Search results for: plastic hinge relocation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1119

Search results for: plastic hinge relocation

609 Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral

Authors: R. Bensaada, M. Almansba, M. Ould Ouali, R. Ferhoum, N. E. Hannachi

Abstract:

The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated.

Keywords: j-integral, critical-j, damage, fracture toughness

Procedia PDF Downloads 346
608 Virucidal, Bactericidal and Fungicidal Efficiency of Dry Microfine Steam on Innate Surfaces

Authors: C. Recchia, M. Bourel, B. Recchia

Abstract:

Microorganisms (viruses, bacteria, fungi) are responsible for most communicable diseases, threatening human health. For domestic use, chemical agents are often criticized because of their potential dangerousness, and natural solutions are needed. Application of the “dry microfine steam” (DMS) technology was tested on a selection of common pathogens (SARS-CoV-2, enterovirus EV-71, human coronavirus 229E, E. coli, S. aureus, C. albicans), on different innate surfaces, for 5 to 10 seconds. Quantification of the remaining pathogens was performed, and the reduction rates ranged from 99.8% (S. aureus on plastic) to over 99.999%. DMS showed high efficacy in the elimination of common microorganisms and could be seen as a natural alternative to chemical agents to improve domestic hygiene.

Keywords: steam, SARS-CoV-2, bactericidal, virucidal, fungicidal, sterilization

Procedia PDF Downloads 145
607 Mastopexy With The "Dermoglandular Autоaugmentation" Method. Increased Stability Of The Result. Personalized Technique

Authors: Maksim Barsakov

Abstract:

Introduction. In modern plastic surgery, there are a large number of breast lift techniques.Due to the spreading information about the "side effects" of silicone implants, interest in implant-free mastopexy is increasing year after year. However, despite the variety of techniques, patients sometimes do not get full satisfaction from the results of mastopexy because of the unexpressed filling of the upper pole, extended anchoring postoperative scars and sometimes because of obtaining an aesthetically unattractive breast shape. The stability of the result after mastopexy depends on many factors, including postoperative rehabilitation. Stability of weight and hormonal background, stretchability of tissues. The high recurrence rate of ptosis and short-term aesthetic effect of mastopexy indicate the urgency of improving surgical techniques and increasing the stabilization of breast tissue. Purpose of the study. To develop and introduce into practice a technique of mastopexy based on the use of a modified Ribeiro flap, as well as elements of tissue movement and fixation designed to increase the stability of postoperative mastopexy. In addition, to give indications for the application of this surgical technique. Materials and Methods. it operated on 103 patients aged 18 to 53 years from 2019 to 2023 according to the reported method. These were patients with primary mastopexy, secondary mastopexy, and also patient with implant removal and one-stage mastopexy. The patients were followed up for 12 months to assess the stability of the result. Results and their discussion. Observing the patients, we noted greater stability of the breast shape and upper pole filling compared to the conventional classical methods. We did not have to resort to anchoring scars. In 90 percent of cases, a inverted T-shape scar was used. In 10 percent, the J-scar was used. The quantitative distribution of complications identified among the operated patients is as follows: worsened healing of the junction of vertical and horizontal sutures at the period of 1-1.5 months after surgery - 15 patients; at treatment with ointment method healing was observed in 7-30 days; permanent loss of NAC sensitivity - 0 patients; vascular disorders in the area of NAC/areola necrosis - 0 patients; marginal necrosis of the areola-2 patients. independent healing within 3-4 weeks without aesthetic defects. Aesthetically unacceptable mature scars-3 patients; partial liponecrosis of the autoflap unilaterally - 1 patient. recurrence of ptosis - 1 patient (after weight loss of 12 kg). In the late postoperative period, 2 patients became pregnant, gave birth, and no lactation problems were observed. Conclusion. Thus, in the world of plastic surgery methods of breast lift continue to improve, which is especially relevant in modern times, due to the increased attention to this operation. The author's proposed method of mastopexy with glandular autoflap allows obtaining in most cases a stable result, a fuller breast shape, avoiding the presence of extended anchoring scars, and also preserves the possibility of lactation. The author of this article has obtained a patent for invention for this method of mastopexy.

Keywords: mastopexy, mammoplasty, autoflap, personal technique

Procedia PDF Downloads 0
606 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation

Authors: Bharatkumar Doshi

Abstract:

Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.

