Search results for: images processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5576

Search results for: images processing

5066 The Resistance Reader Program Based on Image Processing

Authors: Janpen Srijan, Nahathai Tanmang, Thanit Purathanang, Anun Dowchern, Saksit Summart, Seangduan Kampimpa

Abstract:

This paper presents the resistance reader program based on image processing by using MATLAB. The proposed program is divided into six parts; the first part is the web camera; the second part is a watt selection before shooting the resistor; the third part is a part of finding the position of the color on the mid-point of resistor; the fourth part is a part of identifying color code of the resistor; the fifth part is a part of taking the number of values for each color for resistance calculation and the last part is a part of displaying result of resistance value. The experimental result of the resistance reader program based on image processing was able to display the resistance value of resistor. The accuracy of proposed program is 85 percent for 1 watt resistor. It has 15 percent of reading error because a problem with the color code of some resistor was too bright.

Keywords: resistance reader program, image processing, resistor, MATLAB

Procedia PDF Downloads 379
5065 Emotions Triggered by Children’s Literature Images

Authors: Ana Maria Reis d'Azevedo Breda, Catarina Maria Neto da Cruz

Abstract:

The role of images/illustrations in communicating meanings and triggering emotions assumes an increasingly relevant role in contemporary texts, regardless of the age group for which they are intended or the nature of the texts that host them. It is no coincidence that children's books are full of illustrations and that the image/text ratio decreases as the age group grows. The vast majority of children's books can be considered multimodal texts containing text and images/illustrations interacting with each other to provide the young reader with a broader and more creative understanding of the book's narrative. This interaction is very diverse, ranging from images/illustrations that are not essential for understanding the storytelling to those that contribute significantly to the meaning of the story. Usually, these books are also read by adults, namely by parents, educators, and teachers who act as mediators between the book and the children, explaining aspects that are or seem to be too complex for the child's context. It should be noted that there are books labeled as children's books that are clearly intended for both children and adults. In this work, following a qualitative and interpretative methodology based on written productions, participant observation, and field notes, we will describe the perceptions of future teachers of the 1st cycle of basic education, attending a master's degree at a Portuguese university, about the role of the image in literary and non-literary texts, namely in mathematical texts, and how these can constitute precious resources for emotional regulation and for the design of creative didactic situations. The analysis of the collected data allowed us to obtain evidence regarding the evolution of the participants' perception regarding the crucial role of images in children's literature, not only as an emotional regulator for young readers but also as a creative source for the design of meaningful didactical situations, crossing other scientific areas, other than the mother tongue, namely mathematics.

Keywords: children’s literature, emotions, multimodal texts, soft skills

Procedia PDF Downloads 89
5064 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation

Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam

Abstract:

Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.

Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model

Procedia PDF Downloads 109
5063 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing

Procedia PDF Downloads 415
5062 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing

Procedia PDF Downloads 306
5061 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques

Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang

Abstract:

Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.

Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE

Procedia PDF Downloads 526
5060 Embedded System of Signal Processing on FPGA: Underwater Application Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.

Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing

Procedia PDF Downloads 74
5059 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: unsharp masking, blur image, sub-region gradient, image enhancement

Procedia PDF Downloads 212
5058 Towards Update a Road Map Solution: Use of Information Obtained by the Extraction of Road Network and Its Nodes from a Satellite Image

Authors: Z. Nougrara, J. Meunier

Abstract:

In this paper, we present a new approach for extracting roads, there road network and its nodes from satellite image representing regions in Algeria. Our approach is related to our previous research work. It is founded on the information theory and the mathematical morphology. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. The main interest of this study is to solve the problem of the automatic mapping from satellite images. This study is thus applied for that the geographical representation of the images is as near as possible to the reality.

Keywords: nodes, road network, satellite image, updating a road map

Procedia PDF Downloads 420
5057 Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images

Authors: Barun Raychaudhuri

Abstract:

A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.

Keywords: hyperion, hyperspectral, Kolkata, water depth

Procedia PDF Downloads 241
5056 Visibility of the Borders of the Mandibular Canal: A Comparative in Vitro Study Using Digital Panoramic Radiography, Reformatted Panoramic Radiography and Cross Sectional Cone Beam Computed Tomography

Authors: Keerthilatha Pai, Sakshi Kamra

Abstract:

