Search results for: heavy traffic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2651

Search results for: heavy traffic

2141 Risk Prediction Based on Heavy Metal Distribution in Groundwater

Authors: Rama Bhattacharyya, S. N. Ojha, Umesh K. Singh

Abstract:

Anthropogenic control on groundwater chemistry has emerged as a critical concern now-a-days, especially in the industrial areas. In view of this, a comprehensive study on the distribution of the heavy metal in the groundwater was conducted to investigate the impact of urbanization in the aquatic media. Water samples either from well or borehole from Fourty different sites in and around, Durgapur, West Bengal were collected for this purpose. The samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for Calcium (Ca), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Sodium (Na), Nickel (Ni), Lead (Pb), Zinc (Zn) content and the levels were compared with WHO specified maximum contaminant level as well as permissible limits given by the Bureau of Indian Standards (BIS). The result obtained from the present study indicates a significant risk to the population of this important emerging ‘smart city’ of eastern India. Because of the toxicity of these metals and the fact that for many tube-wells, dug-wells and bore-wells are the only sources of the water supply for a major fraction of the population in this environment. In this study, an attempt has been made to develop metal contamination risk map.

Keywords: heavy metals, ground water, maximum contamination level, ICP-MS

Procedia PDF Downloads 208
2140 The Distribution and Environmental Behavior of Heavy Metals in Jajarm Bauxite Mine, Northeast Iran

Authors: Hossein Hassani, Ali Rezaei

Abstract:

Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Environmental protection against various pollutants, such as heavy metals formed by industries, mines and modern technologies, is a concern for researchers and industry. In order to assess the contamination of soils the distribution and environmental behavior have been investigated. Jajarm bauxite mine, the most important deposits have been discovered in Iran, which is about 22 million tons of reserve, and is the main mineral of the Diaspora. With a view to estimate the heavy metals ratio of the Jajarm bauxite mine area and to evaluate the pollution level, 50 samples have been collected and have been analyzed for the heavy metals of As, Cd, Cu, Hg, Ni and Pb with the help of Inductively Coupled Plasma-Mass Spectrometer (ICP- MS). In this study, we have dealt with determining evaluation criteria including contamination factor (CF), average concentration (AV), enrichment factor (EF) and geoaccumulation index (GI) to assess the risk of pollution from heavy metals(As, Cd, Cu, Hg, Ni and Pb) in Jajarm bauxite mine. In the samples of the studied, the average of recorded concentration of elements for Arsenic, Cadmium, Copper, Mercury, Nickel and Lead are 18, 0.11, 12, 0.07, 58 and 51 (mg/kg) respectively. The comparison of the heavy metals concentration average and the toxic potential in the samples has shown that an average with respect to the world average of the uncontaminated soil amounts. The average of Pb and As elements shows a higher quantity with respect to the world average quantity. The pollution factor for the study elements has been calculated on the basis of the soil background concentration and has been categorized on the basis of the uncontaminated world soil average with respect to the Hakanson classification. The calculation of the corrected pollutant degree shows the degree of the bulk intermediate pollutant (1.55-2.0) for the average soil sampling of the study area which is on the basis of the background quantity and the world average quantity of the uncontaminated soils. The provided conclusion from calculation of the concentrated factor, for some of the samples show that the average of the lead and arsenic elements stations are more than the background values and the unnatural metal concentration are covered under the study area, That's because the process of mining and mineral extraction. Given conclusion from the calculation of Geoaccumulation index of the soil sampling can explain that the copper, nickel, cadmium, arsenic, lead and mercury elements are Uncontamination. In general, the results indicate that the Jajarm bauxite mine of heavy metal pollution is uncontaminated area and extract the mineral from the mine, not create environmental hazards in the region.

Keywords: enrichment factor, geoaccumulation index, heavy metals, Jajarm bauxite mine, pollution

Procedia PDF Downloads 283
2139 Effects of Non-Motorized Vehicles on a Selected Intersection in Dhaka City for Non Lane Based Heterogeneous Traffic Using VISSIM 5.3

Authors: A. C. Dey, H. M. Ahsan

Abstract:

Heterogeneous traffic composed of both motorized and non-motorized vehicles that are a common feature of urban Bangladeshi roads. Popular non-motorized vehicles include rickshaws, rickshaw-van, and bicycle. These modes performed an important role in moving people and goods in the absence of a dependable mass transport system. However, rickshaws play a major role in meeting the demand for door-to-door public transport services to the city dwellers. But there is no separate lane for non-motorized vehicles in this city. Non-motorized vehicles generally occupy the outermost or curb-side lanes, however, at intersections non-motorized vehicles get mixed with the motorized vehicles. That’s why the conventional models fail to analyze the situation completely. Microscopic traffic simulation software VISSIM 5.3, itself a lane base software but default behavioral parameters [such as driving behavior, lateral distances, overtaking tendency, CCO=0.4m, CC1=1.5s] are modified for calibrating a model to analyze the effects of non-motorized traffic at an intersection (Mirpur-10) in a non-lane based mixed traffic condition. It is seen from field data that NMV occupies an average 20% of the total number of vehicles almost all the link roads. Due to the large share of non-motorized vehicles, capacity significantly drop. After analyzing simulation raw data, significant variation is noticed. Such as the average vehicular speed is reduced by 25% and the number of vehicles decreased by 30% only for the presence of NMV. Also the variation of lateral occupancy and queue delay time increase by 2.37% and 33.75% respectively. Thus results clearly show the negative effects of non-motorized vehicles on capacity at an intersection. So special management technics or restriction of NMV at major intersections may be an effective solution to improve this existing critical condition.