Keywords: COMSOL, EMPW, FEM, Lorentz force

Procedia PDF Downloads 159
605 A Review: Recycled Materials Used in Construction

Authors: Oghenerukome Akponovo, Lynda I. Onyebuchukwu

Abstract:

Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered

Keywords: building, construction, recycled materials, waste management

Procedia PDF Downloads 84
604 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling

Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai

Abstract:

This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.

Keywords: vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness

Procedia PDF Downloads 362
603 Microplastics Accumulation and Abundance Standardization for Fluvial Sediments: Case Study for the Tena River

Authors: Mishell E. Cabrera, Bryan G. Valencia, Anderson I. Guamán

Abstract:

Human dependence on plastic products has led to global pollution, with plastic particles ranging in size from 0.001 to 5 millimeters, which are called microplastics (hereafter, MPs). The abundance of microplastics is used as an indicator of pollution. However, reports of pollution (abundance of MPs) in river sediments do not consider that the accumulation of sediments and MPs depends on the energy of the river. That is, the abundance of microplastics will be underestimated if the sediments analyzed come from places where the river flows with a lot of energy, and the abundance will be overestimated if the sediment analyzed comes from places where the river flows with less energy. This bias can generate an error greater than 300% of the MPs value reported for the same river and should increase when comparisons are made between 2 rivers with different characteristics. Sections where the river flows with higher energy allow sands to be deposited and limit the accumulation of MPs, while sections, where the same river has lower energy, allow fine sediments such as clays and silts to be deposited and should facilitate the accumulation of MPs particles. That is, the abundance of MPs in the same river is underrepresented when the sediment analyzed is sand, and the abundance of MPs is overrepresented if the sediment analyzed is silt or clay. The present investigation establishes a protocol aimed at incorporating sample granulometry to calibrate MPs quantification and eliminate over- or under-representation bias (hereafter granulometric bias). A total of 30 samples were collected by taking five samples within six work zones. The slope of the sampling points was less than 8 degrees, referred to as low slope areas, according to the Van Zuidam slope classification. During sampling, blanks were used to estimate possible contamination by MPs during sampling. Samples were dried at 60 degrees Celsius for three days. A flotation technique was employed to isolate the MPs using sodium metatungstate with a density of 2 gm/l. For organic matter digestion, 30% hydrogen peroxide and Fenton were used at a ratio of 6:1 for 24 hours. The samples were stained with rose bengal at a concentration of 200 mg/L and were subsequently dried in an oven at 60 degrees Celsius for 1 hour to be identified and photographed in a stereomicroscope with the following conditions: Eyepiece magnification: 10x, Zoom magnification (zoom knob): 4x, Objective lens magnification: 0.35x for analysis in ImageJ. A total of 630 fibers of MPs were identified, mainly red, black, blue, and transparent colors, with an overall average length of 474,310 µm and an overall median length of 368,474 µm. The particle size of the 30 samples was calculated using 100 g per sample using sieves with the following apertures: 2 mm, 1 mm, 500 µm, 250 µm, 125 µm and 0.63 µm. This sieving allowed a visual evaluation and a more precise quantification of the microplastics present. At the same time, the weight of sediment in each fraction was calculated, revealing an evident magnitude: as the presence of sediment in the < 63 µm fraction increases, a significant increase in the number of MPs particles is observed.

Keywords: microplastics, pollution, sediments, Tena River

Procedia PDF Downloads 57
602 Degradation of Poly -β- Hydroxybutyrate by Trichoderma asperellum

Authors: Nuha Mansour Alhazmi

Abstract:

Replacement of petro-based plastics by a biodegradable plastic are vastly growing process. Poly-β-hydroxybutyrate (PHB) is a biodegradable biopolymer, synthesized by some bacterial genera. The objective of the current study is to explore the ability of some fungi to biodegrade PHB. The degradation of (PHB) was detected in Petri dish by the formation of a clear zone around the fungal colonies due to the production of depolymerase enzyme which has an interesting role in the PHB degradation process. Among 10 tested fungi, the most active PHB biodegraded fungi were identified as Trichoderma asperellum using morphological and molecular characters. The highest PHB degradation was at 25°C, pH 7.5 after 7 days of incubation for the tested fungi. Finally, the depolymerase enzyme was isolated, purified using column chromatography and characterized. In conclusion, PHB can be biodegraded in solid and liquid medium using depolymerase enzyme from T. asperellum.

