Search results for: emission scenarios
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2736

Search results for: emission scenarios

2226 High-Resolution Surface Temperature Changes for Portugal Under CMIP6 Future Climate Scenarios

Authors: David Carvalho

Abstract:

Future changes in the mean, maximum and minimum temperature in continental Portugal were investigated using high-resolution future climate projections based on the latest IPCC AR6 CMIP6 climate scenarios. The results show that the mean, maximum and minimum temperatures are projected to increase substantially in all of continental Portugal, particularly in the south-central inland regions. For the near-term future (2046-2065 period), SSP3-7.0 is the future climate scenario that projects higher increases of around 1 ºC, 1.5 ºC and 2 ºC for the daily mean, maximum and minimum temperatures, respectively. For the long-term future (2081-2100 period), the projected warming is higher, particularly under the SSP5-8.5 future climate scenario with projected warmings of 3 ºC, 3.5 ºC and 2.5 ºC for the daily mean, maximum and minimum temperatures, respectively. Occurrences of hot days (mean temperature above 30 ºC), very hot days (maximum temperature above 40 ºC) and tropical nights (minimum temperature above 20 ºC) are all projected to increase up to 35-40, 12-15 and 50 more days per year, respectively, mainly in the interior areas of Portugal. Oppositely, the occurrence of frost days is projected to decrease in practically all mountainous areas in Portugal. These results show a clear tendency of a significant increase in the surface temperatures and frequency of occurrence of extreme temperature episodes in continental Portugal, which can have severe impacts on the population, environment, economy and vital human activities such as agriculture.

Keywords: climate change, global warming, CMIP6, Portugal

Procedia PDF Downloads 21
2225 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 369
2224 Feeling Bad May Not Make You Behave Unethically! Lessons Learned From the 2022 Shanghai COVID-19 Lockdown

Authors: Zeren Li, Wenkai Song

Abstract:

Shanghai experienced a 3-month lockdown in 2022. This unprecedented lockdown made local residents afraid, anxious and worried about the unpredictability of the future. During the lockdown, many unethical behaviors related to lockdown are noticed by the public. Our studies documented unethical behavior during this lockdown by moral hypocrisy and moral justification examined whether or not the lockdown makes people behave more unethically, and analyzed the relationship between negative emotions and unethical behavior. In Study 1, we recruited 240 participants from Shanghai (n = 120) and other cities (n = 120) to compare people in lockdown and non-lockdown areas. Surprisingly, we found that people in lockdown areas tend to behave more ethically, exhibiting less moral hypocrisy. In addition, residents of the lockdown area have significantly higher negative emotions (afraid, nervousness, upset, and feelings of uncertainty). In Study 2, we recruited 70 respondents from Shanghai and found that people behave relatively ethically in lockdown-related scenarios (negatively correlated with anxiety about the lockdown) with relatively less moral justification than in lockdown-unrelated scenarios. We propose that negative emotions may reduce unethical behavior that may exacerbate the causes (in our study, the lockdown) of these negative emotions. Experiments may help to establish the causal relationship and verify the model in future research.

Keywords: COVID-19, unethical behavior, emotion, anxiety, moral justification, moral hypocrisy, China

Procedia PDF Downloads 71
2223 Technical and Environmental Improvement of LNG Carrier's Propulsion Machinery by Using Jatropha Biao Diesel Fuel

Authors: E. H. Hegazy, M. A. Mosaad, A. A. Tawfik, A. A. Hassan, M. Abbas

Abstract:

The rapid depletion of petroleum reserves and rising oil prices has led to the search for alternative fuels. A promising alternative fuel Jatropha Methyl Easter, JME, has drawn the attention of researchers in recent times as a high potential substrate for production of biodiesel fuel. In this paper, the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with JME, diesel oil and natural gas are evaluated experimentally and theoretically. The experimental results showed that the thermal and volumetric efficiency of diesel engine is higher than Jatropha biodiesel engine. The specific fuel consumption, exhaust gas temperature, HC, CO2 and NO were comparatively higher in Jatropha biodiesel, while CO emission is appreciable decreased. CFD investigation was carried out in the present work to compare diesel fuel oil and JME. The CFD simulation offers a powerful and convenient way to help understanding physical and chemical processes involved internal combustion engines for diesel oil fuel and JME fuel. The CFD concluded that the deviation between diesel fuel pressure and JME not exceeds 3 bar and the trend for compression pressure almost the same, also the temperature deviation between diesel fuel and JME not exceeds 40 k and the trend for temperature almost the same. Finally the maximum heat release rate of JME is lower than that of diesel fuel. The experimental and CFD investigation indicated that the Jatropha biodiesel can be used instead of diesel fuel oil with safe engine operation.