Objectives: Determining the position of the mandibular canal prior to implant placement and surgeries of the posterior mandible are important to avoid the nerve injury. The visibility of the mandibular canal varies according to the imaging modality. Although panoramic radiography is the most common, slowly cone beam computed tomography is replacing it. This study was conducted with an aim to determine and compare the visibility of superior and inferior borders of the mandibular canal in digital panoramic radiograph, reformatted panoramic radiograph and cross-sectional images of cone beam computed tomography. Study design: digital panoramic, reformatted panoramic radiograph and cross sectional CBCT images of 25 human mandibles were evaluated for the visibility of the superior and inferior borders of the mandibular canal according to a 5 point scoring criteria. Also, the canal was evaluated as completely visible, partially visible and not visible. The mean scores and visibility percentage of all the imaging modalities were determined and compared. The interobserver and intraobserver agreement in the visualization of the superior and inferior borders of the mandibular canal were determined. Results: The superior and inferior borders of the mandibular canal were completely visible in 47% of the samples in digital panoramic, 63% in reformatted panoramic and 75.6% in CBCT cross-sectional images. The mandibular canal was invisible in 24% of samples in digital panoramic, 19% in reformatted panoramic and 2% in cross-sectional CBCT images. Maximum visibility was seen in Zone 5 and least visibility in Zone 1. On comparison of all the imaging modalities, CBCT cross-sectional images showed better visibility of superior border in Zones 2,3,4,6 and inferior border in Zones 2,3,4,6. The difference was statistically significant. Conclusion: CBCT cross-sectional images were much superior in the visualization of the mandibular canal in comparison to reformatted and digital panoramic radiographs. The inferior border was better visualized in comparison to the superior border in digital panoramic imaging. The mandibular canal was maximumly visible in posterior one-third region of the mandible and the visibility decreased towards the mental foramen.

Keywords: cone beam computed tomography, mandibular canal, reformatted panoramic radiograph, visualization

Procedia PDF Downloads 122
5055 Teaching Tools for Web Processing Services

Authors: Rashid Javed, Hardy Lehmkuehler, Franz Josef-Behr

Abstract:

Web Processing Services (WPS) have up growing concern in geoinformation research. However, teaching about them is difficult because of the generally complex circumstances of their use. They limit the possibilities for hands- on- exercises on Web Processing Services. To support understanding however a Training Tools Collection was brought on the way at University of Applied Sciences Stuttgart (HFT). It is limited to the scope of Geostatistical Interpolation of sample point data where different algorithms can be used like IDW, Nearest Neighbor etc. The Tools Collection aims to support understanding of the scope, definition and deployment of Web Processing Services. For example it is necessary to characterize the input of Interpolation by the data set, the parameters for the algorithm and the interpolation results (here a grid of interpolated values is assumed). This paper reports on first experiences using a pilot installation. This was intended to find suitable software interfaces for later full implementations and conclude on potential user interface characteristics. Experiences were made with Deegree software, one of several Services Suites (Collections). Being strictly programmed in Java, Deegree offers several OGC compliant Service Implementations that also promise to be of benefit for the project. The mentioned parameters for a WPS were formalized following the paradigm that any meaningful component will be defined in terms of suitable standards. E.g. the data output can be defined as a GML file. But, the choice of meaningful information pieces and user interactions is not free but partially determined by the selected WPS Processing Suite.

Keywords: deegree, interpolation, IDW, web processing service (WPS)

Procedia PDF Downloads 353
5054 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine

Procedia PDF Downloads 142
5053 Automatic Identification of Pectoral Muscle

Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina

Abstract:

Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.

Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle

Procedia PDF Downloads 348
5052 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: visual search, deep learning, convolutional neural network, machine learning

Procedia PDF Downloads 213
5051 Resume Ranking Using Custom Word2vec and Rule-Based Natural Language Processing Techniques

Authors: Subodh Chandra Shakya, Rajendra Sapkota, Aakash Tamang, Shushant Pudasaini, Sujan Adhikari, Sajjan Adhikari

Abstract:

Lots of efforts have been made in order to measure the semantic similarity between the text corpora in the documents. Techniques have been evolved to measure the similarity of two documents. One such state-of-art technique in the field of Natural Language Processing (NLP) is word to vector models, which converts the words into their word-embedding and measures the similarity between the vectors. We found this to be quite useful for the task of resume ranking. So, this research paper is the implementation of the word2vec model along with other Natural Language Processing techniques in order to rank the resumes for the particular job description so as to automate the process of hiring. The research paper proposes the system and the findings that were made during the process of building the system.

