Search results for: diabetes diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2899

Search results for: diabetes diagnosis

2389 Performance of the New Laboratory-Based Algorithm for HIV Diagnosis in Southwestern China

Authors: Yanhua Zhao, Chenli Rao, Dongdong Li, Chuanmin Tao

Abstract:

The Chinese Centers for Disease Control and Prevention (CCDC) issued a new laboratory-based algorithm for HIV diagnosis on April 2016, which initially screens with a combination HIV-1/HIV-2 antigen/antibody fourth-generation immunoassay (IA) followed, when reactive, an HIV-1/HIV-2 undifferentiated antibody IA in duplicate. Reactive specimens with concordant results undergo supplemental tests with western blots, or HIV-1 nucleic acid tests (NATs) and non-reactive specimens with discordant results receive HIV-1 NATs or p24 antigen tests or 2-4 weeks follow-up tests. However, little data evaluating the application of the new algorithm have been reported to date. The study was to evaluate the performance of new laboratory-based HIV diagnostic algorithm in an inpatient population of Southwest China over the initial 6 months by compared with the old algorithm. Plasma specimens collected from inpatients from May 1, 2016, to October 31, 2016, are submitted to the laboratory for screening HIV infection performed by both the new HIV testing algorithm and the old version. The sensitivity and specificity of the algorithms and the difference of the categorized numbers of plasmas were calculated. Under the new algorithm for HIV diagnosis, 170 of the total 52 749 plasma specimens were confirmed as positively HIV-infected (0.32%). The sensitivity and specificity of the new algorithm were 100% (170/170) and 100% (52 579/52 579), respectively; while 167 HIV-1 positive specimens were identified by the old algorithm with sensitivity 98.24% (167/170) and 100% (52 579/52 579), respectively. Three acute HIV-1 infections (AHIs) and two early HIV-1 infections (EHIs) were identified by the new algorithm; the former was missed by old procedure. Compared with the old version, the new algorithm produced fewer WB-indeterminate results (2 vs. 16, p = 0.001), which led to fewer follow-up tests. Therefore, the new HIV testing algorithm is more sensitive for detecting acute HIV-1 infections with maintaining the ability to verify the established HIV-1 infections and can dramatically decrease the greater number of WB-indeterminate specimens.

Keywords: algorithm, diagnosis, HIV, laboratory

Procedia PDF Downloads 401
2388 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability

Procedia PDF Downloads 374
2387 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis

Authors: Yao Cheng, Weihua Zhang

Abstract:

Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.

Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution

Procedia PDF Downloads 375
2386 A Risk Management Approach to the Diagnosis of Attention Deficit-Hyperactivity Disorder

Authors: Lloyd A. Taylor

Abstract:

An increase in the prevalence of Attention Deficit-Hyperactivity Disorder (ADHD) highlights the need to consider factors that may be exacerbating symptom presentation. Traditional diagnostic criteria provide a little framework for healthcare providers to consider as they attempt to diagnose and treat children with behavioral problems. In fact, aside from exclusion criteria, limited alternative considerations are available, and approaches fail to consider the impact of outside factors that could increase or decrease the likelihood of appropriate diagnosis and success of interventions. This paper will consider specific systems-based factors that influence behavior and intervention successes that, when not considered, could account for the upsurge of diagnoses. These include understanding (1) challenges in the healthcare system, (2) the influence and impact of educators and the educational system, (3) technology use, and (4) patient and parental attitudes about the diagnosis of ADHD. These factors must be considered both individually and as a whole when considering both the increase in diagnoses and the subsequent increases in prescriptions for psychostimulant medication. A theoretical model based on a risk management approach will be presented. Finally, data will be presented that demonstrates pediatric provider satisfaction with this approach to diagnoses and treatment of ADHD as it relates to practice trends.

Keywords: ADHD, diagnostic criteria, risk management model, pediatricians

Procedia PDF Downloads 95
2385 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 408
2384 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study

Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey

Abstract:

Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.

Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose

Procedia PDF Downloads 64
2383 CNS Cryptococcoma in an Immunocompetent Adult from a Low Resource Setting: A Case Report

Authors: Ssembatya Joseph Mary

Abstract:

Introduction: Cryptococcal infection in the Central Nervous System (CNS) is frequently seen in human immunodeficiency virus (HIV) patients and others with low immunity as an opportunistic fungal infection. However, CNS cryptococcal granuloma (cryptococcoma) in immunocompetent patients is rare. We present a case of CNS cryptococcoma in an immunocompetent patient and review the literature to illustrate the diagnosis and treatment of such lesions. Case presentation: A 62-year-old, HIV-negative, immunocompetent female patient with no known chronic illness presented with 5 months history of a progressive headache associated with on and off episodic generalized tonic-clonic convulsions. She had been to several hospitals before she was referred to our center with a diagnosis of a brain tumor. Before referral and despite a negative CSF analysis result, she had received treatment for bacterial meningitis with no success. At Mbarara Regional Referral Hospital (MRRH), she had surgery with an excision biopsy which showed features consistent with cryptococcosis on histology. The patient had a successful adjuvant treatment with antifungal drugs following surgery. Conclusion: The diagnosis of a parasitic CNS infection, particularly cryptococcal infection mimicking neoplastic lesions in an immunocompetent patient, was unusual. Surgical management of such lesions from different reports has a bad outcome and management remains totally conservative.

Keywords: Cryptococcal meningitis, immunocompetent patient, Uganda, low resource setting

Procedia PDF Downloads 87
2382 Molecular Diagnosis of Influenza Strains Was Carried Out on Patients of the Social Security Clinic in Karaj Using the RT-PCR Technique

Authors: A. Ferasat, S. Rostampour Yasouri

Abstract:

Seasonal flu is a highly contagious infection caused by influenza viruses. These viruses undergo genetic changes that result in new epidemics across the globe. Medical attention is crucial in severe cases, particularly for the elderly, frail, and those with chronic illnesses, as their immune systems are often weaker. The purpose of this study was to detect new subtypes of the influenza A virus rapidly using a specific RT-PCR method based on the HA gene (hemagglutinin). In the winter and spring of 2022_2023, 120 embryonated egg samples were cultured, suspected of seasonal influenza. RNA synthesis, followed by cDNA synthesis, was performed. Finally, the PCR technique was applied using a pair of specific primers designed based on the HA gene. The PCR product was identified after purification, and the nucleotide sequence of purified PCR products was compared with the sequences in the gene bank. The results showed a high similarity between the sequence of the positive samples isolated from the patients and the sequence of the new strains isolated in recent years. This RT-PCR technique is entirely specific in this study, enabling the detection and multiplication of influenza and its subspecies from clinical samples. The RT-PCR technique based on the HA gene, along with sequencing, is a fast, specific, and sensitive diagnostic method for those infected with influenza viruses and its new subtypes. Rapid molecular diagnosis of influenza is essential for suspected people to control and prevent the spread of the disease to others. It also prevents the occurrence of secondary (sometimes fatal) pneumonia that results from influenza and pathogenic bacteria. The critical role of rapid diagnosis of new strains of influenza is to prepare a drug vaccine against the latest viruses that did not exist in the community last year and are entirely new viruses.

Keywords: influenza, molecular diagnosis, patients, RT-PCR technique

Procedia PDF Downloads 76
2381 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector

Procedia PDF Downloads 352
2380 Aboriginal Head and Neck Cancer Patients Have Different Patterns of Metastatic Involvement, and Have More Advanced Disease at Diagnosis

Authors: Kim Kennedy, Daren Gibson, Stephanie Flukes, Chandra Diwakarla, Lisa Spalding, Leanne Pilkington, Andrew Redfern

Abstract:

Introduction: The mortality gap in Aboriginal Head and Neck Cancer is well known, but the reasons for poorer survival are not well established. Aim: We aimed to evaluate the locoregional and metastatic involvement, and stage at diagnosis, in Aboriginal compared with non-Aboriginal patients. Methods: We performed a retrospective cohort analysis of 320 HNC patients from a single centre in Western Australia, identifying 80 Aboriginal patients and 240 non-Aboriginal patients matched on a 1:3 ratio by sites, histology, rurality, and age. We collected data on the patient characteristics, tumour features, regions involved, stage at diagnosis, treatment history, and survival and relapse patterns, including sites of metastatic and locoregional involvement. Results: Aboriginal patients had a significantly higher incidence of lung metastases (26.3% versus 13.7%, p=0.009). Aboriginal patients also had a numerically but non-statistically significant higher incidence of thoracic nodal involvement (10% vs 5.8%) and malignant pleural effusions (3.8% vs 2.5%). Aboriginal patients also had a numerically but not statistically significantly higher incidence of adrenal and bony involvement. Interestingly, non-Aboriginal patients had an increased rate of cutaneous (2.1% vs 0%) and liver metastases (4.6% vs 2.5%) compared with Aboriginal patients. In terms of locoregional involvement, Aboriginal patients were more than twice as likely to have contralateral neck involvement (58.8% vs 24.2%, p<0.00001), and 30% more likely to have ipsilateral neck lymph node involvement (78.8% vs 60%, p=0.002) than non-Aboriginal patients. Aboriginal patients had significantly more advanced disease at diagnosis (p=0.008). Aboriginal compared with non-Aboriginal patients were less likely to present with stage I (7.5% vs 22.5%), stage II (11.3% vs 13.8%), or stage III disease (13.8% vs 17.1%), and more likely to present with more advanced stage IVA (42.5% vs 34.6%), stage IVB (15% vs 7.1%), or stage IVC (10% vs 5%) disease (p=0.008). Number of regions of disease involvement was higher in Aboriginal patients (median 3, mean 3.64, range 1-10) compared with non-Aboriginal patients (median 2, mean 2.80, range 1-12). Conclusion: Aboriginal patients had a significantly higher incidence of lung metastases, and significantly more frequent involvement of ipsilateral and contralateral neck lymph nodes. Aboriginal patients also had significantly more advanced disease at presentation with a higher stage at diagnosis. We are performing further analyses to investigate explanations for these findings.