Keywords: dual fuel diesel engine, natural gas, Jatropha Methyl Easter, volumetric efficiency, emissions, CFD

Procedia PDF Downloads 655
2222 An Equitable Strategy to Amend Zero-Emission Vehicles Incentives for Travelers: A Policy Review

Authors: Marie Louis

Abstract:

Even though many stakeholders are doing their very best to promote public transportation around the world, many areas are still public transportation non-accessible. With travelers purchasing and driving their private vehicles can be considered as a threat to all three aspects of the sustainability (e.g., economical, social, environmental). However, most studies that considered simultaneously all three aspects of the sustainability concept when planning and designing public transportation for a corridor have found tradeoffs among the said three aspects.One of the tradeoffs was identified by looking at tipping points of the travel demands to question whether transit agencies/and or transportation policymakers should either operate smaller buses or provide incentives to purchase Leadership in Energy and Environmental Design (LEED)-Qualified low-emission vehicles or greener vehicles (e.g., hybrid). However, how and when do the department of environmental protection (DEP) and the department of revenue (DOR) figure out how much incentives to give to each traveler who lives in a zoning that is considered as public transportation inaccessible or accessible? To answer this policy question, this study aims to compare the greenhouse gases (GHGs) emissions when hybrid and conventional cars are used to access public transportation stops/stations. Additionally, this study also intends to review previous states that have already adopted low-emissions vehicle (LEVs) or Zero-Emissions Vehicles (ZEVs) to diminish the daily GHGs pollutants.

Keywords: LEED-qualified vehicles, public transit accessibility, hybrid vehicles incentives, sustainability trade-offs

Procedia PDF Downloads 184
2221 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios

Authors: Nour Wehbe

Abstract:

The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.

Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach

Procedia PDF Downloads 236
2220 Impact of Ozone Produced by Vehicular Emission on Chronic Obstructive Pulmonary Disease

Authors: Mohd Kamil Vakil

Abstract:

Air Pollution is caused by the introduction of chemicals in the biosphere. Primary pollutants on reaction with the components of the earth produce Secondary Pollutants like Smog. Ozone is the main ingredient of Smog. The ground level ozone is created by the chemical reactions between Nitrogen Oxides (NOx) and Volatile Organic Compounds (VOCs) in the presence of Sunlight. This ozone can enter inside and call as indoor ozone. The automobile emissions in both moving and idling conditions contribute to the indoor ozone formation. During engine ignition and shutdown, motor vehicles emit the ozone forming pollutants like NOx and VOCs, and the phenomena are called Cold Start and Hot-Soak respectively. Subjects like Chronic Obstructive Pulmonary Disease (COPD) and asthma associated with chronic respiratory diseases are susceptible to the harmful effects of Indoor Ozone. The most common cause of COPD other than smoking is the long-term contract with harmful pollutants like ground-level ozone. It is estimated by WHO that COPD will become the third leading cause of all deaths worldwide by 2030. In this paper, the cold-start and hot-soak vehicle emissions are studied in the context of accumulation of oxides of nitrogen at the outer walls of the building which may cause COPD. The titanium oxide coated building material is further discussed as an absorber of NOx when applied to the walls and roof.

Keywords: indoor air quality, cold start emission, hot-soak, ozone

Procedia PDF Downloads 191
2219 Physicochemical and Biological Characterization of Fine Particulate Matter in Ambient Air in Capital City of Pakistan

Authors: Sabir Hussain, Mujtaba Hassan, Kashif Rasool, Asif Shahzad

Abstract:

Fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) was collected in Islamabad from November 2022 to January 2023, at urban sites. The average mass concentrations of PM2.5 varied, ranging from 90.5 to 133 μg m−3 in urban areas. Environmental scanning electron microscopy (ESEM) analysis revealed that Islamabad's PM2.5 comprised soot aggregates, ashes, minerals, bio-particles, and unidentified particles. Results from inductively coupled plasma atomic emission spectroscopy (ICP-OES) indicated a gradual increase in total elemental concentrations in Islamabad PM2.5 in winter, with relatively high levels in December. Significantly different elemental compositions were observed in urban PM2.5. Enrichment factor (EF) analysis suggested that elements such as K, Na, Ca, Mg, Al, Fe, Ba, and Sr were of natural origin, while As, Cu, Zn, Pb, Cd, Mn, Ni, and Se originated from anthropogenic sources. Plasmid DNA assays demonstrated varying levels of potential toxicity in Islamabad PM2.5 collected from urban sites, as well as across different seasons. Notably, the urban winter PM2.5 sample exhibited much stronger toxicity compared to other samples. The presence of heavy metals in Islamabad PM2.5, including Cu, Zn, Pb, Cd, Cr, Mn, and Ni, may have synergistic effects on human health.

Keywords: islamabad particulate matter pm2.5, scanning electron microscopy with energy-dispersive x-ray spectroscopy(sem-eds), fourier transform infrared spectroscopy(ftir), inductively coupled plasma optical emission spectroscopy(icp-oes)

Procedia PDF Downloads 52
2218 Chinese Undergraduates’ Trust in And Usage of Machine Translation: A Survey

Authors: Bi Zhao

Abstract:

Neural network technology has greatly improved the output of machine translation in terms of both fluency and accuracy, which greatly increases its appeal for young users. The present exploratory study aims to find out how the Chinese undergraduates perceive and use machine translation in their daily life. A survey is conducted to collect data from 100 undergraduate students from multiple Chinese universities and with varied academic backgrounds, including arts, business, science, engineering, and medicine. The survey questions inquire about their use (including frequency, scenarios, purposes, and preferences) of and attitudes (including trust, quality assessment, justifications, and ethics) toward machine translation. Interviews and tasks of evaluating machine translation output are also employed in combination with the survey on a sample of selected respondents. The results indicate that Chinese undergraduate students use machine translation on a daily basis for a wide range of purposes in academic, communicative, and entertainment scenarios. Most of them have preferred machine translation tools, but the availability of machine translation tools within a certain scenario, such as the embedded machine translation tool on the webpage, is also the determining factor in their choice. The results also reveal that despite the reportedly limited trust in the accuracy of machine translation output, most students lack the ability to critically analyze and evaluate such output. Furthermore, the evidence is revealed of the inadequate awareness of ethical responsibility as machine translation users among Chinese undergraduate students.

Keywords: Chinese undergraduates, machine translation, trust, usage

Procedia PDF Downloads 120
2217 Analyzing Façade Scenarios and Daylight Levels in the Reid Building: A Reflective Case Study on the Designed Daylight under Overcast Sky

Authors: Eman Mayah, Raid Hanna

Abstract:

This study presents the use of daylight in the case study of the Reid building at the Glasgow School of Art in the city of Glasgow, UK. In Nordic countries, daylight is one of the main considerations within building design, especially in the face of long, lightless winters. A shortage of daylight, contributing to dark and gloomy conditions, necessitates that designs incorporate strong daylight performance. As such, the building in question is designed to capture natural light for varying needs, where studios are located on the North and South façades. The study’s approach presents an analysis of different façade scenarios, where daylight from the North is observed, analyzed and compared with the daylight from the South façade for various design studios in the building. The findings then are correlated with the results of daylight levels from the daylight simulation program (Autodesk Ecotect Analysis) for the investigated studios. The study finds there to be a dramatic difference in daylight nature and levels between the North and South façades, where orientation, obstructions and designed façade fenestrations have major effects on the findings. The study concludes that some of the studios positioned on the North façade do not have a desirable quality of diffused northern light, due to the outside building’s obstructions, area and volume of the studio and the shadow effect of the designed mezzanine floor in the studios.

Keywords: daylight levels, educational building, Façade fenestration, overcast weather

Procedia PDF Downloads 392
2216 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide

Authors: Sanaz Seraj, Shohre Rouhani

Abstract:

Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.

Keywords: fluorescence, graphene oxide, naphthalimide dye, quenching

Procedia PDF Downloads 578
2215 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique

Authors: Yogish Huchaiah, Chandrashekara Krishnappa

Abstract:

This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.

