Search results for: scale invariant feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7513

Search results for: scale invariant feature

7003 Platform Development for Vero Cell Culture on Microcarriers Using Dissociation-Reassociation Method

Authors: Thanunthon Bowornsakulwong, Charukorn Charukarn, Franck Courtes, Panit Kitsubun, Lalintip Horcharoen

Abstract:

Vero cell is a continuous cell line that is widely used for the production of viral vaccines. However, due to its adherent characteristic, scaling up strategy in large-scale production remains complicated and thus limited. Consequently, suspension-like Vero cell culture processes based on microcarriers have been introduced and employed while also providing increased surface area per volume unit. However, harvesting Vero cells from microcarriers is a huge challenge due to difficulties in cells detaching, lower recovery yield, time-consuming and dissociation agent carry-over. To overcome these problems, we developed a dissociation-association platform technology for detaching and re-attaching cells during subculturing from microcarriers to microcarriers, which will be conveniently applied to seed trains strategies in large scale bioreactors. Herein, Hillex-2 was used to culture Vero cells in serum-containing media using spinner flasks as a scale-down model. The overall confluency of cells on microcarriers was observed using inverted microscope, and the sample cells were daily detached in order to obtain the kinetics data. The metabolites consumption and by-products formation were determined by Nova Biomedical BioprofileFlex.

Keywords: dissociation-reassociation, microcarrier, scale up, Vero cell

Procedia PDF Downloads 133
7002 Management of Small-Scale Companies in Nigeria. Case Study of Problems Faced by Entrepreneurs

Authors: Aderemi, Moses Aderibigbe

Abstract:

The supply chain of a manufacturing company can be classified into three categories, namely: 1) supplier chain, these are a network of suppliers of raw materials, machinery, and other requirements for daily operations for the company; 2) internal chain, which are departmental or functional relationships within the organization like production, finance, marketing, logistic and quality control departments all interacting together to achieve the goals and objective of the company; and 3) customer chain; these are networks used for products distribution to the final consumer which includes the product distributors and retailers in the marketplace as may be applicable. In a developing country like Nigeria, where government infrastructures are poor or, in some cases, none in existence, the survival of a small-scale manufacturing company often depends on how effectively its supply chain is managed. In Nigeria, suppliers of machinery and raw materials to most manufacturing companies are from low-cost but high-tech countries like China or India. The problem with the supply chain from these countries apart from the language barrier between these countries and Nigeria, is also that of product quality and after-sales support services. The internal chain also requires funding to employ an experienced and trained workforce to deliver the company’s goals and objectives effectively and efficiently, which is always a challenge for small-scale manufacturers, including product marketing. In Nigeria, the management of the supply chain by small-scale manufacturers is further complicated by unfavourable government policies. This empirical research is a review and analysis of the supply chain management of a small-scale manufacturing company located in Lagos, Nigeria. The company's performance for the past five years has been on the decline and company management thinks there is a need for a review of its supply chain management for business survival. The company’s supply chain is analyzed and compared with best global practices in this research, and recommendations are made to the company management. The research outcome justifies the company’s need for a strategic change in its supply chain management for business sustainability and provides a learning point to small-scale manufacturing companies from developing countries in Africa

Keywords: management, small scale, supply chain, companies, leaders

Procedia PDF Downloads 23
7001 Evaluating the Tracking Abilities of Microsoft HoloLens-1 for Small-Scale Industrial Processes

Authors: Kuhelee Chandel, Julia Åhlén, Stefan Seipel

Abstract:

This study evaluates the accuracy of Microsoft HoloLens (Version 1) for small-scale industrial activities, comparing its measurements to ground truth data from a Kuka Robotics arm. Two experiments were conducted to assess its position-tracking capabilities, revealing that the HoloLens device is effective for measuring the position of dynamic objects with small dimensions. However, its precision is affected by the velocity of the trajectory and its position within the device's field of view. While the HoloLens device may be suitable for small-scale tasks, its limitations for more complex and demanding applications requiring high precision and accuracy must be considered. The findings can guide the use of HoloLens devices in industrial applications and contribute to the development of more effective and reliable position-tracking systems.