Keywords: head and neck cancer, Aboriginal, metastases, locoregional, pattern of relapse, sites of disease

Procedia PDF Downloads 70
2379 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes

Authors: Anju Joshi, C. N. Tharamani

Abstract:

Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.

Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic

Procedia PDF Downloads 236
2378 Ethical Discussions on Prenatal Diagnosis: Iranian Case of Thalassemia Prevention Program

Authors: Sachiko Hosoya

Abstract:

Objectives: The purpose of this paper is to investigate the social policy of preventive genetic medicine in Iran, by following the legalization process of abortion law and the factors affecting the process in wider Iranian contexts. In this paper, ethical discussions of prenatal diagnosis and selective abortion in Iran will be presented, by exploring Iranian social policy to control genetic diseases, especially a genetic hemoglobin disorder called Thalassemia. The ethical dilemmas in application of genetic medicine into social policy will be focused. Method: In order to examine the role of the policy for prevention of genetic diseases and selective abortion in Iran, various resources have been sutudied, not only academic articles, but also discussion in the Parliament and documents related to a court case, as well as ethnographic data on living situation of Thalassemia patients. Results: Firstly, the discussion on prenatal diagnosis and selective abortion is overviewed from the viewpoints of ethics, disability rights activists, and public policy for lower-resources countries. As a result, it should be noted that the point more important in the discussion on prenatal diagnosis and selective abortion in Iran is the allocation of medical resources. Secondly, the process of implementation of national thalassemia screening program and legalization of ‘Therapeutic Abortion Law’ is analyzed, through scrutinizing documents such as the Majlis record, government documents and related laws and regulations. Although some western academics accuse that Iranian policy of selective abortion seems to be akin to eugenic public policy, Iranian government carefully avoid to distortions of the policy as ‘eugenic’. Thirdly, as a comparative example, discussions on an Iranian court case of patient’s ‘right not to be born’ will be introduced. Along with that, restrictive living environments of people with Thalassemia patients and the carriers are depicted, to understand some disabling social factors for people with genetic diseases in the local contexts of Iran.

Keywords: abortion, Iran, prenatal diagnosis, public health ethics, Thalassemia prevention program

Procedia PDF Downloads 348
2377 Coffee Consumption Has No Acute Effects on Glucose Metabolism in Healthy Men: A Randomized Crossover Clinical Trial

Authors: Caio E. G. Reis, Sara Wassell, Adriana L. Porto, Angélica A. Amato, Leslie J. C. Bluck, Teresa H. M. da Costa

Abstract:

Background: Multiple epidemiologic studies have consistently reported association between increased coffee consumption and a lowered risk of Type 2 Diabetes Mellitus. However, the mechanisms behind this finding have not been fully elucidated. Objective: We investigate the effect of coffee (caffeinated and decaffeinated) on glucose effectiveness and insulin sensitivity using the stable isotope minimal model protocol with oral glucose administration in healthy men. Design: Fifteen healthy men underwent 5 arms randomized crossover single-blinding (researchers) clinical trial. They consumed decaffeinated coffee, caffeinated coffee (with and without sugar), and controls – water (with and without sugar) followed 1 hour by an oral glucose tolerance test (75 g of available carbohydrate) with intravenous labeled dosing interpreted by the two compartment minimal model (225 minutes). One-way ANOVA with Bonferroni adjustment were used to compare the effects of the tested beverages on glucose metabolism parameters. Results: Decaffeinated coffee resulted in 29% and 85% higher insulin sensitivity compared with caffeinated coffee and water, respectively, and the caffeinated coffee showed 15% and 60% higher glucose effectiveness compared with decaffeinated coffee and water, respectively. However, these differences were not significant (p > 0.10). In overall analyze (0 – 225 min) there were no significant differences on glucose effectiveness, insulin sensitivity, and glucose and insulin area under the curve between the groups. The beneficial effects of coffee did not seem to act in the short-term (hours) on glucose metabolism parameters mainly on insulin sensitivity indices. The benefits of coffee consumption occur in the long-term (years) as has been shown in the reduction of Type 2 Diabetes Mellitus risk in epidemiological studies. The clinical relevance of the present findings is that there is no need to avoid coffee as the drink choice for healthy people. Conclusions: The findings of this study demonstrate that the consumption of caffeinated and decaffeinated coffee with or without sugar has no acute effects on glucose metabolism in healthy men. Further researches, including long-term interventional studies, are needed to fully elucidate the mechanisms behind the coffee effects on reduced risk for Type 2 Diabetes Mellitus.

