Search results for: cell temperature
5010 Synthesis of Quinazoline Derivatives as Selective Inhibitors of Cyclooxygenase-1 Enzyme
Authors: Marcela Dvorakova, Lenka Langhansova, Premysl Landa
Abstract:
A series of quinazoline derivatives bearing aromatic rings in 2- and 4-positions were prepared and tested for their biological activity. Firstly, the compounds were evaluated for their potential to inhibit various kinases, such as autophagy activating kinase ULK1, 3-Phosphoinositide-dependent kinase 1, and TANK-binding kinase 1. None of the compounds displayed any activity on these kinases. Secondly, the compounds were tested for their anti-inflammatory activity expressed as cyclooxygenase (COX) isoforms and 5-lipoxygenase (5-LOX) inhibition. Three of the compounds showed significant selectivity towards COX-1 isoform (COX-2/COX-1 SI = 20-30). They inhibited COX-1 in a single-digit µM range. There was also one compound that exhibited inhibitory activity towards all three tested enzymes in µM range (IC50COX-1 = 1.9 µM; IC50COX-2 and 5-LOX = 10.1µM. COX-1 inhibition was until recently considered undesirable due to COX-1 constitutive expression in most cell types and tissues. Thus, there are not many compounds known with selective COX-1 activity. However, it is now believed that COX-1 plays an important role in the pathophysiology of several acute and chronic disorders, including cancer or neurodegenerative diseases. Thus, the discovery of effective COX-1 selective inhibitors is desirable and important.Keywords: cyclooxygenases, kinases, lipoxygenases, quinazolines
Procedia PDF Downloads 1395009 Biofilm Formation Due to the Proteome Changes Of Enterococcus Faecium in Response to Sub-Mic of Gentamicin
Authors: Amin Abbasi, Mahdi Asghari Ozma
Abstract:
Background and Objective:Enterococcus faecium is a normal flora of the human gastrointestinal tract that causes infection in the host body under conditions such as biofilm formation, in which the use of antibiotics causes changes in these pathogenic mechanisms. In this study, we aimed to evaluate comprehensively the changes in E.faecium when exposed to sub-MIC of the gentamicin,especiallythe biofilm formation rate. Materials and Methods: For this study, the keywords "Enterococcus faecium ", "Biofilm", and "Gentamicin" in the databases PubMed, Google Scholar, Sid, and MagIran between 2015 and 2021 were searched, and 14 articles were chosen, studied, and analyzed. Results: Gentamicin significantly had increased biofilm formation in most of the isolates in the studies. Increased expression of the genes (efaA and esp) and proteins involved in biofilm formation and decreased expression of the genes (gelE and cylA) involved in spreading and proteins involved in metabolism and cell division in E.faecium were the most significant cause of the biofilm formation, which were increased in sub-MIC gentamicin-treated situation. Conclusion: Inadequate use of gentamicin intensify biofilm formation of E.faecium, which can make the treatment of infections caused by this bacterium difficult.Keywords: biofilm, enterococcus faecium, gentamicin, proteome
Procedia PDF Downloads 1175008 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells
Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon
Abstract:
By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique
Procedia PDF Downloads 3445007 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management
Authors: Walter W. Loo
Abstract:
China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.Keywords: greenhouses, no discharge, remediation of soil and water, wastewater
Procedia PDF Downloads 3495006 Thermal Perception by Older People in Open Spaces in Madrid: Relationships between Weather Parameters and Personal Characteristics
Authors: María Teresa Baquero, Ester Higueras
Abstract:
One of the challenges facing 21st century cities, is their adaptation to the phenomenon of an ageing population. International policies have been developed, such as the "Global Network for Age-friendly Cities and Communities". These cities must recognize the diversity of the elderly population, and facilitate an active, healthy, satisfied aging and promote inclusion. In order to promote active and healthy aging, older people should be encouraged to engage in physical activity, sunbathe, socialize and enjoy the public open spaces in the city. Some studies recognize thermal comfort as one of the factors that most influence the use of public open spaces. However, although some studies have shown vulnerability to thermal extremes and environmental conditions in older people, there is little research on thermal comfort for older adults, because it is usually analyzed based on the characteristics of the ¨average young person¨ without considering the physiological, physical and psychological differences that characterize the elderly. This study analyzes the relationship between the microclimate parameters as air temperature, relative humidity, wind speed and sky view factor (SVF) with the personal thermal perception of older adults in three public spaces in Madrid, through a mixed methodology that combines weather measurements with interviews, made during the year 2018. Statistical test like Chi-square, Spearman, and analysis of variance were used to analyze the relationship between preference votes and thermal sensation votes with environmental and personal parameters. The results show that there is a significant correlation between thermal sensation and thermal preference with the measured air temperature, age, level of clothing, the color of clothing, season, time of the day and kind of space while no influence of gender or other environmental variables was detected. These data would contribute to the design of comfortable public spaces that improve the welfare of the elderly contributing to "active and healthy aging" as one of the 21st century challenges cities face.Keywords: healthy ageing, older adults, outdoor public space, thermal perception