Keywords: COME, IP, MFCT, optimization, PI, PN, PV

Procedia PDF Downloads 200
2214 Geometric Optimization of Catalytic Converter

Authors: P. Makendran, M. Pragadeesh, N. Narash, N. Manikandan, A. Rajasri, V. Sanal Kumar

Abstract:

The growing severity of government-obligatory emissions legislation has required continuous improvement in catalysts performance and the associated reactor systems. IC engines emit a lot of harmful gases into the atmosphere. These gases are toxic in nature and a catalytic converter is used to convert these toxic gases into less harmful gases. The catalytic converter converts these gases by Oxidation and reduction reaction. Stoichiometric engines usually use the three-way catalyst (TWC) for simultaneously destroying all of the emissions. CO and NO react to form CO2 and N2 over one catalyst, and the remaining CO and HC are oxidized in a subsequent one. Literature review reveals that typically precious metals are used as a catalyst. The actual reactor is composed of a washcoated honeycomb-style substrate, with the catalyst being contained in the washcoat. The main disadvantage of a catalytic converter is that it exerts a back pressure to the exhaust gases while entering into them. The objective of this paper is to optimize the back pressure developed by the catalytic converter through geometric optimization of catalystic converter. This can be achieved by designing a catalyst with a optimum cone angle and a more surface area of the catalyst substrate. Additionally, the arrangement of the pores in the catalyst substrate can be changed. The numerical studies have been carried out using k-omega turbulence model with varying inlet angle of the catalytic converter and the length of the catalyst substrate. We observed that the geometry optimization is a meaningful objective for the lucrative design optimization of a catalytic converter for industrial applications.

Keywords: catalytic converter, emission control, reactor systems, substrate for emission control

Procedia PDF Downloads 894
2213 Economic Analysis of a Carbon Abatement Technology

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah

Abstract:

Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.

Keywords: gas turbine, global warming, green house gas, fossil fuel power plants

Procedia PDF Downloads 385
2212 Using The Flight Heritage From >150 Electric Propulsion Systems To Design The Next Generation Field Emission Electric Propulsion Thrusters

Authors: David Krejci, Tony Schönherr, Quirin Koch, Valentin Hugonnaud, Lou Grimaud, Alexander Reissner, Bernhard Seifert

Abstract:

In 2018 the NANO thruster became the first Field Emission Electric Propulsion (FEEP) system ever to be verified in space in an In-Orbit Demonstration mission conducted together with Fotec. Since then, 160 additional ENPULSION NANO propulsion systems have been deployed in orbit on 73 different spacecraft across multiple customers and missions. These missions included a variety of different satellite bus sizes ranging from 3U Cubesats to >100kg buses, and different orbits in Low Earth Orbit and Geostationary Earth orbit, providing an abundance of on orbit data for statistical analysis. This large-scale industrialization and flight heritage allows for a holistic way of gathering data from testing, integration and operational phases, deriving lessons learnt over a variety of different mission types, operator approaches, use cases and environments. Based on these lessons learnt a new generation of propulsion systems is developed, addressing key findings from the large NANO heritage and adding new capabilities, including increased resilience, thrust vector steering and increased power and thrust level. Some of these successor products have already been validated in orbit, including the MICRO R3 and the NANO AR3. While the MICRO R3 features increased power and thrust level, the NANO AR3 is a successor of the heritage NANO thruster with added thrust vectoring capability. 5 NANO AR3 have been launched to date on two different spacecraft. This work presents flight telemetry data of ENPULSION NANO systems and onorbit statistical data of the ENPULSION NANO as well as lessons learnt during onorbit operations, customer assembly, integration and testing support and ground test campaigns conducted at different facilities. We discuss how transfer of lessons learnt and operational improvement across independent missions across customers has been accomplished. Building on these learnings and exhaustive heritage, we present the design of the new generation of propulsion systems that increase the power and thrust level of FEEP systems to address larger spacecraft buses.

Keywords: FEEP, field emission electric propulsion, electric propulsion, flight heritage

Procedia PDF Downloads 71
2211 A Study on the Synthetic Resin of Fire Risk Using the Room Corner Test

Authors: Ji Hun Choi, Seung Un Chae, Kyeong Suk Cho

Abstract:

Synthetic resins are widely used in various fields including electricity, engineering, construction and agriculture. Many of interior and exterior finishing materials for buildings are synthetic resin products. In this study, full-scale fire tests were conducted on polyvinyl chloride, polypropylene and urethane in accordance with the “ISO 9705: Fire test - Full-scale room test for surface products” to measure heat release rate, toxic gas emission and smoke production rate. Based on the tests, fire growth pattern and fire risk were analyzed. Findings from the tests conducted on polyvinyl chloride and urethane are as follows. The total heat release rate and total smoke production rate of polyvinyl chloride were 98.89MW and 5284.41m2, respectively and its highest CO2 concentration was 0.149%. The values obtained from the test with urethane were 469.94 MW, 3396.28 m2 and 1.549%. While heat release rate and CO2 concentration were higher in urethane implying its high combustibility, smoke production rate was 1.5 times higher in polyvinyl chloride. Follow-up tests are planned to be conducted to accumulate data for the evaluation of heat emission and fire risk associated with synthetic resins.