Keywords: coffee, diabetes mellitus type 2, glucose, insulin

Procedia PDF Downloads 438
2376 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments

Authors: Aileen F. Wang

Abstract:

Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.

Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square

Procedia PDF Downloads 453
2375 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals

Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari

Abstract:

Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.

Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy

Procedia PDF Downloads 198
2374 Organizing Diabetes Care in a Resource Constrained Country: Bangladesh as an Example

Authors: Liaquat Ali, Khurshid Natasha

Abstract:

Low resource countries are not usually equipped with the organizational tools to implement health care for chronic diseases, and thus, providing effective diabetes care in such countries is a challenging task. Diabetic Association of Bangladesh (BADAS in Bengali acronym) has created a stimulating example to meet this challenge. Starting its journey in 1956 with 39 patients in a small tin shed clinic BADAS, and its affiliated associations now operate 90 hospitals and health centres all over the country. Together, these facilities provide integrated health care to about 1.5 million registered diabetic patients which constitute about 20% of the estimated diabetic population in the country. BADAS has also become a pioneer in health manpower generation in Bangladesh. Along with its affiliates, it now runs 3 Medical Colleges (to generate graduate physicians), 2 Nursing Institutes, and 2 Postgraduate Institutes which conduct 25 postgraduate courses (under the University of Dhaka) in various basic, clinical and public health disciplines. BADAS gives great emphasis on research, which encompasses basic, clinical as well as public health areas. BADAS is an ideal example of public-private partnership in health as most of its infrastructure has been created through government support but it is almost self-reliant in managing its revenue budget which approached approximately 40 million US dollar during 2010. BADAS raises resources by providing high-quality services to the people, both diabetic and non-diabetic. At the same time, BADAS has developed a cross financing model, to support diabetic patients in general and poor diabetic patients (identified through a social welfare network) in particular, through redistribution of the resources. Along with financial sustainability BADAS ensure organizational sustainability through a process of decentralization, community ownership, and democratic management. Presently a large scale pilot project (named as a Health Care Development Project or HCDP) is under implementation under BADAS umbrella with an objective to transform the diabetes care model to a health care model in general. It is expected to create further evidence on providing sustainable (with social safety net) health care delivery for diabetes, and other chronic illnesses as an integral part of general health care delivery in a resource constrained setting.

Keywords: Bangladesh, self sustain, health care, constrain

Procedia PDF Downloads 182
2373 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 93
2372 Evaluation of Condyle Alterations after Orthognathic Surgery with a Digital Image Processing Technique

Authors: Livia Eisler, Cristiane C. B. Alves, Cristina L. F. Ortolani, Kurt Faltin Jr.

Abstract:

Purpose: This paper proposes a technically simple diagnosis method among orthodontists and maxillofacial surgeons in order to evaluate discrete bone alterations. The methodology consists of a protocol to optimize the diagnosis and minimize the possibility for orthodontic and ortho-surgical retreatment. Materials and Methods: A protocol of image processing and analysis, through ImageJ software and its plugins, was applied to 20 pairs of lateral cephalometric images obtained from cone beam computerized tomographies, before and 1 year after undergoing orthognathic surgery. The optical density of the images was analyzed in the condylar region to determine possible bone alteration after surgical correction. Results: Image density was shown to be altered in all image pairs, especially regarding the condyle contours. According to measures, condyle had a gender-related density reduction for p=0.05 and condylar contours had their alterations registered in mm. Conclusion: A simple, viable and cost-effective technique can be applied to achieve the more detailed image-based diagnosis, not depending on the human eye and therefore, offering more reliable, quantitative results.

Keywords: bone resorption, computer-assisted image processing, orthodontics, orthognathic surgery

Procedia PDF Downloads 161
2371 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.

Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost

Procedia PDF Downloads 12
2370 The Value of Routine Terminal Ileal Biopsies for the Investigation of Diarrhea

Authors: Swati Bhasin, Ali Ahmed, Valence Xavier, Ben Liu

Abstract:

Aims: Diarrhea is a problem that is a frequent clinic referral to the gastroenterology and surgical team from the General practitioner. To establish a diagnosis, these patients undergo colonoscopy. The current practice at our district general hospital is to perform random left and right colonic biopsies. National guidelines issued by the British Society of Gastroenterology advise all patients presenting with chronic diarrhea should have an Ileoscopy as an indicator for colonoscopy completion. Our primary aim was to check if Terminal ileum (TI) biopsy is required to establish a diagnosis of inflammatory bowel disease (IBD). Methods: Data was collected retrospectively from November 2018 to November 2019. The target population were patients who underwent colonoscopies for diarrhea. Demographic data, endoscopic and histology findings of TI were assessed and analyzed. Results: 140 patients with a mean age of 57 years (19-84) underwent a colonoscopy (M: F; 1:2.3). 92 patients had random colonic biopsies taken and based on the histological results of these, 15 patients (16%) were diagnosed with IBD. The TI was successfully intubated in 40 patients, of which 32 patients had colonic biopsies taken as well. 8 patients did not have a colonic biopsy taken. Macroscopic abnormality in the TI was detected in 5 patients, all of whom were biopsied. Based on histological results of the biopsy, 3 patients (12%) were diagnosed with IBD. These 3 patients (100%) also had colonic biopsies taken simultaneously and showed inflammation. None of the patients had a diagnosis of IBD confirmed on TI intubation alone (where colonic biopsies were not done). None of the patients has a diagnosis of IBD confirmed on TI intubation alone (where colonic biopsies were negative). Conclusion: TI intubation is a highly-skilled, time-consuming procedure with a higher risk of perforation, which as per our study, has little additional diagnostic value in finding IBD for symptoms of diarrhea if colonic biopsies are taken. We propose that diarrhea is a colonic symptom; therefore, colonic biopsies are positive for inflammation if the diarrhea is secondary to IBD. We conclude that all of the IBDs can be diagnosed simply with colonic biopsies.

Keywords: biopsy, colon, IBD, terminal ileum

Procedia PDF Downloads 122
2369 The Morphological Changes of POV in Diabetic Patients and Its Correlation with Changes in Corneal Epithelium, Corneal Nerve, and the Fundus in Using Vivo Confocal Microscopy

Authors: Ji Jiazheng, Wang Jingrao, Jin Xin, Zhang Hong

Abstract:

Diabetes mellitus is a metabolic disease characterized by high blood sugar. A long-standing hyperglycemic state can lead to various tissue damage. Diabetic retinopathy is the most common and widely studied ocular complication and has become the leading cause of blindness in my country. At the same time, diabetes has profound clinically relevant effects on the cornea, leading to keratopathy and vision-threatening. The cornea is an avascular tissue and is sensitive to hyperglycemia, Keratopathy caused by diabetes is usually chronic, they are called diabetic keratopathy or diabetic neurotrophic keratopathy, leading to several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity. Corneal stem cell dysfunction in diabetic patients as an important influencing factor of diabetic keratopathy. The consequences of this condition are often underestimated. The limbus is located between the cornea and the sclera tissue. The limbal stroma consists of a series of radial elevations with fibrovascular centers known as palisades of Vogt (POV). Previous studies have shown that palisades of Vogt (POV), as the main site of limbal stem cells, plays an important role in the homeostasis of the corneal epithelium. Therefore, POV plays a vital role in the healing of corneal epithelial surgery and postoperative evaluation. IVCM can observe the condition of the corneal epithelium at the cellular level. It has profound significance and guidance for the evaluation of limbal and limbal stem cells. We have previously observed structural changes in POV in HSK and HZO patients on IVCM. At present, there have been reports involving limbal stem cell dysfunction in diabetic patients, but the specific pathogenesis is still unclear. However, there are no studies on POV morphological changes in patients with DM. Therefore, we performed statistics and compared the correlation between POV morphological changes and corneal epithelial basal cell density, corneal nerves, and length of disease in DM patients and normal humans using IVCM studies. At the same time, fundoscopy was used to observe the correlation between the thickness of RNFL and the thickness of GCC and POV in diabetic patients. And to observe the correlation between SVD, DVD and POV for research.

