Search results for: detour matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2223

Search results for: detour matrix

1713 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications

Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma

Abstract:

Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.

Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties

Procedia PDF Downloads 457
1712 Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles

Authors: Behrooz Movahedi

Abstract:

Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles.

Keywords: Fe-based amorphous, B₄C nanoparticles, nanocomposite coating, HVOF

Procedia PDF Downloads 135
1711 Si3N4-SiC Composites Produced by Using C Black and Sic Powder

Authors: Nilgun Kuskonmaz, Zeynep Taslıcukur Ozturk, Cem Sahin

Abstract:

In this study, Si3N4-SiC composites were synthesized by using different raw materials. In the first method, Si3N4 and C black powder mixtures were used to fabricate Si3N4-SiC composites by in-situ carbothermal reduction process. The percentage of C black was only changed. The effects of carbon black percentage in the mixtures were analysed by characterization of SiC particles which were obtained in the Si3N4 matrix. In the second method, SiC particles were added to the matrix in different weight ratios. The composites were pressed by cold isostatic method under 150 MPa pressure and pressureless sintered at 1700-1850 °C during 1 hour in the argon atmosphere. AlN and Y2O3 were used as sintering additives. Sintering temperature, time and all the effects on in-situ reaction were studied. The densification and microstructure properties of the produced ceramics were analysed. Density was one of the main subjects in these reactions. It is very important during porous SiC sintering. Green density and relative density were measured higher for CIP samples. Samples which were added carbon black were more porous than SiC added samples. The increase in the carbon black, makes increase in porosity. The outcome of the experiments was SiC powders which were obtained at the grain boundries of β-Si3N4 particles.

Keywords: silicon nitride, silicon carbide, carbon black, cold isostatic press, sintering

Procedia PDF Downloads 309
1710 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 225
1709 Formulation of Mortars with Marine Sediments

Authors: Nor-Edine Abriak, Mouhamadou Amar, Mahfoud Benzerzour

Abstract:

The transition to a more sustainable economy is directed by a reduction in the consumption of raw materials in equivalent production. The recovery of byproducts and especially the dredged sediment as mineral addition in cements matrix represents an alternative to reduce raw material consumption and construction sector’s carbon footprint. However, the efficient use of sediment requires adequate and optimal treatment. Several processing techniques have so far been applied in order to improve some physicochemical properties. The heat treatment by calcination was effective in removing the organic fraction and activates the pozzolanic properties. In this article, the effect of the optimized heat treatment of marine sediments in the physico-mechanical and environmental properties of mortars are shown. A finding is that the optimal substitution of a portion of cement by treated sediments by calcination at 750 °C helps to maintain or improve the mechanical properties of the cement matrix in comparison with a standard reference mortar. The use of calcined sediment enhances mortar behavior in terms of mechanical strength and durability. From an environmental point of view and life cycle, mortars formulated containing treated sediments are considered inert with respect to the inert waste storage facilities reference (ISDI-France).

Keywords: sediment, calcination, cement, reuse

Procedia PDF Downloads 180
1708 In-situ Fabrication of a Metal-Intermetallic Composite: Microstructure Evolution and Mechanical Response

Authors: Monireh Azimi, Mohammad Reza Toroghinejad, Leo A. I. Kestens

Abstract:

The role of different metallic and intermetallic reinforcements on the microstructure and the associated mechanical response of a composite is of crucial importance. To investigate this issue, a multiphase metal-intermetallic composite was in-situ fabricated through reactive annealing and accumulative roll bonding (ARB) processes. EBSD results indicated that the lamellar grain structure of the Al matrix after the first cycle has evolved with increasing strain to a mixed structure consisting of equiaxed and lamellar grains, whereby the steady-state did not occur after the 3rd (last) cycle—applying a strain of 6.1 in the Al phase, the length and thickness of the grains reduced by 92.2% and 97.3%, respectively, compared to the annealed state. Intermetallic phases together with the metallic reinforcement of Ni influence grain fragmentation of the Al matrix and give rise to a specific texture evolution by creating heterogeneity in the strain and flow patterns. Mechanical properties of the multiphase composite demonstrated the yield and ultimate tensile strengths of 217.9 MPa and 340.1 MPa, respectively, compared to 48.7 MPa and 55.4 MPa in the metal-intermetallic laminated (MIL) sandwich before applying the ARB process, which corresponds to an increase of 347% and 514% of yield and tensile strength, respectively.