Keywords: synthetic resins, fire test, full-scale test, heat release rate, smoke production rate, polyvinyl chloride, polypropylene, urethane

Procedia PDF Downloads 420
2210 Investigations of the Crude Oil Distillation Preheat Section in Unit 100 of Abadan Refinery and Its Recommendation

Authors: Mahdi GoharRokhi, Mohammad H. Ruhipour, Mohammad R. ZamaniZadeh, Mohsen Maleki, Yusef Shamsayi, Mahdi FarhaniNejad, Farzad FarrokhZadeh

Abstract:

Possessing massive resources of natural gas and petroleum, Iran has a special place among all other oil producing countries, according to international institutions of energy. In order to use these resources, development and functioning optimization of refineries and industrial units is mandatory. Heat exchanger is one of the most important and strategic equipment which its key role in the process of production is clear to everyone. For instance, if the temperature of a processing fluid is not set as needed by heat exchangers, the specifications of desired product can change profoundly. Crude oil enters a network of heat exchangers in atmospheric distillation section before getting into the distillation tower; in this case, well-functioning of heat exchangers can significantly affect the operation of distillation tower. In this paper, different scenarios for pre-heating of oil are studied using oil and gas simulation software, and the results are discussed. As we reviewed various scenarios, adding a heat exchanger to pre-heating network is proposed as the most efficient factor in improving all governing parameters of the tower i.e. temperature, pressure, and reflux rate. This exchanger is embedded in crude oil’s path. Crude oil enters the exchanger after E-101 and exchanges heat with discharging kerosene pump around from E-136. As depicted in the results, it will efficiently assist the improvement of process operation and side expenses.

Keywords: atmospheric distillation unit, heat exchanger, preheat, simulation

Procedia PDF Downloads 646
2209 Study of Engine Performance and Exhaust Emissions on Multi-Cylinder Turbo-Charged Diesel Engine Operated with B5 Biodiesel Blend

Authors: Pradip Lingfa, L. M. Das, S. N. Naik

Abstract:

In the last three decades the world has been confronting an energy crisis caused by the decreased of fossil resources, and increased of environmental problems. This situation resulted in a search for an alternative fuel. Non-edible vegetable oils are promising sources for producing liquid fuels. In the present experimental investigation, the engine tests were carried out for performance and exhaust emissions on 2.5 L Turbo-charged diesel engine fuelled with 5% biodiesel blend obtained from non-edible vegetable oils such as Jatropha, Karanja, and Castor Seeds. The engine tests were carried out at full throttle position with various engine speeds of 1500, 1750, 2000, 2250, 2750 and 3000 rpm respectively. After test, it was observed that 5% Jatropha biodiesel blend have highest brake power of 46.65 kW and less brake specific fuel consumptions of 225.8 kg/kW-hr compared to other two biodiesel blends of brake power of 45.99 kW, 45.81 kW and brake specific fuel consumption of 234.34, 236.55 kg/kW-hr respectively. The brake specific fuel consumption of biodiesel blends increase at increasing speeds for all biodiesel blends. NOx emissions for biodiesel blends were observed to be higher compared to diesel fuel during the entire range of engine operations. The emission characteristics like CO, HC and smoke were lowered at all engine speed conditions compared to diesel fuel.

Keywords: biodiesel blend, brake power, brake specific fuel consumption, emission, performance

Procedia PDF Downloads 167
2208 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios

Authors: S. Sakthivel

Abstract:

Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.

Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer

Procedia PDF Downloads 124
2207 Performance Enhancement of Hybrid Racing Car by Design Optimization

Authors: Tarang Varmora, Krupa Shah, Karan Patel

Abstract:

Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car.