Keywords: lateral occupancy, non lane based intersection, nmv, queue delay time, VISSIM 5.3

Procedia PDF Downloads 149
2138 Removal of Heavy Metals from Municipal Wastewater Using Constructed Rhizofiltration System

Authors: Christine A. Odinga, G. Sanjay, M. Mathew, S. Gupta, F. M. Swalaha, F. A. O. Otieno, F. Bux

Abstract:

Wastewater discharged from municipal treatment plants contain an amalgamation of trace metals. The presence of metal pollutants in wastewater poses a huge challenge to the choice and applications of the preferred treatment method. Conventional treatment methods are inefficient in the removal of trace metals due to their design approach. This study evaluated the treatment performance of a constructed rhizofiltration system in the removal of heavy metals from municipal wastewater. The study was conducted at an eThekwni municipal wastewater treatment plant in Kingsburgh - Durban in the province of KwaZulu-Natal. The construction details of the pilot-scale rhizofiltration unit included three different layers of substrate consisting of medium stones, coarse gravel and fine sand. The system had one section planted with Phragmites australis L. and Kyllinga nemoralis L. while the other section was unplanted and acted as the control. Influent, effluent and sediment from the system were sampled and assessed for the presence of and removal of selected trace heavy metals using standard methods. Efficiency of metals removal was established by gauging the transfer of metals into leaves, roots and stem of the plants by calculations based on standard statistical packages. The Langmuir model was used to assess the heavy metal adsorption mechanisms of the plants. Heavy metals were accumulated in the entire rhizofiltration system at varying percentages of 96.69% on planted and 48.98% on control side for cadmium. Chromium was 81% and 24%, Copper was 23.4% and 1.1%, Nickel was 72% and 46.5, Lead was 63% and 31%, while Zinc was 76% and 84% on the on the water and sediment of the planted and control sides of the rhizofilter respectively. The decrease in metal adsorption efficiencies on the planted side followed the pattern of Cd>Cr>Zn>Ni>Pb>Cu and Ni>Cd>Pb>Cr>Cu>Zn on the control side. Confirmatory analysis using Electron Scanning Microscopy revealed that higher amounts of metals was deposited in the root system with values ranging from 0.015mg/kg (Cr), 0.250 (Cu), 0.030 (Pb) for P. australis, and 0.055mg/kg (Cr), 0.470mg/kg (Cu) and 0.210mg/kg,(Pb) for K. nemoralis respectively. The system was found to be efficient in removing and reducing metals from wastewater and further research is necessary to establish the immediate mechanisms that the plants display in order to achieve these reductions.

Keywords: wastewater treatment, Phragmites australis L., Kyllinga nemoralis L., heavy metals, pathogens, rhizofiltration

Procedia PDF Downloads 256
2137 Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens

Authors: Amandeep Kaur, Sangeeta Sharma

Abstract:

Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant.

Keywords: adsorption, biogenic synthesis, nanoparticles, nickel, lead

Procedia PDF Downloads 81
2136 A Survey on Intelligent Connected-Vehicle Applications Based on Intercommunication Techniques in Smart Cities

Authors: B. Karabuluter, O. Karaduman

Abstract:

Connected-Vehicles consists of intelligent vehicles, each of which can communicate with each other. Smart Cities are the most prominent application area of intelligent vehicles that can communicate with each other. The most important goal that is desired to be realized in Smart Cities planned for facilitating people's lives is to make transportation more comfortable and safe with intelligent/autonomous/driverless vehicles communicating with each other. In order to ensure these, the city must have communication infrastructure in the first place, and the vehicles must have the features to communicate with this infrastructure and with each other. In this context, intelligent transport studies to solve all transportation and traffic problems in classical cities continue to increase rapidly. In this study, current connected-vehicle applications developed for smart cities are considered in terms of communication techniques, vehicular networking, IoT, urban transportation implementations, intelligent traffic management, road safety, self driving. Taxonomies and assessments performed in the work show the trend of studies in inter-vehicle communication systems in smart cities and they are contributing to by ensuring that the requirements in this area are revealed.

Keywords: smart city, connected vehicles, infrastructures, VANET, wireless communication, intelligent traffic management

Procedia PDF Downloads 516
2135 Judicial Review of Indonesia's Position as the First Archipelagic State to implement the Traffic Separation Scheme to Establish Maritime Safety and Security

Authors: Rosmini Yanti, Safira Aviolita, Marsetio

Abstract:

Indonesia has several straits that are very important as a shipping lane, including the Sunda Strait and the Lombok Strait, which are the part of the Indonesian Archipelagic Sea Lane (IASL). An increase in traffic on the Marine Archipelago makes the task of monitoring sea routes increasingly difficult. Indonesia has proposed the establishment of a Traffic Separation Scheme (TSS) in the Sunda Strait and the Lombok Strait and the country now has the right to be able to conceptualize the TSS as well as the obligation to regulate it. Indonesia has the right to maintain national safety and sovereignty. In setting the TSS, Indonesia needs to issue national regulations that are in accordance with international law and the general provisions of the IMO (International Maritime Organization) can then be used as guidelines for maritime safety and security in the Sunda Strait and the Lombok Strait. The research method used is a qualitative method with the concept of linguistic and visual data collection. The source of the data is the analysis of documents and regulations. The results show that the determination of TSS was justified by International Law, in accordance with article 22, article 41, and article 53 of the United Nations Convention on the Law of the Sea (UNCLOS) 1982. The determination of TSS by the Indonesian government would be in accordance with COLREG (International Convention on Preventing Collisions at Sea) 10, which has been designed to follow IASL. Thus, TSS can provide a function as a safety and monitoring medium to minimize ship accidents or collisions, including the warship and aircraft of other countries that cross the IASL.

