Empirical results showed enhancements in the free throw shooting style, shot pocket (SP), and locked position (LP). The mean values of shoulder angle were controlled on 25° and 45° for SP and LP, respectively, recommended by valid FIBA references. Conclusion: Throughout the experiments, the system helped correct and control the shoulder angles toward the targeted pattern of shot pocket (SP) and locked position (LP). According to the desired results for arm motion, adding another sensor to measure and control the elbow angle is recommended.

Keywords: audio-feedback, basketball, free-throw, locked-position, motor-control, shot-pocket

Procedia PDF Downloads 295
830 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger

Authors: Hany Elsaid Fawaz Abdallah

Abstract:

This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.

Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations

Procedia PDF Downloads 87