Keywords: degradation, depolymerase enzyme, PHB, Trichoderma asperellum

Procedia PDF Downloads 156
601 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single

Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa

Abstract:

Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600  minimum load impedance of the DAQ card with the 5 to 20  low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.

Keywords: flux density, electrical steel, LabVIEW, magnetization

Procedia PDF Downloads 276
600 A New Prediction Model for Soil Compression Index

Authors: D. Mohammadzadeh S., J. Bolouri Bazaz

Abstract:

This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.

Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP

Procedia PDF Downloads 348
599 Effect of Copper Addition at a Rate of 4% Weight on the Microstructure, Mechanical Characteristics, and Surface Roughness on the Hot Extrusion of Aluminum

Authors: S. M. A. Al Qawabah, A. I. O. Zaid

Abstract:

Al-4%Cu alloys are now widely used in many engineering applications especially in robotic, aerospace and vibration control area. The main problem arises from the weakness of their mechanical characteristics. Therefore, this study is directed towards enhancing the mechanical properties through severe plastic deformation. In this work, the hot direct extrusion process was chosen to provide the required hot work for this purpose. A direct extrusion die was designed and manufactured to be used in this investigation. The general microstructure, microhardness, surface roughness, and compression tests were performed on specimens from the produced Al-4%Cu alloy both in the as cast and after extrusion conditions. It was found that a pronounced enhancement in the mechanical characteristics of the produced Al-4%Cu after extrusion was achieved. The microhardness increased by 89.3%, the flow stress was decreased by 10% at 0.2 strain and finally the surface roughness was reduced by 81.6%.

Keywords: aluminum, copper, surface roughness, hot extrusion

Procedia PDF Downloads 555
598 The Bloom of 3D Printing in the Health Care Industry

Authors: Mihika Shivkumar, Krishna Kumar, C. Perisamy

Abstract:

3D printing is a method of manufacturing wherein materials, such as plastic or metal, are deposited in layers one on top of the other to produce a three dimensional object. 3D printing is most commonly associated with creating engineering prototypes. However, its applications in the field of human health care have been frequently disregarded. Medical applications for 3D printing are expanding rapidly and are envisaged to revolutionize health care. Medical applications for 3D printing, both present and its potential, can be categorized broadly, including: creation of customized prosthetics tissue and organ fabrication; creation of implants, and anatomical models and pharmaceutical research regarding drug dosage forms. This piece breaks down bioprinting in the healthcare sector. It focuses on the better subtle elements of every particular point, including how 3D printing functions in the present, its impediments, and future applications in the health care sector.

Keywords: bio-printing, prototype, drug delivery, organ regeneration

Procedia PDF Downloads 254
597 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments

Authors: Shari S. C. Shang, Lynn S. L. Chiu

Abstract:

In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.

Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions

Procedia PDF Downloads 132
596 Numerical Analysis of End Plate Bolted Connection with Corrugated Beam

Authors: M. A. Sadeghian, J. Yang, Q. F. Liu

Abstract:

Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.

Keywords: corrugated beam, monotonic loading, finite element analysis, end plate connection

Procedia PDF Downloads 294
595 Influence of the Location of Flood Embankments on the Condition of Oxbow Lakes and Riparian Forests: A Case Study of the Middle Odra River Beds on the Example of Dragonflies (Odonata), Ground Beetles (Coleoptera: Carabidae) and Plant Communities

Authors: Magda Gorczyca, Zofia Nocoń

Abstract:

Past and current studies from different countries showed that river engineering leads to environmental degradation and extinction of many species - often those protected by local and international wildlife conservation laws. Through the years, the main focus of rivers utilization has shifted from industrial applications to recreation and wildlife preservation with a focus on keeping the biodiversity which plays a significant role in preventing climate changes. Thus an opportunity appeared to recreate flooding areas and natural habitats, which are very rare in the scale of Europe. Additionally, river restoration helps to avoid floodings and periodic droughts, which are usually very damaging to the economy. In this research, the biodiversity of dragonflies and ground beetles was analyzed in the context of plant communities and forest stands structure. Results were enriched with data from past and current literature. A comparison was made between two parts of the Odra river. A part where oxbow lake and riparian forest were separated from the river bed by embankment and a part of the river with floodplains left intact. Validity assessment of embankments relocation was made based on the research results. In the period between May and September, insects were collected, phytosociological analysis were taken, and forest stand structure properties were specified. In the part of the river not separated by the embankments, rare and protected species of plants were spotted (e.g., Trapanatans, Salvinianatans) as well as greater species and quantitive diversity of dragonfly. Ground beetles fauna, though, was richer in the area separated by the embankment. Even though the research was done during only one season and in a limited area, the results can be a starting point for further extended research and may contribute to acquiring legal wildlife protection and restoration of the researched area. During the research, the presence of invasive species Impatiens parviflora, Echinocystislobata, and Procyonlotor were observed, which may lead to loss of the natural values of the researched areas.