Keywords: design optimization, hybrid racing car, simulation, vehicle, weight reduction

Procedia PDF Downloads 283
2206 Cross Section Measurement for Formation of Metastable State of ¹¹¹ᵐCd through ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd Reaction Induced by Bremsstrahlung Generated through 6 MeV Electrons

Authors: Vishal D. Bharud, B. J. Patil, S. S. Dahiwale, V. N. Bhoraskar, S. D. Dhole

Abstract:

Photon induced average reaction cross section of ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction was experimentally determined for the bremsstrahlung energy spectrum of 6 MeV by utilizing the activation and offline γ-ray spectrometric techniques. The 6 MeV electron accelerator Racetrack Microtron of Savitribai Phule Pune University, Pune was used for the experimental work. The bremsstrahlung spectrum generated by bombarding 6 MeV electrons on lead target was theoretically estimated by FLUKA code. Bremsstrahlung radiation can have energies exceeding the threshold of the particle emission, which is normally above 6 MeV. Photons of energies below the particle emission threshold undergo absorption into discrete energy levels, with possibility of exciting nuclei to excited state including metastable state. The ¹¹¹Cd (γ, γ`) ¹¹¹ᵐCd reaction cross sections were calculated at different energies of bombarding Photon by using the TALYS 1.8 computer code with a default parameter. The focus of the present work was to study the (γ,γ’) reaction for exciting ¹¹¹Cd nuclei to metastable states which have threshold energy below 3 MeV. The flux weighted average cross section was obtained from the theoretical values of TALYS 1.8 and TENDL 2017 and is found to be in good agreement with the present experimental cross section.

Keywords: bremsstrahlung, cross section, FLUKA, TALYS-1.8

Procedia PDF Downloads 157
2205 A System for Preventing Inadvertent Exposition of Staff Present outside the Operating Theater: Description and Clinical Test

Authors: Aya Al Masri, Kamel Guerchouche, Youssef Laynaoui, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: Mobile C-arms move throughout operating rooms of the operating theater. Being designed to move between rooms, they are not equipped with relays to retrieve the exposition information and export it outside the room. Therefore, no light signaling is available outside the room to warn the X-ray emission for staff. Inadvertent exposition of staff outside the operating theater is a real problem for radiation protection. The French standard NFC 15-160 require that: (1) access to any room containing an X-ray emitting device must be controlled by a light signage so that it cannot be inadvertently crossed, and (2) setting up an emergency button to stop the X-ray emission. This study presents a system that we developed to meet these requirements and the results of its clinical test. Materials and methods: The system is composed of two communicating boxes: o The "DetectBox" is to be installed inside the operating theater. It identifies the various operation states of the C-arm by analyzing its power supply signal. The DetectBox communicates (in wireless mode) with the second box (AlertBox). o The "AlertBox" can operate in socket or battery mode and is to be installed outside the operating theater. It detects and reports the state of the C-arm by emitting a real time light signal. This latter can have three different colors: red when the C-arm is emitting X-rays, orange when it is powered on but does not emit X-rays, and green when it is powered off. The two boxes communicate on a radiofrequency link exclusively carried out in the ‘Industrial, Scientific and Medical (ISM)’ frequency bands and allows the coexistence of several on-site warning systems without communication conflicts (interference). Taking into account the complexity of performing electrical works in the operating theater (for reasons of hygiene and continuity of medical care), this system (having a size <10 cm²) works in complete safety without any intrusion in the mobile C-arm and does not require specific electrical installation work. The system is equipped with emergency button that stops X-ray emission. The system has been clinically tested. Results: The clinical test of the system shows that: it detects X-rays having both high and low energy (50 – 150 kVp), high and low photon flow (0.5 – 200 mA: even when emitted for a very short time (<1 ms)), Probability of false detection < 10-5, it operates under all acquisition modes (continuous, pulsed, fluoroscopy mode, image mode, subtraction and movie mode), it is compatible with all C-arm models and brands. We have also tested the communication between the two boxes (DetectBox and AlertBox) in several conditions: (1) Unleaded room, (2) leaded room, and (3) rooms with particular configuration (sas, great distances, concrete walls, 3 mm of lead). The result of these last tests was positive. Conclusion: This system is a reliable tool to alert the staff present outside the operating room for X-ray emission and insure their radiation protection.

