Search results for: inference extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2285

Search results for: inference extraction

1775 Cognitive Footprints: Analytical and Predictive Paradigm for Digital Learning

Authors: Marina Vicario, Amadeo Argüelles, Pilar Gómez, Carlos Hernández

Abstract:

In this paper, the Computer Research Network of the National Polytechnic Institute of Mexico proposes a paradigmatic model for the inference of cognitive patterns in digital learning systems. This model leads to metadata architecture useful for analysis and prediction in online learning systems; especially on MOOc's architectures. The model is in the design phase and expects to be tested through an institutional of courses project which is going to develop for the MOOc.

Keywords: cognitive footprints, learning analytics, predictive learning, digital learning, educational computing, educational informatics

Procedia PDF Downloads 477
1774 Chemical Study of Volatile Organic Compounds (VOCS) from Xylopia aromatica (LAM.) Mart (Annonaceae)

Authors: Vanessa G. P. Severino, JOÃO Gabriel M. Junqueira, Michelle N. G. do Nascimento, Francisco W. B. Aquino, João B. Fernandes, Ana P. Terezan

Abstract:

The scientific interest in analyzing VOCs represents a significant modern research field as a result of importance in most branches of the present life and industry. Therefore it is extremely important to investigate, identify and isolate volatile substances, since they can be used in different areas, such as food, medicine, cosmetics, perfumery, aromatherapy, pesticides, repellents and other household products through methods for extracting volatile constituents, such as solid phase microextraction (SPME), hydrodistillation (HD), solvent extraction (SE), Soxhlet extraction, supercritical fluid extraction (SFE), stream distillation (SD) and vacuum distillation (VD). The Chemometrics is an area of chemistry that uses statistical and mathematical tools for the planning and optimization of the experimental conditions, and to extract relevant chemical information multivariate chemical data. In this context, the focus of this work was the study of the chemical VOCs by SPME of the specie X. aromatica, in search of constituents that can be used in the industrial sector as well as in food, cosmetics and perfumery, since these areas industrial has a considerable role. In addition, by chemometric analysis, we sought to maximize the answers of this research, in order to search for the largest number of compounds. The investigation of flowers from X. aromatica in vitro and in alive mode proved consistent, but certain factors supposed influence the composition of metabolites, and the chemometric analysis strengthened the analysis. Thus, the study of the chemical composition of X. aromatica contributed to the VOCs knowledge of the species and a possible application.

Keywords: chemometrics, flowers, HS-SPME, Xylopia aromatica

Procedia PDF Downloads 362
1773 Evaluation of Arsenic Removal in Soils Contaminated by the Phytoremediation Technique

Authors: V. Ibujes, A. Guevara, P. Barreto

Abstract:

Concentration of arsenic represents a serious threat to human health. It is a bioaccumulable toxic element and is transferred through the food chain. In Ecuador, values of 0.0423 mg/kg As are registered in potatoes of the skirts of the Tungurahua volcano. The increase of arsenic contamination in Ecuador is mainly due to mining activity, since the process of gold extraction generates toxic tailings with mercury. In the Province of Azuay, due to the mining activity, the soil reaches concentrations of 2,500 to 6,420 mg/kg As whereas in the province of Tungurahua it can be found arsenic concentrations of 6.9 to 198.7 mg/kg due to volcanic eruptions. Since the contamination by arsenic, the present investigation is directed to the remediation of the soils in the provinces of Azuay and Tungurahua by phytoremediation technique and the definition of a methodology of extraction by means of analysis of arsenic in the system soil-plant. The methodology consists in selection of two types of plants that have the best arsenic removal capacity in synthetic solutions 60 μM As, a lower percentage of mortality and hydroponics resistance. The arsenic concentrations in each plant were obtained from taking 10 ml aliquots and the subsequent analysis of the ICP-OES (inductively coupled plasma-optical emission spectrometry) equipment. Soils were contaminated with synthetic solutions of arsenic with the capillarity method to achieve arsenic concentration of 13 and 15 mg/kg. Subsequently, two types of plants were evaluated to reduce the concentration of arsenic in soils for 7 weeks. The global variance for soil types was obtained with the InfoStat program. To measure the changes in arsenic concentration in the soil-plant system, the Rhizo and Wenzel arsenic extraction methodology was used and subsequently analyzed with the ICP-OES (optima 8000 Pekin Elmer). As a result, the selected plants were bluegrass and llanten, due to the high percentages of arsenic removal of 55% and 67% and low mortality rates of 9% and 8% respectively. In conclusion, Azuay soil with an initial concentration of 13 mg/kg As reached the concentrations of 11.49 and 11.04 mg/kg As for bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.79 and 11.10 mg/kg As for blue grass and llanten after 7 weeks. For the Tungurahua soil with an initial concentration of 13 mg/kg As it reached the concentrations of 11.56 and 12.16 mg/kg As for the bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.97 and 12.27 mg/kg Ace for bluegrass and llanten after 7 weeks. The best arsenic extraction methodology of soil-plant system is Wenzel.