Keywords: carabidae, floodplains, middle Odra river, Odonata, oxbow lakes, riparian forests

Procedia PDF Downloads 128
594 Clay Develop Plasticity With Water

Authors: Boualla Nabila

Abstract:

The problems created by the water in Civil Engineering are sometimes neglected or often badly posed when they are not completely ignored, and yet they are fundamental as regards both the conditions of execution of the worksites and the stability. Several damages were caused by the infiltration of water in the soils, in particular in clay regions which can swell under the effect of an increase in their water content as in the case of the Oued Tlelat clay which is made up of yellow-colored marly clays and red-colored El Maleh area. This study was carried out on soil from a site, located near the city of Oran and the city of Ain Tmouchent (northern Algeria) where we encounter many problems of cracking of buildings and bottom uplift of excavations. The study consists first of all in determining the mechanical and physical characteristics of the clay, namely the parameters of sheer, simple compression, and that of the odometer. Then the study focused on a comparison of the influence of water type on the mechanical and physical properties of swelling clay soil.

Keywords: clay, water, liquidity limit, plastic limit

Procedia PDF Downloads 80
593 Design of Agricultural Machinery Factory Facility Layout

Authors: Nilda Tri Putri, Muhammad Taufik

Abstract:

Tools and agricultural machinery (Alsintan) is a tool used in agribusiness activities. Alsintan used to change the traditional farming systems generally use manual equipment into modern agriculture with mechanization. CV Nugraha Chakti Consultant make an action plan for industrial development Alsintan West Sumatra in 2012 to develop medium industries of Alsintan become a major industry of Alsintan, one of efforts made is increase the production capacity of the industry Alsintan. Production capacity for superior products as hydrotiller and threshers set each for 2.000 units per year. CV Citra Dragon as one of the medium industry alsintan in West Sumatra has a plan to relocate the existing plant to meet growing consumer demand each year. Increased production capacity and plant relocation plan has led to a change in the layout; therefore need to design the layout of the plant facility CV Citra Dragon. First step the to design of plant layout is design the layout of the production floor. The design of the production floor layout is done by applying group technology layout. The initial step is to do a machine grouping and part family using the Average Linkage Clustering (ALC) and Rank Order Clustering (ROC). Furthermore done independent work station design and layout design using the Modified Spanning Tree (MST). Alternative selection layout is done to select the best production floor layout between ALC and ROC cell grouping. Furthermore, to design the layout of warehouses, offices and other production support facilities. Activity Relationship Chart methods used to organize the placement of factory facilities has been designed. After structuring plan facilities, calculated cost manufacturing facility plant establishment. Type of layout is used on the production floor layout technology group. The production floor is composed of four cell machinery, assembly area and painting area. The total distance of the displacement of material in a single production amounted to 1120.16 m which means need 18,7minutes of transportation time for one time production. Alsintan Factory has designed a circular flow pattern with 11 facilities. The facilities were designed consisting of 10 rooms and 1 parking space. The measure of factory building is 84 m x 52 m.

Keywords: Average Linkage Clustering (ALC), Rank Order Clustering (ROC), Modified Spanning Tree (MST), Activity Relationship Chart (ARC)

Procedia PDF Downloads 476
592 Ultimate Shear Resistance of Plate Girders Part 2- Höglund Theory

Authors: Ahmed S. Elamary

Abstract:

Ultimate shear resistance (USR) of slender plate girders can be predicted theoretically using Cardiff theory or Hӧglund theory. This paper will be concerned with predicting the USR using Hӧglund theory and EC3. Two main factors can affect the USR, the panel width “b” and the web depth “d”, consequently, the panel aspect ratio (b/d) has to be identified by limits. In most of the previous study, there is no limit for panel aspect ratio indicated. In this paper theoretical analysis has been conducted to study the effect of (b/d) on the USR. The analysis based on ninety-six test results of steel plate girders subjected to shear executed and collected by others. New formula proposed to predict the percentage of the distance between the plastic hinges form in the flanges “c” to panel width “b”. Conservative limits of (c/b) have been suggested to get a consistent value of USR.