Keywords: confocal microscopy, fundus, limbal stem cells, diabetes

Procedia PDF Downloads 85
2368 Diagnostic and Prognostic Use of Kinetics of Microrna and Cardiac Biomarker in Acute Myocardial Infarction

Authors: V. Kuzhandai Velu, R. Ramesh

Abstract:

Background and objectives: Acute myocardial infarction (AMI) is the most common cause of mortality and morbidity. Over the last decade, microRNAs (miRs) have emerged as a potential marker for detecting AMI. The current study evaluates the kinetics and importance of miRs in the differential diagnosis of ST-segment elevated MI (STEMI) and non-STEMI (NSTEMI) and its correlation to conventional biomarkers and to predict the immediate outcome of AMI for arrhythmias and left ventricular (LV) dysfunction. Materials and Method: A total of 100 AMI patients were recruited for the study. Routine cardiac biomarker and miRNA levels were measured during diagnosis and serially at admission, 6, 12, 24, and 72hrs. The baseline biochemical parameters were analyzed. The expression of miRs was compared between STEMI and NSTEMI at different time intervals. Diagnostic utility of miR-1, miR-133, miR-208, and miR-499 levels were analyzed by using RT-PCR and with various diagnostics statistical tools like ROC, odds ratio, and likelihood ratio. Results: The miR-1, miR-133, and miR-499 showed peak concentration at 6 hours, whereas miR-208 showed high significant differences at all time intervals. miR-133 demonstrated the maximum area under the curve at different time intervals in the differential diagnosis of STEMI and NSTEMI which was followed by miR-499 and miR-208. Evaluation of miRs for predicting arrhythmia and LV dysfunction using admission sample demonstrated that miR-1 (OR = 8.64; LR = 1.76) and miR-208 (OR = 26.25; LR = 5.96) showed maximum odds ratio and likelihood respectively. Conclusion: Circulating miRNA showed a highly significant difference between STEMI and NSTEMI in AMI patients. The peak was much earlier than the conventional biomarkers. miR-133, miR-208, and miR-499 can be used in the differential diagnosis of STEMI and NSTEMI, whereas miR-1 and miR-208 could be used in the prediction of arrhythmia and LV dysfunction, respectively.

Keywords: myocardial infarction, cardiac biomarkers, microRNA, arrhythmia, left ventricular dysfunction

Procedia PDF Downloads 128
2367 Prevalence of Metabolic Syndrome among Adult Obese Type 2 Diabetic Subjects

Authors: Mehwish Azam, Muhammad Imran, Humaira Jabeen, Sumreen Begum, Rashida Qasim

Abstract:

Background: Metabolic syndrome is a cluster of metabolic risk factors including obesity, glucose intolerance, insulin resistance, dyslipidemia and hypertension. Metabolic syndrome in obese and type 2 diabetic subjects increases the risk of cardiovascular diseases (CVD). Globally, the prevalence of metabolic syndrome ranges from 10%-50% and in Pakistan ranges from 18%-46%. The objective of the present study is to estimate the prevalence of metabolic syndrome (MS) in obese type 2 diabetic subjects by using International Diabetes Federation (IDF) and National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) definitions. Methods: Obese type 2 diabetic subjects and normal healthy subjects of both genders were selected from diabetic clinics and hospitals of various localities of Karachi, Pakistan. The frequency of metabolic syndrome was estimated by the proposed definitions of IDF and NCEP-ATP III. Results: The prevalence of metabolic syndrome using International Diabetes Federation (IDF) definition in obese type 2 diabetic subjects was 85.7%. It is significantly higher (p<0.05) in females (47.1%) as compared to males (38.6%). While, using National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) definition the overall prevalence of metabolic syndrome in obese type 2 diabetic subjects was 75.7%, the prevalence is significantly higher (p<0.05) in females (45.7%) than males (30.0%). Conclusion: It is concluded that, the overall prevalence of metabolic syndrome is increasing significantly in obese type 2 diabetic subjects by using IDF and NCEP–ATP III definitions. Therefore, it is need to initiate the preventive measures by arranging public awareness programmes to highlight the significance of a healthy lifestyle and emphasis should be given to reduce weight, increase physical activity, and increase intake of healthy low-glycemic-index foods.