Keywords: augmented reality (AR), Microsoft HoloLens, object tracking, industrial processes, manufacturing processes

Procedia PDF Downloads 135
7000 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 79
6999 Sentiment Analysis: An Enhancement of Ontological-Based Features Extraction Techniques and Word Equations

Authors: Mohd Ridzwan Yaakub, Muhammad Iqbal Abu Latiffi

Abstract:

Online business has become popular recently due to the massive amount of information and medium available on the Internet. This has resulted in the huge number of reviews where the consumers share their opinion, criticisms, and satisfaction on the products they have purchased on the websites or the social media such as Facebook and Twitter. However, to analyze customer’s behavior has become very important for organizations to find new market trends and insights. The reviews from the websites or the social media are in structured and unstructured data that need a sentiment analysis approach in analyzing customer’s review. In this article, techniques used in will be defined. Definition of the ontology and description of its possible usage in sentiment analysis will be defined. It will lead to empirical research that related to mobile phones used in research and the ontology used in the experiment. The researcher also will explore the role of preprocessing data and feature selection methodology. As the result, ontology-based approach in sentiment analysis can help in achieving high accuracy for the classification task.

Keywords: feature selection, ontology, opinion, preprocessing data, sentiment analysis

Procedia PDF Downloads 200
6998 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association

Authors: Jacky Liu

Abstract:

This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.

Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation

Procedia PDF Downloads 102
6997 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 402
6996 Impact of Self-Efficacy, Resilience, and Social Support on Vicarious Trauma among Clinical Psychologists, Counselors, and Teachers of Special Schools

Authors: Hamna Hamid, Kashmala Zaman

Abstract:

The aim of this study was to evaluate the relationship between self-efficacy, resilience, and social support among clinical psychologists, counselors, and teachers of special schools. The study also assesses the gender differences in self-efficacy, resilience, social support, and vicarious trauma and also vicarious trauma differences among three professions, i.e., clinical psychologists, counselors, and teachers of special schools. A sample of 150 women and 97 men were handed out a set questionnaire to complete: a General Self-Efficacy Scale, Brief Resilience Scale, Multidimensional Scale of Perceived Social Support, and Vicarious Trauma Scale. Results showed that there is a significant negative correlation between self-efficacy, resilience, and vicarious trauma. Women experience higher levels of vicarious trauma as compared to men. At the same time, clinical psychologists and counselors experience higher levels of vicarious trauma as compared to teachers of special schools. The moderation effect of social support is not significant towards resilience and vicarious trauma.

Keywords: self-efficacy, resilience, vicarious-trauma social-support, social support

Procedia PDF Downloads 80
6995 The Effects of Music Therapy on Positive Negative Syndrome Scale, Cognitive Function, and Quality of Life in Female Schizophrenic Patients

Authors: Elmeida Effendy, Mustafa M. Amin, Nauli Aulia Lubis, P. J. Sirait

Abstract:

Music therapy may have an effect on mental illnesses. This is a comparative, quasi-experimental study to examine the effect of music therapy added to standard care on Positive Negative Syndrome Scale, Cognitive Function and Quality of Life in female schizophrenic patients. 50 schizophrenic participants who were diagnosed with semistructured MINI ICD-X, were assigned into two groups received pharmacotherapy. Participants were assigned into each group of therapy by using matched allocation method. Music therapy added on to the first group. They received music therapy, using Mozart Sonata four times a week, over a period of six week. Positive and negative symptoms were measured by using Positive and Negative Syndrome Scale (PANSS). Cognitive function were measured by using Mini Mental State Examination (MMSE) and Montreal Cognitive Assessment (MOCA). All rating scale were administrated by certified skill residents every week after music therapy session. The participants who were received pharmaco-and-music therapy significantly showed greater response than who received pharmacotherapy only. The mean difference of response were -6,6164 (p=0,001) for PANNS, 2,911 (p=0,004) for MMSE, 3,618 (p=0,001) for MOCA, 4,599 (p=0,001) for SF-36. Music therapy have beneficial effects on PANSS, Cognitive Function and Quality of Life in schizophrenic patients.