Keywords: ultimate shear resistance, plate girder, Hӧglund’s theory, EC3

Procedia PDF Downloads 386
591 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 263
590 Design Considerations for Solar Energy Application to Fish Pond Recirculating System

Authors: A. O. Ogunlela, T. O. Ayodele

Abstract:

A fish pond recirculating system was designed and constructed. The system consists of three plastic culture tanks (1000 litres each, filled up to 850 litres). It also consists of a sedimentation tank where the water filtration was carried out and a pump tank where the treated water partially settled before being pumped to the culture tanks. A pump of ½ hp capacity was selected to pump water round the system to enhance water recirculation. Following the design of the solar array that was done, a grid support of tilt angle 36.640 was constructed to offer the system an optimum, all-year-round, intense solar energy reception, which is specific to the location of the project.

Keywords: solar energy, fish pond, recirculation system, pump tank

Procedia PDF Downloads 353
589 A Case Study on Tension Drop of Cable-band Bolts in Suspension Bridge

Authors: Sihyun Park, Hyunwoo Kim, Wooyoung Jung, Dongwoo You

Abstract:

Regular maintenance works are very important on the axial forces of the cable-band bolts in suspension bridges. The band bolts show stress reduction for several reasons, including cable wire creep, the bolt relaxation, load fluctuation and cable rearrangements, etc., with time. In this study, with respect to the stress reduction that occurs over time, we carried out the theoretical review of the main cause based on the field measurements. As a result, the main cause of reduction in the cable-band bolt axial force was confirmed by the plastic deformation of the zinc plating layer used in the main cable wire, and thus, the theoretical process was established for the practical use in the field.

Keywords: cable-band Bolts, field test, maintenance, stress reduction

Procedia PDF Downloads 310
588 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 66
587 Investigation of Xanthomonas euvesicatoria on Seed Germination and Seed to Seedling Transmission in Tomato

Authors: H. Mayton, X. Yan, A. G. Taylor

Abstract:

Infested tomato seeds were used to investigate the influence of Xanthomonas euvesicatoria on germination and seed to seedling transmission in a controlled environment and greenhouse assays in an effort to develop effective seed treatments and characterize seed borne transmission of bacterial leaf spot of tomato. Bacterial leaf spot of tomato, caused by four distinct Xanthomonas species, X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria, is a serious disease worldwide. In the United States, disease prevention is expensive for commercial growers in warm, humid regions of the country, and crop losses can be devastating. In this study, four different infested tomato seed lots were extracted from tomato fruits infected with bacterial leaf spot from a field in New York State in 2017 that had been inoculated with X. euvesicatoria. In addition, vacuum infiltration at 61 kilopascals for 1, 5, 10, and 15 minutes and seed soaking for 5, 10, 15, and 30 minutes with different bacterial concentrations were used to artificially infest seed in the laboratory. For controlled environment assays, infested tomato seeds from the field and laboratory were placed othe n moistened blue blotter in square plastic boxes (10 cm x 10 cm) and incubated at 20/30 ˚C with an 8/16 hour light cycle, respectively. Infested tomato seeds from the field and laboratory were also planted in small plastic trays in soil (peat-lite medium) and placed in the greenhouse with 24/18 ˚C day and night temperatures, respectively, with a 14-hour photoperiod. Seed germination was assessed after eight days in the laboratory and 14 days in the greenhouse. Polymerase chain reaction (PCR) using the hrpB7 primers (RST65 [5’- GTCGTCGTTACGGCAAGGTGGTG-3’] and RST69 [5’-TCGCCCAGCGTCATCAGGCCATC-3’]) was performed to confirm presence or absence of the bacterial pathogen in seed lots collected from the field and in germinating seedlings in all experiments. For infested seed lots from the field, germination was lowest (84%) in the seed lot with the highest level of bacterial infestation (55%) and ranged from 84-98%. No adverse effect on germination was observed from artificially infested seeds for any bacterial concentration and method of infiltration when compared to a non-infested control. Germination in laboratory assays for artificially infested seeds ranged from 82-100%. In controlled environment assays, 2.5 % were PCR positive for the pathogen, and in the greenhouse assays, no infected seedlings were detected. From these experiments, X. euvesicatoria does not appear to adversely influence germination. The lowest rate of germination from field collected seed may be due to contamination with multiple pathogens and saprophytic organisms as no effect of artificial bacterial seed infestation in the laboratory on germination was observed. No evidence of systemic movement from seed to seedling was observed in the greenhouse assays; however, in the controlled environment assays, some seedlings were PCR positive. Additional experiments are underway with green fluorescent protein-expressing isolates to further characterize seed to seedling transmission of the bacterial leaf spot pathogen in tomato.