Keywords: Clinical test, Inadvertent staff exposition, Light signage, Operating theater

Procedia PDF Downloads 115
2204 Evaluation of Impact on Traffic Conditions Due to Electronic Toll Collection System Design in Thailand

Authors: Kankrong Suangka

Abstract:

This research explored behaviors of toll way users that impact their decision to use the Electronic Toll Collection System (ETC). It also went on to explore and evaluated the efficiency of toll plaza in terms of number of ETC booths in toll plaza and its lane location. The two main parameters selected for the scenarios analyzed were (1) the varying ration of ETC enabled users (2) the varying locations of the dedicated ETC lane. There were a total of 42 scenarios analyzed. Researched data indicated that in A.D.2013, the percentage of ETC user from the total toll user is 22%. It was found that the delay at the payment booth was reduced by increasing the ETC booth by 1 more lane under the condition that the volume of ETC users passing through the plaza less than 1,200 vehicles/hour. Meanwhile, increasing the ETC lanes by 2 lanes can accommodate an increased traffic volume to around 1,200 to 1,800 vehicles/hour. Other than that, in terms of the location of ETC lane, it was found that if for one ETC lane-plazas, installing the ETC lane at the far right are the best alternative. For toll plazas with 2 ETC lanes, the best layout is to have 1 lane in the middle and 1 lane at the far right. This layout shows the least delay when compared to other layouts. Furthermore, the results from this research showed that micro-simulator traffic models have potential for further applications and use in designing toll plaza lanes. Other than that, the results can also be used to analyze the system of the nearby area with similar traffic volume and can be used for further design improvements.

Keywords: the electronic toll collection system, average queuing delay, toll plaza configuration, bioinformatics, biomedicine

Procedia PDF Downloads 224
2203 Sea Level Rise and Implications for Low-lying areas: Coastal Evolution and Impact of Future Sea Level Rise Scenarios in Mirabello Gulf - NE Crete

Authors: Maria Kazantzaki, Evangelos Tsakalos, Eleni Filippaki, Yannis Bassiakos

Abstract:

Mediterranean areas are characterized by intense seismic and volcanic activity as well as eustatic changes, the result of which is the creation of particularly vulnerable coastal zones. The most vulnerable are low-lying coastal areas, the geomorphological evolution of which are highly affected by natural processes and anthropogenic interventions. Therefore, assessing changes that take place along coastal zones is of great importance in order to enable the development of integrated coastal management plans. A characteristic case is the gulf of Mirabello in N.E Crete, where intense coastal erosion, in combination with the tectonic subsidence of the area, threatens a large part of the coastal zone, resulting in direct socio-economic impacts. The present study assesses the temporal geomorphological changes that have taken place in the coastal zone of Mirabello gulf to provide a clear frame of the coastal zone evolution over time and performs a vulnerability assessment based on the coastal vulnerability index (CVI) methodology by Thieler and Hammar-Klose, considering geological features, coastal slope, relative sea-level change, shoreline erosion/accretion rates and mean significant wave height as well as mean tide range in the area. In light of this, an impact assessment, based on three different sea level rise scenarios, is also performed and presented.

Keywords: coastal vulnerability index, coastal erosion, GIS, sea level rise

Procedia PDF Downloads 161
2202 Phonological Characteristics of Severe to Profound Hearing Impaired Children

Authors: Akbar Darouie, Mamak Joulaie

Abstract:

In regard of phonological skills development importance and its influence on other aspects of language, this study has been performed. Determination of some phonological indexes in children with hearing impairment and comparison with hearing children was the objective. A sample of convenience was selected from a rehabilitation center and a kindergarten in Karaj, Iran. Participants consisted of 12 hearing impaired and 12 hearing children (age range: 5 years and 6 months to 6 years and 6 months old). Hearing impaired children suffered from severe to profound hearing loss while three of them were cochlear implanted and the others were wearing hearing aids. Conversational speech of these children was recorded and 50 first utterances were selected to analyze. Percentage of consonant correct (PCC) and vowel correct (PVC), initial and final consonant omission error, cluster consonant omission error and syllabic structure variety were compared in two groups. Data were analyzed with t test (version 16th SPSS). Comparison between PCC and PVC averages in two groups showed a significant difference (P< 0/01). There was a significant difference about final consonant emission error (P<0/001) and initial consonant emission error (P<0/01) too. Also, the differences between two groups on cluster consonant omission were significant (P<0/001). Therefore, some changes were seen in syllabic structures in children with hearing impairment compared to typical group. This study demonstrates some phonological differences in Farsi language between two groups of children. Therefore, it seems, in clinical practices we must notice this issue.

Keywords: hearing impairment, phonology, vowel, consonant

Procedia PDF Downloads 229
2201 Monte Carlo Risk Analysis of a Carbon Abatement Technology

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele

Abstract:

Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.