Keywords: music therapy, rating scale, schizophrenia, symptoms

Procedia PDF Downloads 347
6994 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 155
6993 Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock

Authors: Azzam Alosaimi

Abstract:

Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock.

Keywords: infiltration rate, energy demands, heating loss, cooling loss, carbon emissions

Procedia PDF Downloads 163
6992 Teaching Strategies and Prejudice toward Immigrant and Disabled Students

Authors: M. Pellerone, S. G. Razza, L. Miano, A. Miccichè, M. Adamo

Abstract:

The teacher’s attitude plays a decisive role in promoting the development of the non-native or disabled student and counteracting hypothetical negative attitudes and prejudice towards those who are “different”.The objective of the present research is to measure the relationship between teachers’ prejudices towards disabled and/or immigrant students as predictors of teaching-learning strategies. A cross-sectional study involved 200 Italian female teachers who completed an anamnestic questionnaire, the Assessment Teaching Scale, the Italian Modern and Classical Prejudices Scale towards people with ID, and the Pettigrew and Meertens’ Blatant Subtle Prejudice Scale. Confirming research hypotheses, data underlines the predictive role of prejudice on teaching strategies, and in particular on the socio-emotional and communicative-relational dimensions. Results underline that general training appears necessary, especially for younger generations of teachers.

Keywords: disabled students, immigrant students, instructional competence, prejudice, teachers

Procedia PDF Downloads 73
6991 Development of a Rating Scale for Elementary EFL Writing

Authors: Mohammed S. Assiri

Abstract:

In EFL programs, rating scales used in writing assessment are often constructed by intuition. Intuition-based scales tend to provide inaccurate and divisive ratings of learners’ writing performance. Hence, following an empirical approach, this study attempted to develop a rating scale for elementary-level writing at an EFL program in Saudi Arabia. Towards this goal, 98 students’ essays were scored and then coded using comprehensive taxonomy of writing constructs and their measures. An automatic linear modeling was run to find out which measures would best predict essay scores. A nonparametric ANOVA, the Kruskal-Wallis test, was then used to determine which measures could best differentiate among scoring levels. Findings indicated that there were certain measures that could serve as either good predictors of essay scores or differentiators among scoring levels, or both. The main conclusion was that a rating scale can be empirically developed using predictive and discriminative statistical tests.

Keywords: analytic scoring, rating scales, writing assessment, writing constructs, writing performance

Procedia PDF Downloads 463
6990 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
6989 Plot Scale Estimation of Crop Biophysical Parameters from High Resolution Satellite Imagery

Authors: Shreedevi Moharana, Subashisa Dutta

Abstract:

The present study focuses on the estimation of crop biophysical parameters like crop chlorophyll, nitrogen and water stress at plot scale in the crop fields. To achieve these, we have used high-resolution satellite LISS IV imagery. A new methodology has proposed in this research work, the spectral shape function of paddy crop is employed to get the significant wavelengths sensitive to paddy crop parameters. From the shape functions, regression index models were established for the critical wavelength with minimum and maximum wavelengths of multi-spectrum high-resolution LISS IV data. Moreover, the functional relationships were utilized to develop the index models. From these index models crop, biophysical parameters were estimated and mapped from LISS IV imagery at plot scale in crop field level. The result showed that the nitrogen content of the paddy crop varied from 2-8%, chlorophyll from 1.5-9% and water content variation observed from 40-90% respectively. It was observed that the variability in rice agriculture system in India was purely a function of field topography.

Keywords: crop parameters, index model, LISS IV imagery, plot scale, shape function

Procedia PDF Downloads 168
6988 Correlates of Cost Effectiveness Analysis of Rating Scale and Psycho-Productive Multiple Choice Test for Assessing Students' Performance in Rice Production in Secondary Schools in Ebonyi State, Nigeria

Authors: Ogbonnaya Elom, Francis N. Azunku, Ogochukwu Onah

Abstract:

This study was carried out to determine the correlates of cost effectiveness analysis of rating scale and psycho-productive multiple choice test for assessing students’ performance in rice production. Four research questions were developed and answered, while one hypothesis was formulated and tested. Survey and correlation designs were adopted. The population of the study was 20,783 made up of 20,511 senior secondary (SSII) students and 272 teachers of agricultural science from 221 public secondary schools. Two schools with one intact class of 30 students each was purposely selected as sample based on certain criteria. Four sets of instruments were used for data collection. One of the instruments-the rating scale, was subjected to face and content validation while the other three were subjected to face validation only. Cronbach alpha technique was utilized to determine the internal consistency of the rating scale items which yielded a coefficient of 0.82 while the Kudder-Richardson (K-R 20) formula was involved in determining the stability of the psycho-productive multiple choice test items which yielded a coefficient of 0.80. Method of data collection involved a step-by-step approach in collecting data. Data collected were analyzed using percentage, weighted mean and sign test to answer the research questions while the hypothesis was tested using Spearman rank-order of correlation and t-test statistic. Findings of the study revealed among others, that psycho-productive multiple choice test is more effective than rating scale when the former is applied on the two groups of students. It was recommended among others, that the external examination bodies should integrate the use of psycho- productive multiple choice test into their examination policy and direct secondary schools to comply with it.

Keywords: correlates, cost-effectiveness, psycho-productive multiple-choice scale, rating scale

Procedia PDF Downloads 141
6987 Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material

Authors: S. Nouri

Abstract:

In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al2O3+SiO2 mixed oxide scale along with a continuous, compact and uniform layer of Ti5Si3 beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed.

Keywords: Gamma-TiAl alloy, high temperature oxidation, Si-aluminide coating, slurry procedure

Procedia PDF Downloads 178
6986 Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler

Authors: Subodh N. Patel, Abhijit Pusty, Manashi Adhikary, Sandip Bhattacharyya

Abstract:

The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future.

Keywords: finite element analysis, oxide scale, superheater tube, thermomechanical fatigue

Procedia PDF Downloads 117
6985 Drug-Drug Interaction Prediction in Diabetes Mellitus

Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.

Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects

Procedia PDF Downloads 100
6984 The Predictors of Head and Neck Cancer-Head and Neck Cancer-Related Lymphedema in Patients with Resected Advanced Head and Neck Cancer

Authors: Shu-Ching Chen, Li-Yun Lee

Abstract:

The purpose of the study was to identify the factors associated with head and neck cancer-related lymphoedema (HNCRL)-related symptoms, body image, and HNCRL-related functional outcomes among patients with resected advanced head and neck cancer. A cross-sectional correlational design was conducted to examine the predictors of HNCRL-related functional outcomes in patients with resected advanced head and neck cancer. Eligible patients were recruited from a single medical center in northern Taiwan. Consecutive patients were approached and recruited from the Radiation Head and Neck Outpatient Department of this medical center. Eligible subjects were assessed for the Symptom Distress Scale–Modified for Head and Neck Cancer (SDS-mhnc), Brief International Classification of Functioning, Disability and Health (ICF) Core Set for Head and Neck Cancer (BCSQ-H&N), Body Image Scale–Modified (BIS-m), The MD Anderson Head and Neck Lymphedema Rating Scale (MDAHNLRS), The Foldi’s Stages of Lymphedema (Foldi’s Scale), Patterson’s Scale, UCLA Shoulder Rating Scale (UCLA SRS), and Karnofsky’s Performance Status Index (KPS). The results showed that the worst problems with body HNCRL functional outcomes. Patients’ HNCRL symptom distress and performance status are robust predictors across over for overall HNCRL functional outcomes, problems with body HNCRL functional outcomes, and activity and social functioning HNCRL functional outcomes. Based on the results of this period research program, we will develop a Cancer Rehabilitation and Lymphedema Care Program (CRLCP) to use in the care of patients with resected advanced head and neck cancer.

Keywords: head and neck cancer, resected, lymphedema, symptom, body image, functional outcome

Procedia PDF Downloads 256
6983 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 284
6982 Robust Control of Cyber-Physical System under Cyber Attacks Based on Invariant Tubes

Authors: Bruno Vilić Belina, Jadranko Matuško

Abstract:

The rapid development of cyber-physical systems significantly influences modern control systems introducing a whole new range of applications of control systems but also putting them under new challenges to ensure their resiliency to possible cyber attacks, either in the form of data integrity attacks or deception attacks. This paper presents a model predictive approach to the control of cyber-physical systems robust to cyber attacks. We assume that a cyber attack can be modelled as an additive disturbance that acts in the measuring channel. For such a system, we designed a tube-based predictive controller based. The performance of the designed controller has been verified in Matlab/Simulink environment.