Keywords: accumulative roll bonding, mechanical properties, metal-intermetallic composite, severe plastic deformation, texture

Procedia PDF Downloads 194
1707 Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene

Authors: Mohamad Mohsen Yavarizadeh

Abstract:

Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation.

Keywords: molecular weight distribution, polystyrene, toughness, homopolymer

Procedia PDF Downloads 442
1706 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites

Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira

Abstract:

The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.

Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites

Procedia PDF Downloads 187
1705 A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System

Authors: Gak-Gyu Kim, Won Il Jung

Abstract:

According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model.

Keywords: RROP, matrix analytic methods, k-out-of-n: G system, MTTF, absorbing continuous time Markov Chain

Procedia PDF Downloads 254
1704 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System

Authors: Ayad Al-Mahturi, Herman Wahid

Abstract:

This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.

Keywords: LQR controller, optimal control, particle swarm optimization (PSO), two rotor aero-dynamical system (TRAS)

Procedia PDF Downloads 323
1703 Synthesis, Characterization and Rheological Properties of Boronoxide, Polymer Nanocomposites

Authors: Mehmet Doğan, Mahir Alkan, Yasemin Turhan, Zürriye Gündüz, Pinar Beyli, Serap Doğan

Abstract:

Advances and new discoveries in the field of the material science on the basis of technological developments have played an important role. Today, material science is branched the lower branches such as metals, nonmetals, chemicals, polymers. The polymeric nano composites have found a wide application field as one of the most important among these groups. Many polymers used in the different fields of the industry have been desired to improve the thermal stability. One of the ways to improve this property of the polymers is to form the nano composite products of them using different fillers. There are many using area of boron compounds and is increasing day by day. In order to the further increasing of the variety of using area of boron compounds and industrial importance, it is necessary to synthesis of nano-products and to find yourself new application areas of these products. In this study, PMMA/boronoxide nano composites were synthesized using solution intercalation, polymerization and melting methods; and PAA/boronoxide nano composites using solution intercalation method. Furthermore, rheological properties of nano composites synthesed according to melting method were also studied. Nano composites were characterized by XRD, FTIR-ATR, DTA/TG, BET, SEM, and TEM instruments. The effects of filler material amount, solvent types and mediating reagent on the thermal stability of polymers were investigated. In addition, the rheological properties of PMMA/boronoxide nano composites synthesized by melting method were investigated using High Pressure Capillary Rheometer. XRD analysis showed that boronoxide was dispersed in polymer matrix; FTIR-ATR that there were interactions with boronoxide between PAA and PMMA; and TEM that boronoxide particles had spherical structure, and dispersed in nano sized dimension in polymer matrix; the thermal stability of polymers was increased with the adding of boronoxide in polymer matrix; the decomposition mechanism of PAA was changed. From rheological measurements, it was found that PMMA and PMMA/boronoxide nano composites exhibited non-Newtonian, pseudo-plastic, shear thinning behavior under all experimental conditions.

Keywords: boronoxide, polymer, nanocomposite, rheology, characterization

Procedia PDF Downloads 433
1702 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste

Authors: Maciej Szelag

Abstract:

The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.

Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS

Procedia PDF Downloads 356
1701 Biomass Availability Matrix: Methodology to Define High Level Biomass Availability for Bioenergy Purposes, a Quebec Case Study

Authors: Camilo Perez Lee, Mark Lefsrud, Edris Madadian, Yves Roy

Abstract:

Biomass availability is one of the most important aspects to consider when determining the proper location of potential bioenergy plants. Since this aspect has a direct impact on biomass transportation and storage, biomass availability greatly influences the operational cost. Biomass availability is more than the quantity available on a specific region; other elements such as biomass accessibility and potential play an important role. Accessibility establishes if the biomass could be extracted and conveyed easily considering factors such as biomass availability, infrastructure condition and other operational issues. On the other hand, biomass potential is defined as the capacity of a specific region to scale the usage of biomass as an energy source, move from another energy source or to switch the type of biomass to increase their biomass availability in the future. This paper defines methodologies and parameters in order to determine the biomass availability within the administrative regions of the province of Quebec; firstly by defining the forestry, agricultural, municipal solid waste and energy crop biomass availability per administrative region, next its infrastructure accessibility and lastly defining the region potential. Thus, these data are processed to create a biomass availability matrix allowing to define the overall biomass availability per region and to determine the most optional candidates for bioenergy plant location.