Keywords: gas turbine, global warming, green house gases, power plants

Procedia PDF Downloads 458
2200 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 13
2199 Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production

Authors: Homa Torabizadeh, Mohaddeseh Mikani

Abstract:

Inulinase from Aspergillus niger was covalently immobilized on magnetic nanoparticles (MNPs/Fe3O4) covered with soy protein isolate (SPI/Fe3O4) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity. Fe3O4@SPI-BSA nanoparticles were synthesized as a novel carrier with narrow particle size distribution. Step by step fabrication monitoring of Fe3O4@SPI-BSA nanoparticles was performed using field emission scanning electron microscopy and dynamic light scattering. The results illustrated that nanomagnetite with the spherical morphology was well monodispersed with the diameter of about 35 nm. The average size of the SPI-BSA nanoparticles was 80 to 90 nm, and their zeta potential was around −34 mV. Finally, the mean diameter of fabricated Fe3O4@SPI-BSA NPs was less than 120 nm. Inulinase enzyme from Aspergillus niger was covalently immobilized through gluteraldehyde on Fe3O4@SPI-BSA nanoparticles successfully. Fourier transform infrared spectra and field emission scanning electron microscopy images provided sufficient proof for the enzyme immobilization on the nanoparticles with 80% enzyme loading.

Keywords: high fructose syrup, inulinase immobilization, functionalized magnetic nanoparticles, soy protein isolate

Procedia PDF Downloads 281
2198 Carbon Capture and Storage in Geological Formation, its Legal, Regulatory Imperatives and Opportunities in India

Authors: Kalbende Krunal Ramesh

Abstract:

The Carbon Capture and Storage Technology (CCS) provides a veritable platform to bridge the gap between the seemingly irreconcilable twin global challenges of ensuring a secure, reliable and diversified energy supply and mitigating climate change by reducing atmospheric emissions of carbon dioxide. Making its proper regulatory policy and making it flexible for the government and private company by law to regulate, also exploring the opportunity in this sector is the main aim of this paper. India's total annual emissions was 1725 Mt CO2 in 2011, which comprises of 6% of total global emission. It is very important to control the greenhouse gas emission for the environment protection. This paper discusses the various regulatory policy and technology adopted by some of the countries for successful using CCS technology. The brief geology of sedimentary basins in India is studied, ranging from the category I to category IV and deep water and potential for mature technology in CCS is reviewed. Areas not suitable for CO2 storage using presently mature technologies were over viewed. CSS and Clean development mechanism was developed for India, considering the various aspects from research and development, project appraisal, approval and validation, implementation, monitoring and verification, carbon credit issued, cap and trade system and its storage potential. The opportunities in oil and gas operations, power sector, transport sector is discussed briefly.

Keywords: carbon credit issued, cap and trade system, carbon capture and storage technology, greenhouse gas

Procedia PDF Downloads 421
2197 Non-Methane Hydrocarbons Emission during the Photocopying Process

Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Kecić S. Vesna, Oros B. Ivana

Abstract:

The prosperity of electronic equipment in photocopying environment not only has improved work efficiency, but also has changed indoor air quality. Considering the number of photocopying employed, indoor air quality might be worse than in general office environments. Determining the contribution from any type of equipment to indoor air pollution is a complex matter. Non-methane hydrocarbons are known to have an important role of air quality due to their high reactivity. The presence of hazardous pollutants in indoor air has been detected in one photocopying shop in Novi Sad, Serbia. Air samples were collected and analyzed for five days, during 8-hr working time in three-time intervals, whereas three different sampling points were determined. Using multiple linear regression model and software package STATISTICA 10 the concentrations of occupational hazards and micro-climates parameters were mutually correlated. Based on the obtained multiple coefficients of determination (0.3751, 0.2389, and 0.1975), a weak positive correlation between the observed variables was determined. Small values of parameter F indicated that there was no statistically significant difference between the concentration levels of non-methane hydrocarbons and micro-climates parameters. The results showed that variable could be presented by the general regression model: y = b0 + b1xi1+ b2xi2. Obtained regression equations allow to measure the quantitative agreement between the variation of variables and thus obtain more accurate knowledge of their mutual relations.

Keywords: non-methane hydrocarbons, photocopying process, multiple regression analysis, indoor air quality, pollutant emission

Procedia PDF Downloads 367