Keywords: blue grass, llanten, phytoremediation, soil of Azuay, soil of Tungurahua, synthetic arsenic solution

Procedia PDF Downloads 104
1772 Optimal and Best Timing for Capturing Satellite Thermal Images of Concrete Object

Authors: Toufic Abd El-Latif Sadek

Abstract:

The concrete object represents the concrete areas, like buildings. The best, easy, and efficient extraction of the concrete object from satellite thermal images occurred at specific times during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects. Thus, to achieve the best original data which is the aim of the study and then better extraction of the concrete object and then better analysis. The study was done using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water, located at one place carefully investigated in a way that all the objects achieve the homogeneous in acquired data at the same time and same weather conditions. The samples of the objects were on the roof of building at position taking by global positioning system (GPS) which its geographical coordinates is: Latitude= 33 degrees 37 minutes, Longitude= 35 degrees 28 minutes, Height= 600 m. It has been found that the first choice and the best time in February is at 2:00 pm, in March at 4 pm, in April and may at 12 pm, in August at 5:00 pm, in October at 11:00 am. The best time in June and November is at 2:00 pm.

Keywords: best timing, concrete areas, optimal, satellite thermal images

Procedia PDF Downloads 354
1771 Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling

Authors: L. Nouri Taiba, Y. Bouhamidi, F. Kaouah, Z. Bendjama, M. Trari

Abstract:

In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.

Keywords: biocomposite, biosorption, cadmium, non-linear analysis, ultrasound

Procedia PDF Downloads 277
1770 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids

Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo

Abstract:

Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.

Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium

Procedia PDF Downloads 190
1769 Volatile Profile of Monofloral Honeys Produced by Stingless Bees from the Brazilian Semiarid Region

Authors: Ana Caroliny Vieira da Costa, Marta Suely Madruga

Abstract:

In Brazil, there is a diverse fauna of social bees, known by Meliponinae or native stingless bees. These bees are important for providing a differentiated product, especially regarding unique sweetness, flavor, and aroma. However, information about the volatile fraction in honey produced by stingless native bees is still lacking. The aim of this work was to characterize the volatile compound profile of monofloral honey produced by jandaíra bees (Melipona subnitida Ducke) which used chanana (Turnera ulmifolia L.), malícia (Mimosa quadrivalvis) and algaroba (Prosopis juliflora (Sw.) DC) as their floral sources; and by uruçu bees (Melipona scutellaris Latrelle), which used chanana (Turnera ulmifolia L.), malícia (Mimosa quadrivalvis) and angico (Anadenanthera colubrina) as their floral sources. The volatiles were extracted using HS-SPME-GC-MS technique. The condition for the extraction was: equilibration time of 15 minutes, extraction time of 45 min and extraction temperature of 45°C. Through the results obtained, it was observed that the floral source had a strong influence on the aroma profile of the honey under evaluation, since the chemical profiles were marked primarily by the classes of terpenes, norisoprenoids, and benzene derivatives. Furthermore, the results obtained suggest the existence of differentiator compounds and potential markers for the botanical sources evaluated, such as linalool, D-sylvestrene, rose oxide and benzenethanol. These reports represent a valuable contribution to certifying the authenticity of those honey and provides for the first time, information intended for the construction of chemical knowledge of the aroma and flavor that characterize these honey produced in Brazil.

Keywords: aroma, honey, semiarid, stingless, volatiles

Procedia PDF Downloads 257
1768 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction

Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan

Abstract:

The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.

Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis

Procedia PDF Downloads 90
1767 The Problem of Now in Special Relativity Theory

Authors: Mogens Frank Mikkelsen

Abstract:

Special Relativity Theory (SRT) includes only one characteristic of light, the speed is equal to all observers, and by excluding other relevant characteristics of light, the common interpretation of SRT should be regarded as merely an approximative theory. By rethinking the iconic double light cones, a revised version of SRT can be developed. The revised concept of light cones acknowledges an asymmetry of past and future light cones and introduced a concept of the extended past to explain the predictions as something other than the future. Combining this with the concept of photon-paired events, led to the inference that Special Relativity theory can support the existence of Now.