Keywords: metabolic syndrome, diabetes mellitus, obesity, IDF, NCEP-ATP III

Procedia PDF Downloads 574
2366 The Management of Care by People with Type 2 Diabetes versus the Professional Care at Primary Health Care in Brazil

Authors: Nunila Ferreira de Oliveira, Silvana Martins Mishima

Abstract:

Diabetes mellitus type 2 (DM2) prevalence, is increasing on the world, in Brazil is considered a public health problem. Treatment focuses on glycemic control depending primarily of lifestyle changes - not drug treatment (NDT), may involve drug therapy (DT) and requires continuous health monitoring. In Brazil this monitoring is performed by the Unified Health System (SUS) through Primary Health Care (PHC), which stimulate people with DM2 empowerment for care management. SUS was approved in 1988 and the PHC operationalization was strengthened with the creation of the Family Health Strategy (FHS) in 1994. Our aim was to analyze the people with DM2 participation in front of the care management health monitoring in the FHS. Qualitative research was carried out through non-participant observation of attendance of 25 people with DM2 in the FHS and interviewed at home. Ethical guidelines were followed. It was found that people with DM2 only follow professionals’ recommendations that make sense according to their own conceptions of health/disease; most of them emphasize the importance of (DT) with little emphasis on the NDT, was found great difficulty in the NDT and lack of knowledge about the disease and care. As regards monitoring the FHS, were observed therapeutic practices based on the bio medical model, although the APS search for another care perspective; NDT is not systematically accompanied by the health team and takes place a few educational activities on the DM2 in the FHS, with low user adoption. The work of the FHS is done by multidisciplinary teams, but we see the need for greater participation of nurses in clinical-care follow-up of this population and may also act in adapting to the NDT. Finally we emphasize the need for professional practices that consider the difficulties to care management by people with DM2, especially because of the NDT. It is noticed that the measures recommended by the FHS professionals are not always developed by people with DM2. We must seek the empowerment of people with DM2 to manage the form of care associated with the FHS team, seeking to reduce the incidence of complications and higher quality of life.

Keywords: diabetes mellitus, primary health care, nursing, management of care

Procedia PDF Downloads 457
2365 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 67
2364 Experience of Two Major Research Centers in the Diagnosis of Cardiac Amyloidosis from Transthyretin

Authors: Ioannis Panagiotopoulos, Aristidis Anastasakis, Konstantinos Toutouzas, Ioannis Iakovou, Charalampos Vlachopoulos, Vasilis Voudris, Georgios Tziomalos, Konstantinos Tsioufis, Efstathios Kastritis, Alexandros Briassoulis, Kimon Stamatelopoulos, Alexios Antonopoulos, Paraskevi Exadaktylou, Evanthia Giannoula, Anastasia Katinioti, Maria Kalantzi, Evangelos Leontiadis, Eftychia Smparouni, Ioannis Malakos, Nikolaos Aravanis, Argyrios Doumas, Maria Koutelou

Abstract:

Introduction: Cardiac amyloidosis from Transthyretin (ATTR-CA) is an infiltrative disease characterized by the deposition of pathological transthyretin complexes in the myocardium. This study describes the characteristics of patients diagnosed with ATTR-CA from 2019 until present at the Nuclear Medicine Department of Onassis Cardiac Surgery Center and AHEPA Hospital. These centers have extensive experience in amyloidosis and modern technological equipment for its diagnosis. Materials and Methods: Records of consecutive patients (N=73) diagnosed with any type of amyloidosis were collected, analyzed, and prospectively followed. The diagnosis of amyloidosis was made using specific myocardial scintigraphy with Tc-99m DPD. Demographic characteristics, including age, gender, marital status, height, and weight, were collected in a database. Clinical characteristics, such as amyloidosis type (ATTR and AL), serum biomarkers (BNP, troponin), electrocardiographic findings, ultrasound findings, NYHA class, aortic valve replacement, device implants, and medication history, were also collected. Some of the most significant results are presented. Results: A total of 73 cases (86% male) were diagnosed with amyloidosis over four years. The mean age at diagnosis was 82 years, and the main symptom was dyspnea. Most patients suffered from ATTR-CA (65 vs. 8 with AL). Out of all the ATTR-CA patients, 61 were diagnosed with wild-type and 2 with two rare mutations. Twenty-eight patients had systemic amyloidosis with extracardiac involvement, and 32 patients had a history of bilateral carpal tunnel syndrome. Four patients had already developed polyneuropathy, and the diagnosis was confirmed by DPD scintigraphy, which is known for its high sensitivity. Among patients with isolated cardiac involvement, only 6 had left ventricular ejection fraction below 40%. The majority of ATTR patients underwent tafamidis treatment immediately after diagnosis. Conclusion: In conclusion, the experiences shared by the two centers and the continuous exchange of information provide valuable insights into the diagnosis and management of cardiac amyloidosis. Clinical suspicion of amyloidosis and early diagnostic approach are crucial, given the availability of non-invasive techniques. Cardiac scintigraphy with DPD can confirm the presence of the disease without the need for a biopsy. The ultimate goal still remains continuous education and awareness of clinical cardiologists so that this systemic and treatable disease can be diagnosed and certified promptly and treatment can begin as soon as possible.