Keywords: biomass, availability, bioenergy, accessibility, biomass potential

Procedia PDF Downloads 319
1700 Fabrication of Powdery Composites Based Alumina and Its Consolidation by Hot Pressing Method in OXY-GON Furnace

Authors: T. Kuchukhidze, N. Jalagonia, T. Korkia, V. Gabunia, N. Jalabadze, R. Chedia

Abstract:

In this work, obtaining methods of ultrafine alumina powdery composites and high temperature pressing technology of matrix ceramic composites with different compositions have been discussed. Alumina was obtained by solution combustion synthesis and sol-gel methods. Metal carbides containing powdery composites were obtained by homogenization of finishing powders in nanomills, as well as by their single-step high temperature synthesis .Different types of matrix ceramics composites (α-Al2O3-ZrO2-Y2O3, α-Al2O3- Y2O3-MgO, α-Al2O3-SiC-Y2O3, α-Al2O3-WC-Co-Y2O3, α-Al2O3- B4C-Y2O3, α-Al2O3- B4C-TiB2 etc.) were obtained by using OXYGON furnace. Consolidation of powders were carried out at 1550- 1750°C (hold time - 1 h, pressure - 50 MPa). Corundum ceramics samples have been obtained and characterized by high hardness and fracture toughness, absence of open porosity, high corrosion resistance. Their density reaches 99.5-99.6% TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM- 800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer.

Keywords: α-alumina, consolidation, phase transformation, powdery composites

Procedia PDF Downloads 348
1699 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 339
1698 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites

Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano

Abstract:

Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.

Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene

Procedia PDF Downloads 128
1697 Bio-Based Polyethylene/Rice Starch Composite Prepared by Twin Screw Extruder

Authors: Waris Piyaphon, Sathaphorn O-Suwankul, Kittima Bootdee, Manit Nithitanakul

Abstract:

Starch from rice was used as a filler in low density polyethylene in preparation of low density polyethylene/rice starch composite. This study aims to prepare LDPE/rice starch composites. Glycerol (GC) was used as a plasticizer in order to increase dispersion and reduce agglomeration of rice starch in low density polyethylene (LDPE) matrix. Low density polyethylene grafted maleic anhydride (LDPE-g-MA) was used as a compatibilizer to increase the compatibility between LDPE and rice starch. The content of rice starch was varied between 10, 20, and 30 %wt. Results indicated that increase of rice starch content reduced tensile strength at break, elongation, and impact strength of composites. LDPE-g-MA showed positive effect on mechanical properties which increased in tensile strength and impact properties as well as compatibility between rice starch and LDPE matrix. Moreover, the addition of LDPE-g-MA significantly improved the impact strength by 50% compared to neat composite. The incorporation of GC enhanced the processability of composite. Introduction of GC affected the viscosity after blending by reducing the viscosity at all shear rate. The presence of plasticizer increased the impact strength but decreased the stiffness of composite. Water absorption of the composite was increased when plasticizer was added.

Keywords: composite material, plastic starch composite, polyethylene composite, PE grafted maleic anhydride

Procedia PDF Downloads 209
1696 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils

Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi

Abstract:

This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.

Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation

Procedia PDF Downloads 527
1695 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output

Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin

Abstract:

With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.