Keywords: relativity, light cone, Minkowski, time

Procedia PDF Downloads 85
1766 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate

Procedia PDF Downloads 362
1765 Measuring Text-Based Semantics Relatedness Using WordNet

Authors: Madiha Khan, Sidrah Ramzan, Seemab Khan, Shahzad Hassan, Kamran Saeed

Abstract:

Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.

Keywords: Graphviz representation, semantic relatedness, similarity measurement, WordNet similarity

Procedia PDF Downloads 238
1764 Properties Optimization of Keratin Films Produced by Film Casting and Compression Moulding

Authors: Mahamad Yousif, Eoin Cunningham, Beatrice Smyth

Abstract:

Every year ~6 million tonnes of feathers are produced globally. Due to feathers’ low density and possible contamination with pathogens, their disposal causes health and environmental problems. The extraction of keratin, which represents >90% of feathers’ dry weight, could offer a solution due to its wide range of applications in the food, medical, cosmetics, and biopolymer industries. One of these applications is the production of biofilms which can be used for packaging, edible films, drug delivery, wound healing etc. Several studies in the last two decades investigated keratin film production and its properties. However, the effects of many parameters on the properties of the films remain to be investigated including the extraction method, crosslinker type and concentration, and the film production method. These parameters were investigated in this study. Keratin was extracted from chicken feathers using two methods, alkaline extraction with 0.5 M NaOH at 80 °C or sulphitolysis extraction with 0.5 M sodium sulphite, 8 M urea, and 0.25-1 g sodium dodecyl sulphate (SDS) at 100 °C. The extracted keratin was mixed with different types and concentrations of plasticizers (glycerol and polyethylene glycol) and crosslinkers (formaldehyde (FA), glutaraldehyde, cinnamaldehyde, glyoxal, and 1,4-Butanediol diglycidyl ether (BDE)). The mixtures were either cast in a mould or compression moulded to produce films. For casting, keratin powder was initially dissolved in water to form a 5% keratin solution and the mixture was dried in an oven at 60 °C. For compression moulding, 10% water was added and the compression moulding temperature and pressure were in the range of 60-120 °C and 10-30 bar. Finally, the tensile properties, solubility, and transparency of the films were analysed. The films prepared using the sulphitolysis keratin had superior tensile properties to the alkaline keratin and formed successfully with lower plasticizer concentrations. Lowering the SDS concentration from 1 to 0.25 g/g feathers improved all the tensile properties. All the films prepared without crosslinkers were 100% water soluble but adding crosslinkers reduced solubility to as low as 21%. FA and BDE were found to be the best crosslinkers increasing the tensile strength and elongation at break of the films. Higher compression moulding temperature and pressure lowered the tensile properties of the films; therefore, 80 °C and 10 bar were considered to be the optimal compression moulding temperature and pressure. Nevertheless, the films prepared by casting had higher tensile properties than compression moulding but were less transparent. Two optimal films, prepared by film casting, were identified and their compositions were: (a) Sulphitolysis keratin, 20% glycerol, 10% FA, and 10% BDE. (b) Sulphitolysis keratin, 20% glycerol, and 10% BDE. Their tensile strength, elongation at break, Young’s modulus, solubility, and transparency were: (a) 4.275±0.467 MPa, 86.12±4.24%, 22.227±2.711 MPa, 21.34±1.11%, and 8.57±0.94* respectively. (b) 3.024±0.231 MPa, 113.65±14.61%, 10±1.948 MPa, 25.03±5.3%, and 4.8±0.15 respectively. A higher value indicates that the film is less transparent. The extraction method, film composition, and production method had significant influence on the properties of keratin films and should therefore be tailored to meet the desired properties and applications.

Keywords: compression moulding, crosslinker, film casting, keratin, plasticizer, solubility, tensile properties, transparency

Procedia PDF Downloads 34
1763 Parameters of Validation Method of Determining Polycyclic Aromatic Hydrocarbons in Drinking Water by High Performance Liquid Chromatography

Authors: Jonida Canaj

Abstract:

A simple method of extraction and determination of fifteen priority polycyclic aromatic hydrocarbons (PAHs) from drinking water using high performance liquid chromatography (HPLC) has been validated with limits of detection (LOD) and limits of quantification (LOQ), method recovery and reproducibility, and other factors. HPLC parameters, such as mobile phase composition and flow standardized for determination of PAHs using fluorescent detector (FLD). PAH was carried out by liquid-liquid extraction using dichloromethane. Linearity of calibration curves was good for all PAH (R², 0.9954-1.0000) in the concentration range 0.1-100 ppb. Analysis of standard spiked water samples resulted in good recoveries between 78.5-150%(0.1ppb) and 93.04-137.47% (10ppb). The estimated LOD and LOQ ranged between 0.0018-0.98 ppb. The method described has been used for determination of the fifteen PAHs contents in drinking water samples.