Keywords: bacterial leaf spot, seed germination, tomato, Xanthomonas euvesicatoria

Procedia PDF Downloads 118
586 Psychological Variables Predicting Academic Achievement in Argentinian Students: Scales Development and Recent Findings

Authors: Fernandez liporace, Mercedes Uriel Fabiana

Abstract:

Academic achievement in high school and college students is currently a matter of concern. National and international assessments show high schoolers as low achievers, and local statistics indicate alarming dropout percentages in this educational level. Even so, 80% of those students intend attending higher education. On the other hand, applications to Public National Universities are free and non-selective by examination procedures. Though initial registrations are massive (307.894 students), only 50% of freshmen pass their first year classes, and 23% achieves a degree. Low performances use to be a common problem. Hence, freshmen adaptation, their adjustment, dropout and low academic achievement arise as topics of agenda. Besides, the hinge between high school and college must be examined in depth, in order to get an integrated and successful path from one educational stratum to the other. Psychology aims at developing two main research lines to analyse the situation. One regarding psychometric scales, designing and/or adapting tests, examining their technical properties and their theoretical validity (e.g., academic motivation, learning strategies, learning styles, coping, perceived social support, parenting styles and parental consistency, paradoxical personality as correlated to creative skills, psychopathological symptomatology). The second research line emphasizes relationships within the variables measured by the former scales, facing the formulation and testing of predictive models of academic achievement, establishing differences by sex, age, educational level (high school vs college), and career. Pursuing these goals, several studies were carried out in recent years, reporting findings and producing assessment technology useful to detect students academically at risk as well as good achievers. Multiple samples were analysed totalizing more than 3500 participants (2500 from college and 1000 from high school), including descriptive, correlational, group differences and explicative designs. A brief on the most relevant results is presented. Providing information to design specific interventions according to every learner’s features and his/her educational environment comes up as a mid-term accomplishment. Furthermore, that information might be helpful to adapt curricula by career, as well as for implementing special didactic strategies differentiated by sex and personal characteristics.

Keywords: academic achievement, higher education, high school, psychological assessment

Procedia PDF Downloads 350
585 New Dynamic Constitutive Model for OFHC Copper Film

Authors: Jin Sung Kim, Hoon Huh

Abstract:

The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.

Keywords: rate dependent material properties, dynamic constitutive model, OFHC copper film, strain rate

Procedia PDF Downloads 468
584 Shear Strength Envelope Characteristics of LimeTreated Clays

Authors: Mohammad Moridzadeh, Gholamreza Mesri

Abstract:

The effectiveness of lime treatment of soils has been commonly evaluated in terms of improved workability and increased undrained unconfined compressive strength in connection to road and airfield construction. The most common method of strength measurement has been the unconfined compression test. However, if the objective of lime treatment is to improve long-term stability of first-time or reactivated landslides in stiff clays and shales, permanent changes in the size and shape of clay particles must be realized to increase drained frictional resistance. Lime-soil interactions that may produce less platy and larger soil particles begin and continue with time under the highly alkaline pH environment. In this research, pH measurements are used to monitor chemical environment and progress of reactions. Atterberg limits are measured to identify changes in particle size and shape indirectly. Also, fully softened and residual strength measurements are used to examine an improvement in frictional resistance due to lime-soil interactions. The main variables are soil plasticity and mineralogy, lime content, water content, and curing period. Lime effect on frictional resistance is examined using samples of clays with different mineralogy and characteristics which may react with lime to various extents. Drained direct shear tests on reconstituted lime-treated clay specimens with various properties have been performed to measure fully softened shear strength. To measure residual shear strength, drained multiple reversal direct shear tests on precut specimens were conducted. This way, soil particles are oriented along the direction of shearing to the maximum possible extent and provide minimum frictional resistance. This is applicable to reactivated and part of first-time landslides. The Brenna clay, which is the highly plastic lacustrine clay of Lake Agassiz causing slope instability along the banks of the Red River, is one of the soil samples used in this study. The Brenna Formation characterized as a uniform, soft to firm, dark grey, glaciolacustrine clay with little or no visible stratification, is full of slickensided surfaces. The major source of sediment for the Brenna Formation was the highly plastic montmorillonitic Pierre Shale bedrock. The other soil used in this study is one of the main sources of slope instability in Harris County Flood Control District (HCFCD), i.e. the Beaumont clay. The shear strengths of untreated and treated clays were obtained under various normal pressures to evaluate the shear envelope nonlinearity.