Keywords: archipelago state, maritime law, maritime security, traffic separation scheme

Procedia PDF Downloads 124
2134 A Monocular Measurement for 3D Objects Based on Distance Area Number and New Minimize Projection Error Optimization Algorithms

Authors: Feixiang Zhao, Shuangcheng Jia, Qian Li

Abstract:

High-precision measurement of the target’s position and size is one of the hotspots in the field of vision inspection. This paper proposes a three-dimensional object positioning and measurement method using a monocular camera and GPS, namely the Distance Area Number-New Minimize Projection Error (DAN-NMPE). Our algorithm contains two parts: DAN and NMPE; specifically, DAN is a picture sequence algorithm, NMPE is a relatively positive optimization algorithm, which greatly improves the measurement accuracy of the target’s position and size. Comprehensive experiments validate the effectiveness of our proposed method on a self-made traffic sign dataset. The results show that with the laser point cloud as the ground truth, the size and position errors of the traffic sign measured by this method are ± 5% and 0.48 ± 0.3m, respectively. In addition, we also compared it with the current mainstream method, which uses a monocular camera to locate and measure traffic signs. DAN-NMPE attains significant improvements compared to existing state-of-the-art methods, which improves the measurement accuracy of size and position by 50% and 15.8%, respectively.

Keywords: monocular camera, GPS, positioning, measurement

Procedia PDF Downloads 135
2133 Phenomenon of Raveling Distress on the Flexible Pavements: An Overview

Authors: Syed Ali Shahbaz Shah

Abstract:

In the last few years, Bituminous Asphaltic roads are becoming popular day by day in the world. Plenty of research has been carried out to identify many advantages like safety, environmental effects, and comfort. Some other benefits are minimal noise and skid resistance enhancement. Besides the benefits of asphaltic roads, the permeable structure of the road also causes some distress, and raveling is one of the crucial defects. The main reason behind this distress is the failure of adhesion between bitumen mortar, specifically due to excessive load from heavy traffic. The main focus of this study is to identify the root cause and propose both the long-term and the short-term solutions of raveling on a specific road section depicting the overall road situation from the bridge of Kahuta road towards the intersection of the Islamabad express highway. The methodology adopted for this purpose is visual inspections in-situ. It was noted that there were chunks of debris on the road surface, which indicates that the asphalt binder is aged the most probably. Further laboratory testing would confirm that either asphalt binder is aged or inadequate compaction was adept during cold weather paving.

Keywords: asphaltic roads, asphalt binder, distress, raveling

Procedia PDF Downloads 105
2132 Air Quality Assessment for a Hot-Spot Station by Neural Network Modelling of the near-Traffic Emission-Immission Interaction

Authors: Tim Steinhaus, Christian Beidl

Abstract:

Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modeling the exact interaction remains challenging. In this paper, a novel approach for the determination of the emission-immission interaction on the basis of neural network modeling for traffic induced NO2-immission load within a near-traffic hot-spot scenario is presented. In a detailed sensitivity analysis, the significance of relevant influencing variables on the prevailing NO2 concentration is initially analyzed. Based on this, the generation process of the model is described, in which not only environmental influences but also the vehicle fleet composition including its associated segment- and certification-specific real driving emission factors are derived and used as input quantities. The validity of this approach, which has been presented in the past, is re-examined in this paper using updated data on vehicle emissions and recent immission measurement data. Within the framework of a final scenario analysis, the future development of the immission load is forecast for different developments in the vehicle fleet composition. It is shown that immission levels of less than half of today’s yearly average limit values are technically feasible in hot-spot situations.

Keywords: air quality, emission, emission-immission-interaction, immission, NO2, zero impact

Procedia PDF Downloads 123
2131 Stress Analysis of Buried Pipes from Soil and Traffic Loads

Authors: A. Mohamed, A. El-Hamalawi, M. Frost, A. Connell

Abstract:

Often design standards do not provide guidance or formulae for the calculation of stresses on buried pipelines caused by external loads. Frequently engineers rely on other methods and published sources of information to calculate such imposed stresses and a variety of methods can be used. This paper reviews three current approaches to soil pipeline interaction modelling to predict stresses on buried pipelines subjected to soil overburden and traffic loading. The traditional approach to use empirical stress formulas to calculate circumferential bending stresses on pipelines. The alternative approaches considered are the use of a finite element package to compute an estimate of circumferential bending stress and a proprietary stress analysis system (SURFLOAD) to estimate the circumferential bending stress. The results from analysis using the methods are presented and compared to experimental results in terms of predicted and measured circumferential stresses. This study shows that the approach used to assess externally generated stress is important and can lead to an over-conservative analysis. Using FE analysis either through SURFLOAD or a general FE package to predict circumferential stress is the most accurate way to undertake stress analysis due to traffic and soil loads. Although conservative, classical empirical methods will continue to be applied to the analysis of buried pipelines, an opportunity exists, therefore, in many circumstances, to use applied numerical techniques, made possible by advances in finite element analysis.