Keywords: channel estimation, LMMSE, LS, MIMO, MMSE

Procedia PDF Downloads 191
1694 Design and Validation of Cutting Performance of Ceramic Matrix Composites Using FEM Simulations

Authors: Zohaib Ellahi, Guolong Zhao

Abstract:

Ceramic matrix composite (CMC) material possesses high strength, wear resistance and anisotropy thus machining of this material is very difficult and demands high cost. In this research, FEM simulations and physical experiments have been carried out to assess the machinability of carbon fiber reinforced silicon carbide (C/SiC) using polycrystalline diamond (PCD) tool in slot milling process. Finite element model has been generated in Abaqus/CAE software and milling operation performed by using user defined material subroutine. Effect of different milling parameters on cutting forces and stresses has been calculated through FEM simulations and compared with experimental results to validate the finite element model. Cutting forces in x and y-direction were calculated through both experiments and finite element model and found a good agreement between them. With increase in cutting speed resultant cutting forces are decreased. Resultant cutting forces are increased with increased feed per tooth and depth of cut. When machining performed along the fiber direction stresses generated near the tool edge were minimum and increases with fiber cutting angle.

Keywords: experimental & numerical investigation, C/SiC cutting performance analysis, milling of CMCs, CMC composite stress analysis

Procedia PDF Downloads 86
1693 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space

Authors: Chao He, Shunhua Zhou, Peijun Guo

Abstract:

The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.

Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method

Procedia PDF Downloads 119
1692 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination

Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo

Abstract:

In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.

Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator

Procedia PDF Downloads 198
1691 Poly(N-Vinylcaprolactam-Co-Itaconic Acid-Co-Ethylene Glycol Dimethacrylate)-Based Microgels Embedded in Chitosan Matrix for Controlled Release of Ketoprofen

Authors: Simone F. Medeiros, Jessica M. Fonseca, Gizelda M. Alves, Danilo M. Santos, Sérgio P. Campana-Filho, Amilton M. Santos

Abstract:

Stimuli responsive and biocompatible hydrogel nanoparticles have gained special attention as systems for potential applications in controlled release of drugs to improve their therapeutic efficacy while minimizing side effects. In this work, novel solid dispersions based on thermo- and pH-responsive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate) hydrogel nanoparticles embedded in chitosan matrices were prepared via spray drying for controlled release of ketoprofen. Firstly, the hydrogel nanoparticles containing ketoprofen were prepared via precipitation polymerization and their stimuli-responsive behavior, thermal properties, chemical composition, encapsulation efficiency and morphology were characterized. Then, hydrogel nanoparticles with different particles size were embedded into chitosan matrices via spray-drying. Scanning electron microscopy (SEM) analyses were performed to investigate the particles size, dispersity and morphology. Finally, ketoprofen release profiles were studied as a function of pH and temperature. Chitosan/poly(NVCL-co-IA-co-EGDMA)-ketoprofen microparticles presented spherical shape, rough surface and pronounced agglomeration, indicating that hydrogels nanoparticles loaded with ketoprofen modified the surface of chitosan matrix. The maximum encapsulation efficiency of ketoprofen into hydrogel nanoparticles was 57.8% and the electrostatic interactions between amino groups from chitosan and carboxylic groups from hydrogel nanoparticles were able to control ketoprofen release. The hydrogel nanoparticles themselves were capable to retard the release of ketoprofen-loaded until 48h of in vitro release tests, while their incorporation into chitosan matrix achieved a maximum percentage of drug release of 45%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 10:7, and 69%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 5:2.

Keywords: hydrogel nanoparticles, poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate), chitosan, ketoprofen, spray-drying

Procedia PDF Downloads 265
1690 Skin Substitutes for Wound Healing: An Advanced Formulation

Authors: Pennisi Stefania, Giuffrida Graziella, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta

Abstract:

Tissue engineering aims to develop advanced medical devices to restore normal functions of damaged tissue. These devices, even more effective than conventional methods, are called skin substitutes and are configured as drugs to be applied to the damaged area, to heal extensive and deep wounds which could otherwise lead to chronic wounds lasting over time. Among the variety of commercially available skin substitutes, those that have proven to be most effective are those consisting of a bilayer scaffold. The aim of our research was to design a skin substitute which can promote cell proliferation, cell migration and angiogenesis, and which can guarantee timely closure of the wound with satisfactory aesthetic results, in order to avoid the patient excessive pain, risk of contracting infections and long-term hospitalization. The product was tested in vitro using the Scratch Assay. The assay was carried out both on the matrix modified with hyaluronic acid and on the matrix based only on collagen. In both cases, after 48 hours of exposure the wound scratch was almost completely closed in treated cells compared to untreated control.