Keywords: high performance liquid chromatography, HPLC, method validation, polycyclic aromatic hydrocarbons, PAHs, water

Procedia PDF Downloads 104
1762 On Coverage Probability of Confidence Intervals for the Normal Mean with Known Coefficient of Variation

Authors: Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

Statistical inference of normal mean with known coefficient of variation has been investigated recently. This phenomenon occurs normally in environment and agriculture experiments when the scientist knows the coefficient of variation of their experiments. In this paper, we constructed new confidence intervals for the normal population mean with known coefficient of variation. We also derived analytic expressions for the coverage probability of each confidence interval. To confirm our theoretical results, Monte Carlo simulation will be used to assess the performance of these intervals based on their coverage probabilities.

Keywords: confidence interval, coverage probability, expected length, known coefficient of variation

Procedia PDF Downloads 394
1761 A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds

Authors: B. Kishore Kumar, Pogula Rakesh, T. Kishore Kumar

Abstract:

The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB.

Keywords: percussive sounds, spectral centroid, spectral energy, silence removal, feature extraction

Procedia PDF Downloads 594
1760 Phylogenetic Differential Separation of Environmental Samples

Authors: Amber C. W. Vandepoele, Michael A. Marciano

Abstract:

Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.

Keywords: DNA isolation, geolocation, non-human, phylogenetic separation

Procedia PDF Downloads 112
1759 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine

Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne

Abstract:

The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.

Keywords: pesticide, solid-phase microextraction (SPME) methods, steady state, analytical model

Procedia PDF Downloads 489
1758 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 137
1757 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry

Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke

Abstract:

There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.

Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction

Procedia PDF Downloads 170
1756 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes

Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma

Abstract:

Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.

Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry

Procedia PDF Downloads 70
1755 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods

Authors: A. Senthil Kumar, V. Murali Bhaskaran

Abstract:

In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.

Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)

Procedia PDF Downloads 286
1754 Structuring of Multilayer Aluminum Nickel by Lift-off Process Using Cheap Negative Resist

Authors: Muhammad Talal Asghar

Abstract:

The lift-off technique of the photoresist for metal patterning in integrated circuit (IC) packaging has been widely utilized in the field of microelectromechanical systems and semiconductor component manufacturing. The main advantage lies in cost-saving, reduction in complexity, and maturity of the process. The selection of photoresist depends upon many factors such as cost, the thickness of the resist, comfortable and valuable parameters extraction. In the present study, an extremely cheap dry film photoresist E8015 of thickness 38-micrometer is processed for the first time for edge profiling, according to the author's best knowledge. Successful extraction of the helpful parameter range for resist processing is performed. An undercut angle of 66 to 73 degrees is realized by parameter variation like exposure energy and development time. Finally, 10-micrometer thick metallic multilayer aluminum nickel is lifted off on the plain silicon wafer. Possible applications lie in controlled self-propagating reactions within structured metallic multilayer that may be utilized for IC packaging in the future.

Keywords: lift-off, IC packaging, photoresist, multilayer

Procedia PDF Downloads 212
1753 A Study on Inference from Distance Variables in Hedonic Regression

Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro

Abstract:

In urban area, several landmarks may affect housing price and rents, hedonic analysis should employ distance variables corresponding to each landmarks. Unfortunately, the effects of distances to landmarks on housing prices are generally not consistent with the true price. These distance variables may cause magnitude error in regression, pointing a problem of spatial multicollinearity. In this paper, we provided some approaches for getting the samples with less bias and method on locating the specific sampling area to avoid the multicollinerity problem in two specific landmarks case.

Keywords: landmarks, hedonic regression, distance variables, collinearity, multicollinerity

Procedia PDF Downloads 452
1752 Capturing the Stress States in Video Conferences by Photoplethysmographic Pulse Detection

Authors: Jarek Krajewski, David Daxberger

Abstract:

We propose a stress detection method based on an RGB camera using heart rate detection, also known as Photoplethysmography Imaging (PPGI). This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. A stationary lab setting with simulated video conferences is chosen using constant light conditions and a sampling rate of 30 fps. The ground truth measurement of heart rate is conducted with a common PPG system. The proposed approach for pulse peak detection is based on a machine learning-based approach, applying brute force feature extraction for the prediction of heart rate pulses. The statistical analysis showed good agreement (correlation r = .79, p<0.05) between the reference heart rate system and the proposed method. Based on these findings, the proposed method could provide a reliable, low-cost, and contactless way of measuring HR parameters in daily-life environments.