Keywords: buried pipelines, circumferential bending stress, finite element analysis, soil overburden, soil pipeline interaction analysis (SPIA), traffic loadings

Procedia PDF Downloads 433
2130 Growth and Development of Autorickshaws in Kolkata Municipal Corporation Area: Enigma to Planners

Authors: Lopamudra Bakshi Basu

Abstract:

Transport is one of the most important characteristic features of Indian cities. The physical and societal requirements determine the selection of a particular transport system along with the uniqueness of road networks. Kolkata has a mixed traffic of which Paratransit system plays a crucial role. It is an indispensable transport system in Kolkata mainly because of its size and service flexibility which has led to a unique network character. The paratransit system, mainly the autorickshaws, is the most favoured mode of transport in the city. Its fast movement and comfortability make it a vital transport system of the city. Since the inception of the autorickshaws in Kolkata in 1981, this mode has gained popularity and presently serves nearly 80 to 90 percent of the total passenger trips. This employment generating mode of transport has increased its number rapidly affecting the city’s traffic. Minimal check on their growth by the authority has led to traffic snarls along many streets of Kolkata. Indiscipline behavior, violation of traffic rules and rash driving make situations even worse. The rise in the number and increasing popularity of the autorickshaws make it an interesting study area. Autorickshaws as a paratransit mode play its role as a leader or a follower. However, it is informal in its planning and operations, which makes it a problem area for the city. The entire research work deals with the growth and expansion of the number of vehicles and the routes within the city. The development of transport system has been interesting in the city, which has been studied. The growth of the paratransit modes in the city has been rapid. The network pattern of the paratransit mode within Kolkata has been analysed.

Keywords: growth, informal, network characteristics, paratransit, service flexibility

Procedia PDF Downloads 229
2129 The Determination of Co, Cd and Pb in Seafoods of Thewet Market, Bangkok to Develop Quality of Life of Consumer

Authors: Chinnawat Satsananan

Abstract:

The amount of heavy metals in our environment has been of great concern because of their toxicity when their concentration is more than the permissible level. These metals enter the environment by different ways such as industrial activities, soil pollution. We have used flame atomic absorption spectrometry technique for determination of the concentration of Co, Cd and Pb in different tissues of five samples of seafoods (mackerel, squid, mussels, scallops and shrimp). The concentrations of Co, Cd and Pb in all examined seafoods were less than the reported literature values (WHO). The results mentioned that the seafoods obtained from Thewet Market were safety to consumption and make the quality of life of people in the community look better.

Keywords: heavy metals, seafood, atomic absorption spectrometry, Bangkok

Procedia PDF Downloads 330
2128 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity

Authors: B. S. Yadav, A. Mani, S. Srivastava

Abstract:

Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.

Keywords: abiotic stress, biological network, chickpea, microarray

Procedia PDF Downloads 186
2127 Design and Synthesis of Copper Doped Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal from Waste Water

Authors: Feleke Terefe Fanta

Abstract:

The existence of heavy metals and microbial contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, has become a public concern as human population increases and land development continues. This is because effluents from chemical and pharmaceutical industries are directly discharged onto surrounding land, irrigation fields and surface water bodies. In the present study, we synthesised zeolites and copper- zeolite composite based adsorbent through cost effective and simple approach to mitigate the problem. The study presents determination of heavy metal content and microbial contamination level of waste water sample collected from Akaki river using zeolites and copper- doped zeolites as adsorbents. The synthesis of copper- zeolite X composite was carried out by ion exchange method of copper ions into zeolites frameworks. The optimum amount of copper ions loaded into the zeolites frameworks were studied using the pore size determination concept via iodine test. The copper- loaded zeolites were characterized by X-ray diffraction (XRD). The XRD analysis showed clear difference in phase purity of zeolite before and after copper ion exchange. The concentration of Cd, Cr, and Pb were determined in waste water sample using atomic absorption spectrophotometry. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. The concentration of Cd, Cr, and Pb decreased to 0.005, 0.052 and BDL mg/L for sample treated with bare zeolite X while a further decrease in concentration of Cd, Cr, and Pb (0.005, BDL and BDL) mg/L respectively was observed for the sample treated with copper- zeolite composite. The antimicrobial activity was investigated by exposing the total coliform to the Zeolite X and Copper-modified Zeolite X. Zeolite X and Copper-modified Zeolite X showed complete elimination of microbilas after 90 and 50 minutes contact time respectively. This demonstrates effectiveness of copper- zeolite composite as efficient disinfectant. To understand the mode of heavy metals removal and antimicrobial activity of the copper-loaded zeolites; the adsorbent dose, contact time, temperature was studied. Overall, the results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbent.

Keywords: waste water, copper doped zeolite x, adsorption heavy metal, disinfection

Procedia PDF Downloads 70
2126 Heavy Metals and Carcinogenic Risk Assessment in Free-Ranged Livestock of Lead-Contaminated Goldmine Communities of Zamfara State, Northern Nigeria

Authors: Sulaiman Rabiu, Muazu Gusau Abubakar, Jafar Usman Zakari

Abstract:

The consumption of meat is of great importance as it provides a good source of proteins and significant amount of essential trace element to the body. However, contamination of meat and meat products with heavy metals is becoming a serious threat to food safety and public health. Therefore, the present study is aimed to evaluate the concentration of some heavy metals in muscles and entrails of free-ranged cattle, sheep and goats. A total of sixty (60) fresh samples of muscles, liver, kidney, small intestines and stomach of free ranged cattle, sheep and goats were collected from abattoirs of different goldmine communities of Anka, Bukkuyum, Maru andTalata-Mafara Local Government Areas of Zamfara State, Nigeria. The samples were digested using 10 mL of a mixed 70% high grade concentration of HNO₃ and 65% HCl (4:1 v/v); the mixture was heated until dense fumes disappeared forming a clear transparent solution and diluted to 50 mL with deionized water. Actual concentrations of Cd, Cr, Cu, Co, As, Ni, Mn, Pb and Zn were determined using Microwave Plasma Atomic Emission Spectrophotometer (MP-AES). From the results obtained, goat liver had the highest mean concentration of lead, arsenic, cobalt and manganese (12.43± 0.31, 14.25±0.32, 3.47± 0.86 and 12.68± 0.92 mg/kg respectively) while goat kidney had the highest concentration of copper and zinc (10.08±0.61 and 24.16±1.30 mg/kg respectively). The highest concentrations of cadmium and nickel were recorded in sheep kidney (7.75± 0.65 and 2.08±0.10 mg/kg respectively). Cattle muscles had the highest chromium concentration than all the organs analysed. The target hazard quotients (THQs) for all the metals were below 1.0, but TR which is a risk indices for carcinogenicity indicates an alarming result that requires stringent control to protect public health.Therefore, intensive public health awareness on the risk associated with contamination of heavy metals in meat should be advocated.

Keywords: contamination, goldmine, heavy metals, meat

Procedia PDF Downloads 96
2125 Determination of Cr Content in Canned Fish Marketed in Iran

Authors: Soheil Sobhanardakani, Seyed Vali Hosseini, Lima Tayebi

Abstract:

The presence of heavy metals in the environment could constitute a hazard to food security and public health. These can be accumulated in aquatic animals such as fish. Samples of four popular brands of canned fish in the Iranian market (yellowfin tuna, common Kilka, Kawakawa, and longtail tuna) were analyzed for level of Cr after wet digestion with acids using graphite furnace atomic absorption spectrophotometry. The mean concentrations for Cr in the different brands were: 2.57, 3.24, 3.16, and 1.65 μg/g for brands A, B, C, and D respectively. Significant differences were observed in the Cr levels between all of the different brands of canned fish evaluated in this study. The Cr concentrations for the varieties of canned fishes were generally within the FAO/WHO, U.S. FDA, and U.S. EPA recommended limits for fish.

Keywords: heavy metals, essential metals, canned fish, food security

Procedia PDF Downloads 286
2124 Estimation of Particle Number and Mass Doses Inhaled in a Busy Street in Lublin, Poland

Authors: Bernard Polednik, Adam Piotrowicz, Lukasz Guz, Marzenna Dudzinska

Abstract:

Transportation is considered to be responsible for increased exposure of road users – i.e., drivers, car passengers, and pedestrians as well as inhabitants of houses located near roads - to pollutants emitted from vehicles. Accurate estimates are, however, difficult as exposure depends on many factors such as traffic intensity or type of fuel as well as the topography and the built-up area around the individual routes. The season and weather conditions are also of importance. In the case of inhabitants of houses located near roads, their exposure depends on the distance from the road, window tightness and other factors that decrease pollutant infiltration. This work reports the variations of particle concentrations along a selected road in Lublin, Poland. Their impact on the exposure for road users as well as for inhabitants of houses located near the road is also presented. Mobile and fixed-site measurements were carried out in peak (around 8 a.m. and 4 p.m.) and off-peak (12 a.m., 4 a.m., and 12 p.m.) traffic times in all 4 seasons. Fixed-site measurements were performed in 12 measurement points along the route. The number and mass concentration of particles was determined with the use of P-Trak model 8525, OPS 3330, DustTrak DRX model 8533 (TSI Inc. USA) and Grimm Aerosol Spectrometer 1.109 with Nano Sizer 1.321 (Grimm Aerosol Germany). The obtained results indicated that the highest concentrations of traffic-related pollution were measured near 4-way traffic intersections during peak hours in the autumn and winter. The highest average number concentration of ultrafine particles (PN0.1), and mass concentration of fine particles (PM2.5) in fixed-site measurements were obtained in the autumn and amounted to 23.6 ± 9.2×10³ pt/cm³ and 135.1 ± 11.3 µg/m³, respectively. The highest average number concentration of submicrometer particles (PN1) was measured in the winter and amounted to 68 ± 26.8×10³ pt/cm³. The estimated doses of particles deposited in the commuters’ and pedestrians’ lungs within an hour near 4-way TIs in peak hours in the summer amounted to 4.3 ± 3.3×10⁹ pt/h (PN0.1) and 2.9 ± 1.4 µg/h (PM2.5) and 3.9 ± 1.1×10⁹ pt/h (PN0.1) or 2.5 ± 0.4 µg/h (PM2.5), respectively. While estimating the doses inhaled by the inhabitants of premises located near the road one should take into account different fractional penetration of particles from outdoors to indoors. Such doses assessed for the autumn and winter are up to twice as high as the doses inhaled by commuters and pedestrians in the summer. In the winter traffic-related ultrafine particles account for over 70% of all ultrafine particles deposited in the pedestrians’ lungs. The share of traffic-related PM10 particles was estimated at approximately 33.5%. Concluding, the results of the particle concentration measurements along a road in Lublin indicated that the concentration is mainly affected by the traffic intensity and weather conditions. Further detailed research should focus on how the season and the metrological conditions affect concentration levels of traffic-related pollutants and the exposure of commuters and pedestrians as well as the inhabitants of houses located near traffic routes.