Keywords: Brenna clay, friction resistance, lime treatment, residual

Procedia PDF Downloads 142
583 Frequent Pattern Mining for Digenic Human Traits

Authors: Atsuko Okazaki, Jurg Ott

Abstract:

Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants.

Keywords: digenic traits, DNA variants, epistasis, statistical genetics

Procedia PDF Downloads 105
582 Effectivity Analysis of The Decontamination Products for Radioactive 99mTc Used in Nuclear Medicine

Authors: Hayrettin Eroglu, Oguz Aksakal

Abstract:

In this study, it is analysed that which decontamination products are more effective and how decontamination process should be performed in the case of contamination of radioactive 99mTc which is the most common radioactive element used in nuclear applications dealing with the human body or the environment. Based on the study, it is observed that existing radioactive washers are less effective than expected, alcohol has no effect on the decontamination of 99mTc, and temperature and pH are the most important factors. In the light of the analysis, it is concluded that the most effective decontamination product is DM-D (Decontamination Material-D). When the effect of DM-D on surfaces is analysed, it is observed that decontamination is very fast on scrubs and formica with both DM-D and water, and although DM-D is very effective on skin, it is not effective on f ceramic tiles and plastic floor covering material. Also in this study, the effectiveness of different molecular groups in the decontaminant was investigated. As a result, the acetate group has been observed as the most effective component of the decontaminant.

Keywords: contamination, radioactive, technetium, decontamination

Procedia PDF Downloads 392
581 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: design studies, computational model(s), case study/studies, modelling, coupling beam

Procedia PDF Downloads 457
580 The Role of an Independent Children’s Lawyer in Child Inclusive Mediation in Complex Parenting Disputes

Authors: Neisha Shepherd

Abstract:

In Australia, an independent children's lawyer is appointed to represent a child in parenting disputes in the Federal Circuit and Family Court of Australia, where there are complex issues such as child protection, family violence, high conflict, relocation, and parental alienation. The appointment of an Independent Children's Lawyer is to give effect in the family law proceedings of the United Nations Convention on the Rights of the Child, in particular Article 3.1, 12.1, and 12.2. There is a strong focus on alternative dispute resolution in the Australian Family Law jurisdiction in matters that are before the Court that has formed part of the case management pathways. An Independent Children's Lawyer's role is even more crucial in assisting families in resolving the most complex parenting disputes through mediation as they are required to act impartial and be independent of the Court and the parties. A child has the right to establish a professional relationship with the Independent Children's Lawyer. This relationship is usually established over a period of time, and the child is afforded the opportunity to talk about their views and wishes and participate in decisions that affect them. In considering the views and wishes of the child, the Independent Children's lawyer takes into account the different emotional, cognitive, and intellectual developmental levels, family structures, family dynamics, sibling relationships, religious and cultural backgrounds; and that children are vulnerable to external pressures when caught in disputes involving their parents. With the increase of child-inclusive mediations being used to resolve family disputes in the best interests of a child, an Independent Children's Lawyer can have a critical role in this process with the specialised skills that they have working with children in the family law jurisdiction. This paper will discuss how inclusive child mediation with the assistance of an Independent Children's Lawyer can assist in the resolution of some of the most complex parenting disputes by examining through case studies: the effectiveness and challenges of such an approach; strategies to work with child clients, adolescents, and sibling groups; ways to provide feedback regarding a child's views and wishes and express a child's understanding, actual experiences and perspective to parties in a mediation and whether it is appropriate to do so; strategies and examples to assist in developing parenting plans or orders that are in the best interest of a child that is workable and achievable; how to deal with cases that involve serious child protection and family violence and strategies to ensure that child safety is paramount; the importance of feedback to the child client. Finally this paper will explore some of the challenges for Independent Children's Lawyers in relation to child-inclusive mediations where matters do not resolve.

Keywords: child inclusive mediation, independent children's lawyer, family violence, child protection

Procedia PDF Downloads 95