Keywords: control systems, cyber attacks, resiliency, robustness, tube based model predictive control

Procedia PDF Downloads 67
6981 Die Away Health Workers: The Role of Psychological Factors on Burnout

Authors: Fasanmi Samuel Sunday, Awosusi Omojola

Abstract:

The aim of the present study was to investigate the effect of abusive supervision, interactional justice and supportive workplace supervision burnout among health workers in Makurdi, Benue State, Nigeria. Three hundred and twenty (320) health workers were sampled within Makurdi metropolis, Benue State, Nigeria. Standardized questionnaire on abusive supervision scale, interactional justice scale, supportive workplace supervision scale and employee burnout scale were used in the study. The research was a 2x2x2 factorial design. Four hypotheses were generated and were tested using Analysis of Variance (ANOVA). Scheffe’s post-hoc analysis was used to know the direction of the findings. Results revealed that there was a significant main effect of perceived abusive supervision on employee burnout among health workers. Also, there was a significant main effect of interactional justice on employee burnout among health workers. It was also found out that there was a significant interaction effect of supportive workplace supervision, interactional justice, and abusive supervision on employee burnout among health workers. Results were discussed in line with hypotheses; and recommendations on how to reduce employee burnout were suggested.

Keywords: employee burnout, abusive supervision, interactional justice, supportive workplace supervision

Procedia PDF Downloads 437
6980 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review

Authors: Anicet Dansou

Abstract:

Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.

Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete

Procedia PDF Downloads 108
6979 Study of the Polymer Elastic Behavior in the Displacement Oil Drops at Pore Scale

Authors: Luis Prada, Jose Gomez, Arlex Chaves, Julio Pedraza

Abstract:

Polymeric liquids have been used in the oil industry, especially at enhanced oil recovery (EOR). From the rheological point of view, polymers have the particularity of being viscoelastic liquids. One of the most common and useful models to describe that behavior is the Upper Convected Maxwell model (UCM). The main characteristic of the polymer used in EOR process is the increase in viscosity which pushes the oil outside of the reservoir. The elasticity could contribute in the drag of the oil that stays in the reservoir. Studying the elastic effect on the oil drop at the pore scale, bring an explanation if the addition of elastic force could mobilize the oil. This research explores if the contraction and expansion of the polymer in the pore scale may increase the elastic behavior of this kind of fluid. For that reason, this work simplified the pore geometry and build two simple geometries with micrometer lengths. Using source terms with the user define a function this work introduces the UCM model in the ANSYS fluent simulator with the purpose of evaluating the elastic effect of the polymer in a contraction and expansion geometry. Also, using the Eulerian multiphase model, this research considers the possibility that extra elastic force will show a deformation effect on the oil; for that reason, this work considers an oil drop on the upper wall of the geometry. Finally, all the simulations exhibit that at the pore scale conditions exist extra vortices at UCM model but is not possible to deform the oil completely and push it outside of the restrictions, also this research find the conditions for the oil displacement.

Keywords: ANSYS fluent, interfacial fluids mechanics, polymers, pore scale, viscoelasticity

Procedia PDF Downloads 132
6978 The Effect of Teaching Science Strategies Curriculum and Evaluating on Developing the Efficiency of Academic Self in Science and the Teaching Motivation for the Student Teachers of the Primary Years

Authors: Amani M. Al-Hussan

Abstract:

The current study aimed to explore the effects of science teaching strategies course (CURR422) on developing academic self efficacy and motivation towards teaching it in female primary classroom teachers in College of Education in Princess Nora Bint AbdulRahman University. The study sample consisted (48) female student teachers. To achieve the study aims, the researcher designed two instruments: Academic Self Efficacy Scale & Motivation towards Teaching Science Scale while maintaining the validity and reliability of these instruments.. Several statistical procedures were conducted i.e. Independent Sample T-test, Eta Square, Cohen D effect size. The results reveal that there were statistically significant differences between means of pre and post test for the sample in favor of post test. For academic self efficacy scale, Eta square was 0.99 and the effect size was 27.26. While for the motivation towards teaching science scale, Eta was 0.99 and the effect size was 51.72. These results indicated high effects of independent variable on the dependent variable.