Keywords: air quality, deposition dose, health effects, vehicle emissions

Procedia PDF Downloads 89
2123 Biosorption of Heavy Metals by Low Cost Adsorbents

Authors: Azam Tabatabaee, Fereshteh Dastgoshadeh, Akram Tabatabaee

Abstract:

This paper describes the use of by-products as adsorbents for removing heavy metals from aqueous effluent solutions. Products of almond skin, walnut shell, saw dust, rice bran and egg shell were evaluated as metal ion adsorbents in aqueous solutions. A comparative study was done with commercial adsorbents like ion exchange resins and activated carbon too. Batch experiments were investigated to determine the affinity of all of biomasses for, Cd(ΙΙ), Cr(ΙΙΙ), Ni(ΙΙ), and Pb(ΙΙ) metal ions at pH 5. The rate of metal ion removal in the synthetic wastewater by the biomass was evaluated by measuring final concentration of synthetic wastewater. At a concentration of metal ion (50 mg/L), egg shell adsorbed high levels (98.6 – 99.7%) of Pb(ΙΙ) and Cr(ΙΙΙ) and walnut shell adsorbed high levels (35.3 – 65.4%) of Ni(ΙΙ) and Cd(ΙΙ). In this study, it has been shown that by-products were excellent adsorbents for removal of toxic ions from wastewater with efficiency comparable to commercially available adsorbents, but at a reduced cost. Also statistical studies using Independent Sample t Test and ANOVA Oneway for statistical comparison between various elements adsorption showed that there isn’t a significant difference in some elements adsorption percentage by by-products and commercial adsorbents.

Keywords: adsorbents, heavy metals, commercial adsorbents, wastewater, by-products

Procedia PDF Downloads 405
2122 Characterization of Coal Fly Ash with Potential Use in the Manufacture Geopolymers to Solidify/Stabilize Heavy Metal Ions

Authors: P. M. Fonseca Alfonso, E. A. Murillo Ruiz, M. Diaz Lagos

Abstract:

Understanding the physicochemical properties and mineralogy of fly ash from a particular source is essential for to protect the environment and considering its possible applications, specifically, in the production of geopolymeric materials that solidify/stabilize heavy metals ions. The results of the characterization of three fly ash samples are shown in this paper. The samples were produced in the TERMOPAIPA IV thermal power plant in the State of Boyaca, Colombia. The particle size distribution, chemical composition, mineralogy, and molecular structure of three samples were analyzed using laser diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction, and infrared spectroscopy respectively. The particle size distribution of the three samples probably ranges from 0.128 to 211 μm. Approximately 59 elements have been identified in the three samples. It is noticeable that the ashes are made up of aluminum and silicon compounds. Besides, the iron phase in low content was also found. According to the results found in this study, the fly ash samples type F has a great potential to be used as raw material for the manufacture of geopolymers with potential use in the stabilization/solidification of heavy metals; mainly due to the presence of amorphous aluminosilicates typical of this type of ash, which react effectively with alkali-activator.

Keywords: fly ash, geopolymers, molecular structure, physicochemical properties.

Procedia PDF Downloads 113
2121 Investigation of Maritime Accidents with Exploratory Data Analysis in the Strait of Çanakkale (Dardanelles)

Authors: Gizem Kodak

Abstract:

The Strait of Çanakkale, together with the Strait of Istanbul and the Sea of Marmara, form the Turkish Straits System. In other words, the Strait of Çanakkale is the southern gate of the system that connects the Black Sea countries with the other countries of the world. Due to the heavy maritime traffic, it is important to scientifically examine the accident characteristics in the region. In particular, the results indicated by the descriptive statistics are of critical importance in order to strengthen the safety of navigation. At this point, exploratory data analysis offers strategic outputs in terms of defining the problem and knowing the strengths and weaknesses against possible accident risk. The study aims to determine the accident characteristics in the Strait of Çanakkale with temporal and spatial analysis of historical data, using Exploratory Data Analysis (EDA) as the research method. The study's results will reveal the general characteristics of maritime accidents in the region and form the infrastructure for future studies. Therefore, the text provides a clear description of the research goals and methodology, and the study's contributions are well-defined.

Keywords: maritime accidents, EDA, Strait of Çanakkale, navigational safety

Procedia PDF Downloads 90
2120 Phycoremiadation of Heavy Metals by Marine Macroalgae Collected from Olaikuda, Rameswaram, Southeast Coast of India

Authors: Suparna Roy, Anatharaman Perumal

Abstract:

The industrial effluent with high amount of heavy metals is known to have adverse effects on the environment. For the removal of heavy metals from aqueous environment, different conventional treatment technologies had been applied gradually which are not economically beneficial and also produce huge quantity of toxic chemical sludge. So, bio-sorption of heavy metals by marine plant is an eco-friendly innovative and alternative technology for removal of these pollutants from aqueous environment. The aim of this study is to evaluate the capacity of heavy metals accumulation and removal by some selected marine macroalgae (seaweeds) from marine environment. Methods: Seaweeds Acanthophora spicifera (Vahl.) Boergesen, Codium tomentosum Stackhouse, Halimeda gracilis Harvey ex. J. Agardh, Gracilaria opuntia Durairatnam.nom. inval. Valoniopsis pachynema (Martens) Boergesen, Caulerpa racemosa var. macrophysa (Sonder ex Kutzing) W. R. Taylor and Hydroclathrus clathratus (C. Agardh) Howe were collected from Olaikuda (09°17.526'N-079°19.662'E), Rameshwaram, south east coast of India during post monsoon period (April’2016). Seaweeds were washed with sterilized and filtered in-situ seawater repeatedly to remove all the epiphytes and debris and clean seaweeds were kept for shade drying for one week. The dried seaweeds were grinded to powder, and one gm powder seaweeds were taken in a 250ml conical flask, and 8 ml of 10 % HNO3 (70 % pure) was added to each sample and kept in room temperature (28 ̊C) for 24 hours and then samples were heated in hotplate at 120 ̊C, boiled to evaporate up to dryness and 20 ml of Nitric acid: Percholoric acid in 4:1 were added to it and again heated to hotplate at 90 ̊C up to evaporate to dryness, then samples were kept in room temperature for few minutes to cool and 10ml 10 % HNO3 were added to it and kept for 24 hours in cool and dark place and filtered with Whatman (589/2) filter paper and the filtrates were collected in 250ml clean conical flask and diluted accurately to 25 ml volume with double deionised water and triplicate of each sample were analysed with Inductively-Coupled plasma analysis (ICP-OES) to analyse total eleven heavy metals (Ag, Cd, B, Cu, Mn, Co, Ni, Cr, Pb, Zn, and Al content of the specified species and data were statistically evaluated for standard deviation. Results: Acanthophora spicifera contains highest amount of Ag (0.1± 0.2 mg/mg) followed by Cu (0.16±0.01 mg/mg), Mn (1.86±0.02 mg/mg), B (3.59±0.2 mg/mg), Halimeda gracilis showed highest accumulation of Al (384.75±0.12mg/mg), Valoniopsis pachynema accumulates maximum amount of Co (0.12±0.01 mg/mg), Zn (0.64±0.02 mg/mg), Caulerpa racemosa var. macrophysa contains Zn (0.63±0.01), Cr (0.26±0.01 mg/mg ), Ni (0.21±0.05), Pb (0.16±0.03 ) and Cd ( 0.02±00 ). Hydroclathrus clathratus, Codium tomentosum and Gracilaria opuntia also contain adequate amount of heavy metals. Conclusions: The mentioned species of seaweeds are contributing important role for decreasing the heavy metals pollution in marine environment by bioaccumulation. So, we can utilise this species to remove excess amount of heavy metals from polluted area.

Keywords: heavy metals pollution, seaweeds, bioaccumulation, eco-friendly, phyco-remediation

Procedia PDF Downloads 228
2119 Bioremediation of Hydrocarbon and Some Heavy Metal Polluted Wastewater Effluent of a Typical Refinery

Authors: S. Abdulsalam, A. D. I. Suleiman, N. M. Musa, M. Yusuf

Abstract:

Environment free of pollutants should be the concern of every individual but with industrialization and urbanization it is difficult to achieve. In view of achieving a pollution limited environment at low cost, a study was conducted on the use of bioremediation technology to remediate hydrocarbons and three heavy metals namely; copper (Cu), zinc (Zn) and iron (Fe) from a typical petroleum refinery wastewater in a closed system. Physicochemical and microbiological characteristics on the wastewater sample revealed that it was polluted with the aforementioned pollutants. Isolation and identification of microorganisms present in the wastewater sample revealed the presence of Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Staphylococcus epidermidis. Bioremediation experiments carried out on five batch reactors with different compositions but at same environmental conditions revealed that treatment T5 (boosted with the association of Bacillus subtilis, Micrococcus luteus) gave the best result in terms of oil and grease content removal (i.e. 67% in 63 days). In addition, these microorganisms were able of reducing the concentrations of heavy metals in the sample. Treatments T5, T3 (boosted with Bacillus subtilis only) and T4 (boosted with Micrococcus luteus only) gave optimum percentage uptakes of 65, 75 and 25 for Cu, Zn and Fe respectively.

Keywords: boosted, bioremediation, closed system, aeration, uptake, wastewater

Procedia PDF Downloads 247
2118 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments

Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers

Abstract:

Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.

Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture

Procedia PDF Downloads 96
2117 Application of Recycled Paper Mill Sludge on the Growth of Khaya Senegalensis and Its Effect on Soil Properties, Nutrients and Heavy Metals

Authors: A. Rosazlin Abdullah, I. Che Fauziah, K. Wan Rasidah, A. B. Rosenani

Abstract:

The paper industry performs an essential role in the global economy of the world. A study was conducted on the paper mill sludge that is applied on the Khaya senegalensis for 1 year planning period at University Agriculture Park, Puchong, Selangor, Malaysia to determine the growth of Khaya senegalensis, soil properties, nutrients concentrations and effects on the status of heavy metals. Paper Mill Sludge (PMS) and composted Recycled Paper Mill Sludge (RPMS) were used with different rates of nitrogen (0, 150, 300 and 600 kg ha-1) at the ratio of 1:1 (Recycled Paper Mill Sludge (RPMS) : Empty Fruit Brunch (EFB). The growth parameters were measured twice a month for 1 year. Plant nutrients and heavy metal uptake were determined. The paper mill sludge has the potential to be a supplementary N fertilizer as well as a soil amendment. The application of RPMS with N, significantly contributed to the improvement in plant growth parameters such as plant height (4.24 m), basal diameter (10.30 cm), total plant biomass and improved soil physical and chemical properties. The pH, EC, available P and total C in soil were varied among the treatments during the planting period. The treatments with raw and RPM compost had higher pH values than those applied with inorganic fertilizer and control. Nevertheless, there was no salinity problem recorded during the planting period and available P in soil treated with raw and RPMS compost was higher than the control plots that reflects the mineralization of organic P from the decomposition of pulp sludge. The weight of the free and occluded light fractions of carbon concentration was significantly higher in the soils treated with raw and RPMS compost. The application of raw and composted RPMS gave significantly higher concentration of the heavy metals, but the total concentrations of heavy metals in the soils were below the critical values. Hence, the paper mill sludge can be successfully used as soil amendment in acidic soil without any serious threat. The use of paper mill sludge for the soil fertility, shows improvement in land application signifies a unique opportunity to recycle sludge back to the land to alleviate the potential waste management problem.