Keywords: chunking, document similarity, information extraction, natural language processing, word2vec, word embedding

Procedia PDF Downloads 153
5050 Igbo Art: A Reflection of the Igbo’s Visual Culture

Authors: David Osa-Egonwa

Abstract:

Visual culture is the expression of the norms and social behavior of a society in visual images. A reflection simply shows you how you look when you stand before a mirror, a clear water or stream. The mirror does not alter, improve or distort your original appearance, neither does it show you a caricature of what stands before it, this is the case with visual images created by a tribe or society. The ‘uli’ is hand drawn body design done on Igbo women and speaks of a culture of body adornment which is a practice that is appreciated by that tribe. The use of pattern of the gliding python snake ‘ije eke’ or ‘ijeagwo’ for wall painting speaks of the Igbo culture as one that appreciates wall paintings based on these patterns. Modern life came and brought a lot of change to the Igbo-speaking people of Nigeria. Change cloaked in the garment of Westernization has influenced the culture of the Igbos. This has resulted in a problem which is a break in the cultural practice that has also affected art produced by the Igbos. Before the colonial masters arrived and changed the established culture practiced by the Igbos, visual images were created that retained the culture of this people. To bring this point to limelight, this paper has adopted a historical method. A large number of works produced during pre and post-colonial era which range from sculptural pieces, paintings and other artifacts, just to mention a few, were studied carefully and it was discovered that the visual images hold the culture or aspects of the culture of the Igbos in their renditions and can rightly serve as a mirror of the Igbo visual culture.

Keywords: artistic renditions, historical method, Igbo visual culture, changes

Procedia PDF Downloads 182
5049 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 149
5048 Analyzing the Changing Pattern of Nigerian Vegetation Zones and Its Ecological and Socio-Economic Implications Using Spot-Vegetation Sensor

Authors: B. L. Gadiga

Abstract:

This study assesses the major ecological zones in Nigeria with the view to understanding the spatial pattern of vegetation zones and the implications on conservation within the period of sixteen (16) years. Satellite images used for this study were acquired from the SPOT-VEGETATION between 1998 and 2013. The annual NDVI images selected for this study were derived from SPOT-4 sensor and were acquired within the same season (November) in order to reduce differences in spectral reflectance due to seasonal variations. The images were sliced into five classes based on literatures and knowledge of the area (i.e. <0.16 Non-Vegetated areas; 0.16-0.22 Sahel Savannah; 0.22-0.40 Sudan Savannah, 0.40-0.47 Guinea Savannah and >0.47 Forest Zone). Classification of the 1998 and 2013 images into forested and non forested areas showed that forested area decrease from 511,691 km2 in 1998 to 478,360 km2 in 2013. Differencing change detection method was performed on 1998 and 2013 NDVI images to identify areas of ecological concern. The result shows that areas undergoing vegetation degradation covers an area of 73,062 km2 while areas witnessing some form restoration cover an area of 86,315 km2. The result also shows that there is a weak correlation between rainfall and the vegetation zones. The non-vegetated areas have a correlation coefficient (r) of 0.0088, Sahel Savannah belt 0.1988, Sudan Savannah belt -0.3343, Guinea Savannah belt 0.0328 and Forest belt 0.2635. The low correlation can be associated with the encroachment of the Sudan Savannah belt into the forest belt of South-eastern part of the country as revealed by the image analysis. The degradation of the forest vegetation is therefore responsible for the serious erosion problems witnessed in the South-east. The study recommends constant monitoring of vegetation and strict enforcement of environmental laws in the country.

Keywords: vegetation, NDVI, SPOT-vegetation, ecology, degradation

Procedia PDF Downloads 218
5047 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures

Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov

Abstract:

Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.

Keywords: multiscale modeling, permeability, texture, micro-tomography images

Procedia PDF Downloads 181
5046 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 178
5045 Using Digitally Reconstructed Radiographs from Magnetic Resonance Images to Localize Pelvic Lymph Nodes on 2D X-Ray Simulator-Based Brachytherapy Treatment Planning

Authors: Mohammad Ali Oghabian, Reza Reiazi, Esmaeel Parsai, Mehdi Aghili, Ramin Jaberi

Abstract:

In this project a new procedure has been introduced for utilizing digitally reconstructed radiograph from MRI images in Brachytherapy treatment planning. This procedure enables us to localize the tumor volume and delineate the extent of critical structures in vicinity of tumor volume. The aim of this project was to improve the accuracy of dose delivered to targets of interest in 2D treatment planning system.

Keywords: brachytherapy, cervix, digitally reconstructed radiographs, lymph node

Procedia PDF Downloads 525
5044 Fusion of MOLA-based DEMs and HiRISE Images for Large-Scale Mars Mapping

Authors: Ahmed F. Elaksher, Islam Omar

Abstract:

In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were then digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. Different transformation models, including the affine and projective transformation models, were used with different sets and distributions of tie points. Additionally, we evaluated the use of the MOLA elevations in co-registering the MOLA and HiRISE datasets. The planimetric RMSEs achieved for each model are reported. Results suggested the use of 3D-2D transformation models.