Procedia PDF Downloads 1395005 Active Learning in Engineering Courses Using Excel Spreadsheet
Authors: Promothes Saha
Abstract:
Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.Keywords: civil, engineering, active learning, transportation
Procedia PDF Downloads 1405004 Mobile Microscope for the Detection of Pathogenic Cells Using Image Processing
Authors: P. S. Surya Meghana, K. Lingeshwaran, C. Kannan, V. Raghavendran, C. Priya
Abstract:
One of the most basic and powerful tools in all of science and medicine is the light microscope, the fundamental device for laboratory as well as research purposes. With the improving technology, the need for portable, economic and user-friendly instruments is in high demand. The conventional microscope fails to live up to the emerging trend. Also, adequate access to healthcare is not widely available, especially in developing countries. The most basic step towards the curing of a malady is the diagnosis of the disease itself. The main aim of this paper is to diagnose Malaria with the most common device, cell phones, which prove to be the immediate solution for most of the modern day needs with the development of wireless infrastructure allowing to compute and communicate on the move. This opened up the opportunity to develop novel imaging, sensing, and diagnostics platforms using mobile phones as an underlying platform to address the global demand for accurate, sensitive, cost-effective, and field-portable measurement devices for use in remote and resource-limited settings around the world.Keywords: cellular, hand-held, health care, image processing, malarial parasites, microscope
Procedia PDF Downloads 2685003 Visual Detection of Escherichia coli (E. coli) through Formation of Beads Aggregation in Capillary Tube by Rolling Circle Amplification
Authors: Bo Ram Choi, Ji Su Kim, Juyeon Cho, Hyukjin Lee
Abstract:
Food contaminated by bacteria (E.coli), causes food poisoning, which occurs to many patients worldwide annually. We have introduced an application of rolling circle amplification (RCA) as a versatile biosensor and developed a diagnostic platform composed of capillary tube and microbeads for rapid and easy detection of Escherichia coli (E. coli). When specific mRNA of E.coli is extracted from cell lysis, rolling circle amplification (RCA) of DNA template can be achieved and can be visualized by beads aggregation in capillary tube. In contrast, if there is no bacterial pathogen in sample, no beads aggregation can be seen. This assay is possible to detect visually target gene without specific equipment. It is likely to the development of a genetic kit for point of care testing (POCT) that can detect target gene using microbeads.Keywords: rolling circle amplification (RCA), Escherichia coli (E. coli), point of care testing (POCT), beads aggregation, capillary tube
Procedia PDF Downloads 3725002 The Five Aggregates in Buddhism and Natural Sciences: A Revolutionary Perspective of Nature
Authors: Choo Fatt Foo
Abstract:
The Five Aggregates is core to Buddhism teaching. According to Buddhism, human beings and all sentient beings are made up of nothing but the Five Aggregates. If that is the case, the Five Aggregates must be found in all natural sciences. So far, there has not been any systematic connection between the Five Aggregates and natural sciences. This study aims at identifying traces of the Five Aggregates in various levels of natural sciences and pointing possible directions for future research. The following areas are briefly explored to identify the connection with the Five Aggregates: physics, chemistry, organic chemistry, DNA, cell, and human body and brain. Traces of the Five Aggregates should be found in each level of this hierarchy of natural sciences for human and sentient beings to be said to be made up of the Five Aggregates. This study proposes a hierarchical structure of nature cutting every level with the Five Aggregates and the Four Great Elements as its basis. The structure proposed by this study would revolutionize how we look at nature. Hopefully, better understanding of sciences in this manner will steer the application of scientific methods and technology towards a brighter future with compassion and tolerance.Keywords: the five aggregates, Buddhism, four great elements, physics, calabi-yau manifold
Procedia PDF Downloads 1965001 Screening and Improved Production of an Extracellular β-Fructofuranosidase from Bacillus Sp
Authors: Lynette Lincoln, Sunil S. More
Abstract:
With the rising demand of sugar used today, it is proposed that world sugar is expected to escalate up to 203 million tonnes by 2021. Hydrolysis of sucrose (table sugar) into glucose and fructose equimolar mixture is catalyzed by β-D-fructofuranoside fructohydrolase (EC 3.2.1.26), commonly called as invertase. For fluid filled center in chocolates, preparation of artificial honey, as a sweetener and especially to ensure that food stuffs remain fresh, moist and soft for longer spans invertase is applied widely and is extensively being used. From an industrial perspective, properties such as increased solubility, osmotic pressure and prevention of crystallization of sugar in food products are highly desired. Screening for invertase does not involve plate assay/qualitative test to determine the enzyme production. In this study, we use a three-step screening strategy for identification of a novel bacterial isolate from soil which is positive for invertase production. The primary step was serial dilution of soil collected from sugarcane fields (black soil, Maddur region of Mandya district, Karnataka, India) was grown on a Czapek-Dox medium (pH 5.0) containing sucrose as the sole C-source. Only colonies with the capability to utilize/breakdown sucrose exhibited growth. Bacterial isolates released invertase in order to take up sucrose, splitting the disaccharide into simple sugars. Secondly, invertase activity was determined from cell free extract by measuring the glucose released in the medium at 540 nm. Morphological observation of the most potent bacteria was examined by several identification tests using Bergey’s manual, which enabled us to know the genus of the isolate to be Bacillus. Furthermore, this potent bacterial colony was subjected to 16S rDNA PCR amplification and a single discrete PCR amplicon band of 1500 bp was observed. The 16S rDNA sequence was used to carry out BLAST alignment search tool of NCBI Genbank database to obtain maximum identity score of sequence. Molecular sequencing and identification was performed by Xcelris Labs Ltd. (Ahmedabad, India). The colony was identified as Bacillus sp. BAB-3434, indicating to be the first novel strain for extracellular invertase production. Molasses, a by-product of the sugarcane industry is a dark viscous liquid obtained upon crystallization of sugar. An enhanced invertase production and optimization studies were carried out by one-factor-at-a-time approach. Crucial parameters such as time course (24 h), pH (6.0), temperature (45 °C), inoculum size (2% v/v), N-source (yeast extract, 0.2% w/v) and C-source (molasses, 4% v/v) were found to be optimum demonstrating an increased yield. The findings of this study reveal a simple screening method of an extracellular invertase from a rapidly growing Bacillus sp., and selection of best factors that elevate enzyme activity especially utilization of molasses which served as an ideal substrate and also as C-source, results in a cost-effective production under submerged conditions. The invert mixture could be a replacement for table sugar which is an economic advantage and reduce the tedious work of sugar growers. On-going studies involve purification of extracellular invertase and determination of transfructosylating activity as at high concentration of sucrose, invertase produces fructooligosaccharides (FOS) which possesses probiotic properties.Keywords: Bacillus sp., invertase, molasses, screening, submerged fermentation
Procedia PDF Downloads 2355000 Collagen/Hydroxyapatite Compositions Doped with Transitional Metals for Bone Tissue Engineering Applications
Authors: D. Ficai, A. Ficai, D. Gudovan, I. A. Gudovan, I. Ardelean, R. Trusca, E. Andronescu, V. Mitran, A. Cimpean
Abstract:
In the last years, scientists struggled hardly to mimic bone structures to develop implants and biostructures which present higher biocompatibility and reduced rejection rate. One way to obtain this goal is to use similar materials as that of bone, namely collagen/hydroxyapatite composite materials. However, it is very important to tailor both compositions but also the microstructure of the bone that would ensure both the optimal osteointegartion and the mechanical properties required by the application. In this study, new collagen/hydroxyapatites composite materials doped with Cu, Li, Mn, Zn were successfully prepared. The synthesis method is described below: weight the Ca(OH)₂ mass, i.e., 7,3067g, and ZnCl₂ (0.134g), CuSO₄ (0.159g), LiCO₃ (0.133g), MnCl₂.4H₂O (0.1971g), and suspend in 100ml distilled water under magnetic stirring. The solution thus obtained is added a solution of NaH₂PO₄*H2O (8.247g dissolved in 50ml distilled water) under slow dropping of 1 ml/min followed by adjusting the pH to 9.5 with HCl and finally filter and wash until neutral pH. The as-obtained slurry was dried in the oven at 80°C and then calcined at 600°C in order to ensure a proper purification of the final product of organic phases, also inducing a proper sterilization of the mixture before insertion into the collagen matrix. The collagen/hydroxyapatite composite materials are tailored from morphological point of view to optimize their biocompatibility and bio-integration against mechanical properties whereas the addition of the dopants is aimed to improve the biological activity of the samples. The addition of transitional metals can improve the biocompatibility and especially the osteoblasts adhesion (Mn²⁺) or to induce slightly better osteoblast differentiation of the osteoblast, Zn²⁺ being a cofactor for many enzymes including those responsible for cell differentiation. If the amount is too high, the final material can become toxic and lose all of its biocompatibility. In order to achieve a good biocompatibility and not reach the cytotoxic effect, the amount of transitional metals added has to be maintained at low levels (0.5% molar). The amount of transitional metals entering into the elemental cell of HA will be verified using inductively-coupled plasma mass spectrometric system. This highly sensitive technique is necessary, because, at such low levels of transitional metals, the difference between biocompatible and cytotoxic is a very thin line, thus requiring proper and thorough investigation using a precise technique. In order to determine the structure and morphology of the obtained composite materials, IR spectroscopy, X-Ray diffraction (XRD), scanning electron microscopy (SEM), and Energy Dispersive X-Ray Spectrometry (EDS) were used. Acknowledgment: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project “Biomimetic porous structures obtained by 3D printing developed for bone tissue engineering (BIOGRAFTPRINT), No. 127PED/2017 is also highly acknowledged.Keywords: collagen, composite materials, hydroxyapatite, bone tissue engineering