Keywords: academic self efficiency, achievement, motivation, primary classroom teacher, science teaching strategies course, evaluation

Procedia PDF Downloads 499
6977 Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes

Authors: Amir Bahrami

Abstract:

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined.

Keywords: chemical graph theory, molecular topology, molecular descriptor, single-walled carbon nanotubes

Procedia PDF Downloads 338
6976 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology

Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen

Abstract:

Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.

Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient

Procedia PDF Downloads 206
6975 Resilience, Mental Health, and Life Satisfaction

Authors: Saba Harati, Nasrin Arian Parsa

Abstract:

The current research was an attempt to investigate the effect of resilience on mental health and life satisfaction. In one Cross Sectional research, 287 (173 females and 114 males) students of Tehran University were participated their average age was 23.17 years old (SD=4.9). The instruments used for assessing the research variables included: Cutter and Davidson resilience scale (CD-RISC), the short form of the depression-anxiety-stress scale, and life satisfaction scale. The data analysis was done in the form of structural equation model. The results of Simultaneous Hierarchical Multiple Regression Analysis indicated that there was a significant mediating role of the negative emotions (depression, anxiety, and stress), in the relationship between the family resilience (p < 0.001) and satisfaction with life (p < 0.001). Resilience results in life satisfaction by reducing the emotional problems (or increasing the mental health level). The effect of the resilience variable on life satisfaction was indirect.

Keywords: resilience, negative emotion, mental health, life satisfaction

Procedia PDF Downloads 498
6974 Evaluation of Intervention Effectiveness from the Client Perspective: Dimensions and Measurement of Wellbeing

Authors: Neşe Alkan

Abstract:

Purpose: The point that applied/clinical psychology, which is the practice and research discipline of the mental health field, has reached today can be summarized as the necessity of handling the psychological well-being of people from multiple perspectives and the goal of moving it to a higher level. Clients' subjective assessment of their own condition and wellbeing is an integral part of evidence-based interventions. There is a need for tools through which clients can evaluate the effectiveness of the psychotherapy/intervention performed with them and their contribution to the wellbeing and wellbeing of this process in a valid and reliable manner. The aim of this research is to meet this need, to test the reliability and validity of the index in Turkish, and explore its usability in the practices of both researchers and psychotherapists. Method: A total of 213 adults aged between 18-54, 69.5% working and 29.5% university students, were included in the study. Along with their demographic information, the participants were administered a set of scales: wellbeing, life satisfaction, spiritual satisfaction, shopping addiction, and loneliness, namely via an online platform. The construct validity of the wellbeing scale was tested with exploratory and confirmatory factor analyses, convergent and discriminant validity were tested with two-way full and partial correlation analyses and, measurement invariance was tested with one-way analysis of variance. Results: Factor analyzes showed that the scale consisted of six dimensions as it is in its original structure. The internal consistency of the scale was found to be Cronbach α = .82. Two-way correlation analyzes revealed that the wellbeing scale total score was positively correlated with general life satisfaction (r = .62) and spiritual satisfaction (r = .29), as expected. It was negatively correlated with loneliness (r = -.51) and shopping addiction (r = -.15). While the scale score did not vary by gender, previous illness, or nicotine addiction, it was found that the total wellbeing scale scores of the participants who had used antidepressant medication during the past year were lower than those who did not use antidepressant medication (F(1,204) = 7.713, p = .005). Conclusion: It has been concluded that the 12-item wellbeing scale consisting of six dimensions can be used in research and health sciences practices as a valid and reliable measurement tool. Further research which examines the reliability and validity of the scale in different widely used languages such as Spanish and Chinese is recommended.

Keywords: wellbeing, intervention effectiveness, reliability and validity, effectiveness

Procedia PDF Downloads 179