Keywords: photogrammetry, Mars, MOLA, HiRISE

Procedia PDF Downloads 72
5043 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 115
5042 Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V

Authors: Bryce R. Jolley, Michael Uchic

Abstract:

This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study.

Keywords: additive manufacture, automated serial sectioning, computed tomography, nondestructive evaluation

Procedia PDF Downloads 139
5041 Characterization of Kopff Crater Using Remote Sensing Data

Authors: Shreekumari Patel, Prabhjot Kaur, Paras Solanki

Abstract:

Moon Mineralogy Mapper (M3), Miniature Radio Frequency (Mini-RF), Kaguya Terrain Camera images, Lunar Orbiter Laser Altimeter (LOLA) digital elevation model (DEM) and Lunar Reconnaissance Orbiter Camera (LROC)- Narrow angle camera (NAC) and Wide angle camera (WAC) images were used to study mineralogy, surface physical properties, and age of the 42 km diameter Kopff crater. M3 indicates the low albedo crater floor to be high-Ca pyroxene dominated associated with floor fracture suggesting the igneous activity of the gabbroic material. Signature of anorthositic material is sampled on the eastern edge as target material is excavated from ~3 km diameter impact crater providing access to the crustal composition. Several occurrences of spinel were detected in northwestern rugged terrain. Our observation can be explained by exposure of spinel by this crater that impacted onto the inner rings of Orientale basin. Spinel was part of the pre-impact target, an intrinsic unit of basin ring. Crater floor was dated by crater counts performed on Kaguya TC images. Nature of surface was studied in detail with LROC NAC and Mini-RF. Freshly exposed surface and boulder or debris seen in LROC NAC images have enhanced radar signal in comparison to mature terrain of Kopff crater. This multidisciplinary analysis of remote sensing data helps to assess lunar surface in detail.

Keywords: crater, mineralogy, moon, radar observations

Procedia PDF Downloads 154
5040 Augmented Reality as Enhancer of the Lean Philosophy: An Exploratory Study

Authors: P. Gil, F. Charrua-Santos, A. A. Baptista, S. Azevedo, A. Espirito-Santo, J. Páscoa

Abstract:

Lean manufacturing is a philosophy of industrial management that aims to identify and eliminate any waste that exists in the companies. The augmented reality is a new technology that stills being developed in terms of software and hardware. This technology consists of an image capture device, a device for data processing and an image visualization equipment to visualize collected and processed images. It is characterized by being a technology that merges the reality with the virtual environment, so there is an instantaneous interaction between the two environments. The present work intends to demonstrate that the use of the augmented reality will contribute to improve some tools and methods used in Lean manufacturing philosophy. Through several examples of application in industry it will be demonstrated that the technological impact of the augmented reality on the Lean Manufacturing philosophy contribute to added value improvements.

Keywords: lean manufacturing, augmented reality, case studies, value

Procedia PDF Downloads 621
5039 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values

Authors: Burçin Saltık, Levent Genç

Abstract:

In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.

Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice

Procedia PDF Downloads 226
5038 A Method to Estimate Wheat Yield Using Landsat Data

Authors: Zama Mahmood

Abstract:

The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation.

Keywords: landsat, NDVI, remote sensing, satellite images, yield

Procedia PDF Downloads 326
5037 Giant Achievements in Food Processing

Authors: Farnaz Amidi Fazli

Abstract:

After long period of human experience about food processing from raw eating to canning of food in the last century now it is time to use novel technologies which are sometimes completely different from common technologies. It is possible to decontaminate food without using heat or the foods are stored without using cold chain. Pulsed electric field (PEF) processing is a non-thermal method of food preservation that uses short bursts of electricity, PEF can be used for processing liquid and semi-liquid food products. PEF processing offers high quality fresh-like liquid foods with excellent flavor, nutritional value, and shelf-life. High pressure processing (HPP) technology has the potential to fulfill both consumer and scientific requirements. The use of HPP for over 50 years has found applications in non-food industries. For food applications, ‘high pressure’ can be generally considered to be up to 600 MPa for most food products. After years, freezing has its high potential to food preservation due to new and quick freezing methods. Foods which are prepared by this technology have more acceptability and high quality comparing with old fashion slow freezing. Thus, quick freezing has further been adopted as a widespread commercial method for long-term preservation of perishable foods which improved both the health and convenience of everyone in the industrialised countries. Above parameters are achieved by Fluidised-bed freezing systems, freezing by immersion and Hydrofluidisation on the other hand new thawing methods like high-pressure, microwave, ohmic, and acoustic thawing have a key role in quality and adaptability of final product.

Keywords: quick freezing, thawing, high pressure, pulse electric, hydrofluidisation

Procedia PDF Downloads 318