Keywords: amyloidosis, diagnosis, myocardial scintigraphy, Tc-99m DPD, transthyretin

Procedia PDF Downloads 91
2363 A Rare Cause of Abdominal Pain Post Caesarean Section

Authors: Madeleine Cox

Abstract:

Objective: discussion of diagnosis of vernix caseosa peritonitis, recovery and subsequent caesarean seciton Case: 30 year old G4P1 presented in labour at 40 weeks, planning a vaginal birth afterprevious caesarean section. She underwent an emergency caesarean section due to concerns for fetal wellbeing on CTG. She was found to have a thin lower segment with a very small area of dehiscence centrally. The operation was uncomplicated, and she recovered and went home 2 days later. She then represented to the emergency department day 6 post partum feeling very unwell, with significant abdominal pain, tachycardia as well as urinary retention. Raised white cell count of 13.7 with neutrophils of 11.64, CRP of 153. An abdominal ultrasound was poorly tolerated by the patient and did not aide in the diagnosis. Chest and abdominal xray were normal. She underwent a CT chest and abdomen, which found a small volume of free fluid with no apparent collection. Given no obvious cause of her symptoms were found and the patient did not improve, she had a repeat CT 2 days later, which showed progression of free fluid. A diagnostic laparoscopy was performed with general surgeons, which reveled turbid fluid, an inflamed appendix which was removed. The patient improved remarkably post operatively. The histology showed periappendicitis with acute appendicitis with marked serosal inflammatory reaction to vernix caseosa. Following this, the patient went on to recover well. 4 years later, the patient was booked for an elective caesarean section, on entry into the abdomen, there were very minimal adhesions, and the surgery and her subsequent recovery was uncomplicated. Discussion: this case represents the diagnostic dilemma of a patient who presents unwell without a clear cause. In this circumstance, multiple modes of imaging did not aide in her diagnosis, and so she underwent diagnostic surgery. It is important to evaluate if a patient is or is not responding to the typical causes of post operative pain and adjust management accordingly. A multiteam approach can help to provide a diagnosis for these patients. Conclusion: Vernix caseosa peritonitis is a rare cause of acute abdomen post partum. There are few reports in the literature of the initial presentation and no reports on the possible effects on future pregnancies. This patient did not have any complications in her following pregnancy or delivery secondary to her diagnosis of vernix caseosa peritonitis. This may assist in counselling other women who have had this uncommon diagnosis.

Keywords: peritonitis, obstetrics, caesarean section, pain

Procedia PDF Downloads 106
2362 A Theoretical Modelling and Simulation of a Surface Plasmon Resonance Biosensor for the Detection of Glucose Concentration in Blood and Urine

Authors: Natasha Mandal, Rakesh Singh Moirangthem

Abstract:

The present work reports a theoretical model to develop a plasmonic biosensor for the detection of glucose concentrations in human blood and urine as the abnormality of glucose label is the major cause of diabetes which becomes a life-threatening disease worldwide. This study is based on the surface plasmon resonance (SPR) sensor applications which is a well-established, highly sensitive, label-free, rapid optical sensing tool. Here we have introduced a sandwich assay of two dielectric spacer layers of MgF2 and BaTiO3which gives better performance compared to commonly used SiO2 and TiO2 dielectric spacers due to their low dielectric loss and higher refractive index. The sensitivity of our proposed sensor was found as 3242 nm/RIU approximately, with an excellent linear response of 0.958, which is higher than the conventional single-layer Au SPR sensor. Further, the sensitivity enhancement is also optimized by coating a few layers of two-dimensional (2D) nanomaterials (e.g., Graphene, h-BN, MXene, MoS2, WS2, etc.) on the sensor chip. Hence, our proposed SPR sensor has the potential for the detection of glucose concentration in blood and urine with enhanced sensitivity and high affinity and could be utilized as a reliable platform for the optical biosensing application in the field of medical diagnosis.

Keywords: biosensor, surface plasmon resonance, dielectric spacer, 2D nanomaterials

Procedia PDF Downloads 107
2361 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods

Authors: Ali Berkan Ural

Abstract:

This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.

Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning

Procedia PDF Downloads 96
2360 Analysis of Vibratory Signals Based on Local Mean Decomposition (LMD) for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Medkour Mihoub, Slimane Mekhilef

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally nonstationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA), and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, rolling element bearing, local mean decomposition, condition monitoring

Procedia PDF Downloads 390