Keywords: growth, heavy metals, nutrients uptake, production, waste management

Procedia PDF Downloads 362
2116 Traffic Density Measurement by Automatic Detection of the Vehicles Using Gradient Vectors from Aerial Images

Authors: Saman Ghaffarian, Ilgin Gökaşar

Abstract:

This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.

Keywords: aerial images, intelligent transportation systems, traffic density measurement, vehicle detection

Procedia PDF Downloads 374
2115 Analysis of the IEEE 802.15.4 MAC Parameters to Achive Lower Packet Loss Rates

Authors: Imen Bouazzi

Abstract:

The IEEE-802.15.4 standard utilizes the CSMA-CA mechanism to control nodes access to the shared wireless communication medium. It is becoming the popular choice for various applications of surveillance and control used in wireless sensor network (WSN). The benefit of this standard is evaluated regarding of the packet loss probability who depends on the configuration of IEEE 802.15.4 MAC parameters and the traffic load. Our exigency is to evaluate the effects of various configurable MAC parameters on the performance of beaconless IEEE 802.15.4 networks under different traffic loads, static values of IEEE 802.15.4 MAC parameters (macMinBE, macMaxCSMABackoffs, and macMaxFrame Retries) will be evaluated. To performance analysis, we use ns-2[2] network simulator.

Keywords: WSN, packet loss, CSMA/CA, IEEE-802.15.4

Procedia PDF Downloads 333
2114 Method Validation for Heavy Metal Determination in Spring Water and Sediments

Authors: Habtamu Abdisa

Abstract:

Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data.

Keywords: method validation, heavy metal, spring water, sediment, method detection limit

Procedia PDF Downloads 62
2113 Assessment of Heavy Metals Contamination Levels in Groundwater: A Case Study of the Bafia Agricultural Area, Centre Region Cameroon

Authors: Carine Enow-Ayor Tarkang, Victorine Neh Akenji, Dmitri Rouwet, Jodephine Njdma, Andrew Ako Ako, Franco Tassi, Jules Remy Ngoupayou Ndam

Abstract:

Groundwater is the major water resource in the whole of Bafia used for drinking, domestic, poultry and agricultural purposes, and being an area of intense agriculture, there is a great necessity to do a quality assessment. Bafia is one of the main food suppliers in the Centre region of Cameroon, and so to meet their demands, the farmers make use of fertilizers and other agrochemicals to increase their yield. Less than 20% of the population in Bafia has access to piped-borne water due to the national shortage, according to the authors best knowledge very limited studies have been carried out in the area to increase awareness of the groundwater resources. The aim of this study was to assess heavy metal contamination levels in ground and surface waters and to evaluate the effects of agricultural inputs on water quality in the Bafia area. 57 water samples (including 31 wells, 20 boreholes, 4 rivers and 2 springs) were analyzed for their physicochemical parameters, while collected samples were filtered, acidified with HNO3 and analyzed by ICP-MS for their heavy metal content (Fe, Ti, Sr, Al, Mn). Results showed that most of the water samples are acidic to slightly neutral and moderately mineralized. Ti concentration was significantly high in the area (mean value 130µg/L), suggesting another Ti source besides the natural input from Titanium oxides. The high amounts of Mn and Al in some cases also pointed to additional input, probably from fertilizers that are used in the farmlands. Most of the water samples were found to be significantly contaminated with heavy metals exceeding the WHO allowable limits (Ti-94.7%, Al-19.3%, Mn-14%, Fe-5.2% and Sr-3.5% above limits), especially around farmlands and topographic low areas. The heavy metal concentration was evaluated using the heavy metal pollution index (HPI), heavy metal evaluation index (HEI) and degree of contamination (Cd), while the Ficklin diagram was used for the water based on changes in metal content and pH. The high mean values of HPI and Cd (741 and 5, respectively), which exceeded the critical limit, indicate that the water samples are highly contaminated, with intense pollution from Ti, Al and Mn. Based on the HPI and Cd, 93% and 35% of the samples, respectively, are unacceptable for drinking purposes. The lowest HPI value point also had the lowest EC (50 µS/cm), indicating lower mineralization and less anthropogenic influence. According to the Ficklin diagram, 89% of the samples fell within the near-neutral low-metal domain, while 9% fell in the near-neutral extreme-metal domain. Two significant factors were extracted from the PCA, explaining 70.6% of the total variance. The first factor revealed intense anthropogenic activity (especially from fertilizers), while the second factor revealed water-rock interactions. Agricultural activities thus have an impact on the heavy metal content of groundwater in the area; hence, much attention should be given to the affected areas in order to protect human health/life and thus sustainably manage this precious resource.

Keywords: Bafia, contamination, degree of contamination, groundwater, heavy metal pollution index

Procedia PDF Downloads 75
2112 Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar

Authors: Dhritilekha Deka, Deepak Patwa, Ravi K., Archana M. Nair

Abstract:

Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species.

Keywords: phytoextraction, biochar, heavy metals, chrysopogon zizanioides, bioaccumulation factor

Procedia PDF Downloads 60