Keywords: heart rate, PPGI, machine learning, brute force feature extraction

Procedia PDF Downloads 123
1751 GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains

Authors: Magdalena Smoktunowicz, Renata Wawrzyniak, Malgorzata Waleron, Krzysztof Waleron

Abstract:

Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum.

Keywords: GC-MS chromatograpfy, metabolomics, metabolism, pectobacterium strains, pectobacterium betavasculorum

Procedia PDF Downloads 79
1750 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy

Procedia PDF Downloads 540
1749 The Comparison of Depression Level of Male Athlete Students with Non-Athlete Students

Authors: Seyed Hossein Alavi, Farshad Ghazalian, Soghra Jamshidi

Abstract:

The present study was done with the purpose of considering mental health and general purpose of describing and comparing depression level of athlete and non-athlete male students educational year of 2012 Research method in this study in proportion to the selective title, descriptive method is causative – comparative. Research samples were selected randomly from B.A students of different fields including 500 students. Average mean of research samples was between 20 to 25 years. Data collection tool is questionnaire of depression measurement of Aroun Beck (B.D.I) that analyzes and measures 21 aspects of depression in 6 ranges. Operation related to analysis of statistical data to extraction of results was done by SPSS software. To extraction of research obtained by comparison of depression level mean, show that the hypothesis of the research (H_1) based on the existence of the significance scientific difference was supported and showed that there’s a significance difference between depression level of athlete male students in comparison with depression level of non-athlete male students. Thus, depression level of athlete male students was lower in comparison with depression level of non-athlete male students.

Keywords: depression, athlete students, non-athlete students

Procedia PDF Downloads 479
1748 Problems in Computational Phylogenetics: The Germano-Italo-Celtic Clade

Authors: Laura Mclean

Abstract:

A recurring point of interest in computational phylogenetic analysis of Indo-European family trees is the inference of a Germano-Italo-Celtic clade in some versions of the trees produced. The presence of this clade in the models is intriguing as there is little evidence for innovations shared among Germanic, Italic, and Celtic, the evidence generally used in the traditional method to construct a subgroup. One source of this unexpected outcome could be the input to the models. The datasets in the various models used so far, for the most part, take as their basis the Swadesh list, a list compiled by Morris Swadesh and then revised several times, containing up to 207 words that he believed were resistant to change among languages. The judgments made by Swadesh for this list, however, were subjective and based on his intuition rather than rigorous analysis. Some scholars used the Swadesh 200 list as the basis for their Indo-European dataset and made cognacy judgements for each of the words on the list. Another dataset is largely based on the Swadesh 207 list as well although the authors include additional lexical and non-lexical data, and they implement ‘split coding’ to deal with cases of polymorphic characters. A different team of scholars uses a different dataset, IECoR, which combines several different lists, one of which is the Swadesh 200 list. In fact, the Swadesh list is used in some form in every study surveyed and each dataset has three words that, when they are coded as cognates, seemingly contribute to the inference of a Germano-Italo-Celtic clade which could happen due to these clades sharing three words among only themselves. These three words are ‘fish’, ‘flower’, and ‘man’ (in the case of ‘man’, one dataset includes Lithuanian in the cognacy coding and removes the word ‘man’ from the screened data). This collection of cognates shared among Germanic, Italic, and Celtic that were deemed important enough to be included on the Swadesh list, without the ability to account for possible reasons for shared cognates that are not shared innovations, gives an impression of affinity between the Germanic, Celtic, and Italic branches without adequate methodological support. However, by changing how cognacy is defined (ie. root cognates, borrowings vs inherited cognates etc.), we will be able to identify whether these three cognates are significant enough to infer a clade for Germanic, Celtic, and Italic. This paper examines the question of what definition of cognacy should be used for phylogenetic datasets by examining the Germano-Italo-Celtic clade as a case study and offers insights into the reconstruction of a Germano-Italo-Celtic clade.

Keywords: historical, computational, Italo-Celtic, Germanic

Procedia PDF Downloads 50
1747 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio

Abstract:

Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction

Procedia PDF Downloads 310
1746 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 109