Keywords: collagen, hyaluronic acid, scratch- wound-healing assay, tissue regeneration

Procedia PDF Downloads 28
1689 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 132
1688 Gypsum Composites with CDW as Raw Material

Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola

Abstract:

On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.

Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum

Procedia PDF Downloads 510
1687 PLA Production from Multi Supply Lignocellulosic Biomass Residues: A Pathway for Agrifood Sector

Authors: Sónia Ribeiro, Diana Farinha, Hélia Sales, Rita Pontes, João Nunes

Abstract:

The demand and commitment to sustainability in the agrifood sector introduce news opportunities for new composite materials. Composite materials are emerging as a vital entity for the sustainable development. Polylactic acid (PLA) has been recognized as a potential polymer with attractive characteristics for agrifood sector applications. PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The production of PLA from lignocellulosic biomass residues matrix is a key option towards a sustainable and circular bioeconomy and a non-competitive application with feed and food sector. The Flui and BeirInov projects presents news developments in the production of PLA composites to value the Portuguese forest ecosystem, with high amount of lignocellulosic biomass residues and available. A performance production of lactic acid from lignocellulosic biomass undergoes a process of autohydrolysis, saccharification and fermentation, originating a lactic acid fermentation medium with a 72.27g.L-1 was obtained and a final purification of 72%. The high purification PLA from multi lignocellulosic residues representing one economic expensive process, and a new materials and application for the polymers and a combination with others types of composites matrix characteristic is the drive-up for this green market.

Keywords: polylactic acid, lignocellulosic biomass, agrifood, composite materials

Procedia PDF Downloads 75
1686 A Holistic Conceptual Measurement Framework for Assessing the Effectiveness and Viability of an Academic Program

Authors: Munir Majdalawieh, Adam Marks

Abstract:

In today’s very competitive higher education industry (HEI), HEIs are faced with the primary concern of developing, deploying, and sustaining high quality academic programs. Today, the HEI has well-established accreditation systems endorsed by a country’s legislation and institutions. The accreditation system is an educational pathway focused on the criteria and processes for evaluating educational programs. Although many aspects of the accreditation process highlight both the past and the present (prove), the “program review” assessment is "forward-looking assessment" (improve) and thus transforms the process into a continuing assessment activity rather than a periodic event. The purpose of this study is to propose a conceptual measurement framework for program review to be used by HEIs to undertake a robust and targeted approach to proactively and continuously review their academic programs to evaluate its practicality and effectiveness as well as to improve the education of the students. The proposed framework consists of two main components: program review principles and the program review measurement matrix.

Keywords: academic program, program review principles, curriculum development, accreditation, evaluation, assessment, review measurement matrix, program review process, information technologies supporting learning, learning/teaching methodologies and assessment

Procedia PDF Downloads 238
1685 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, M. C. Gowri Shankar

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine

Procedia PDF Downloads 320
1684 The Elastic Field of a Nano-Pore, and the Effective Modulus of Composites with Nano-Pores

Authors: Xin Chen, Moxiao Li, Xuechao Sun, Fei Ti, Shaobao Liu, Feng Xu, Tian Jian Lu

Abstract:

The composite materials with pores have the characteristics of light weight, sound insulation, and heat insulation, and have broad prospects in many fields, including aerospace. In general, the stiffness of such composite is less than the stiffness of the matrix material, limiting their applications. In this paper, we establish a theoretical model to analyze the deformation mechanism of a nano-pore. The interface between the pores and matrix material is described by the Gurtin-Murdoch model. By considering scale effect related with current deformation, we estimate the effective mechanical properties (e.g., effective shear modulus and bulk modulus) of a composite with nano-pores. Due to the scale effect, the elastic field in the composite was changed and local hardening was observed around the nano-pore, and the effective shear modulus and effective bulk modulus were found to be a function of the surface energy. The effective shear modulus increase with the surface energy and decrease with the size of the nano-pores, and the effective bulk modulus decrease with the surface energy and increase with the size of the nano-pores. These results have potential applications in the nanocomposite mechanics and aerospace field.

Keywords: composite mechanics, nano-inhomogeneity, nano-pores, scale effect

Procedia PDF Downloads 134