Procedia PDF Downloads 2094999 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys
Authors: Dong Bok Lee, Min Jung Kim
Abstract:
The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.Keywords: titanium alloy, oxynitriding, gas diffusion, surface treatment
Procedia PDF Downloads 3204998 Khaya Cellulose Supported Copper Nanoparticles for Chemo Selective Aza-Michael Reactions
Authors: M. Shaheen Sarkar, M. Lutfor Rahman, Mashitah Mohd Yusoff
Abstract:
We prepared a highly active Khaya cellulose supported poly(hydroxamic acid) copper nanoparticles by the surface modification of Khaya cellulose through graft co-polymerization and subsequently amidoximation. The Cu-nanoparticle (0.05 mol% to 50 mol ppm) was selectively promoted Aza-Michael reaction of aliphatic amines to give the corresponding alkylated products at room temperature in methanol. The supported nanoparticle was easy to recover and reused seven times without significance loss of its activity.Keywords: Aza-Michael, copper, cellulose, nanoparticles, poly(hydroxamic acid)
Procedia PDF Downloads 3464997 Development of Light-Weight Refractory Bricks
Authors: Liaqat Ali, Furqan Ahmad
Abstract:
The heat losses should be controlled during the high temperature processes from energy conservation point of view. For this purpose, refractories with low thermal conductivity, high porosity and good mechanical strength along with low price are desirable. In this work, various combinations of naturally occurring, locally available, cheap raw materials, namely, clay, rice husk and saw dust were used. Locally produced insulating firebricks (IFBs) cannot be used at higher than a few hundred °C and possess low strength as well. Various process parameters were studied and the refractories with desirable properties were produced, which can be used up to 1200 °C.Keywords: firebricks, mechanical strength, thermal conductivity, refractory bricks
Procedia PDF Downloads 3324996 LTE Modelling of a DC Arc Ignition on Cold Electrodes
Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov
Abstract:
The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes
Procedia PDF Downloads 1274995 Assessment of Climate Change Impacts on the Hydrology of Upper Guder Catchment, Upper Blue Nile
Authors: Fikru Fentaw Abera
Abstract:
Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this paper is to assess the impact of climate change on the hydrology of Upper Guder catchment located in northwest of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical downscaling model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the soil and water assessment tool (SWAT) model to simulate the corresponding future stream flow regime in Upper Guder catchment of the Abay River Basin. A semi distributed hydrological model, SWAT was developed and Generalized Likelihood Uncertainty Estimation (GLUE) was utilized for uncertainty analysis. GLUE is linked with SWAT in the Calibration and Uncertainty Program known as SWAT-CUP. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight increasing trend in precipitation for both A2a and B2a emission scenarios in both Gedo and Tikur Inch stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. The model output shows that there may be an annual increase in flow volume up to 35% for both emission scenarios in three benchmark periods in the future. All seasons show an increase in flow volume for both A2a and B2a emission scenarios for all time horizons. Potential evapotranspiration in the catchment also will increase annually on average 3-15% for the 2020s and 7-25% for the 2050s and 2080s for both A2a and B2a emissions scenarios.Keywords: climate change, Guder sub-basin, GCM, SDSM, SWAT, SWAT-CUP, GLUE
Procedia PDF Downloads 3684994 PWM Harmonic Injection and Frequency-Modulated Triangular Carrier to Improve the Lives of the Transformers
Authors: Mario J. Meco-Gutierrez, Francisco Perez-Hidalgo, Juan R. Heredia-Larrubia, Antonio Ruiz-Gonzalez, Francisco Vargas-Merino
Abstract:
More and more applications power inverters connected to transformers, for example, the connection facilities to the power grid renewable generation. It is well known that the quality of signal power inverters it is not a pure sine. The harmonic content produced negative effects, one of which is the heating of electrical machines and therefore, affects the life of the machines. The decrease of life of transformers can be calculated by Arrhenius or Montsinger equation. Analyzing this expression any (long-term) decrease of a transformer temperature for 6º C - 7º C means doubles its life-expectancy. Methodologies: This work presents the technique of pulse width modulation (PWM) with an injection of harmonic and triangular frequency carrier modulated in frequency. This technique is used to improve the quality of the output voltage signal of the power inverters controlled PWM. The proposed technique increases in the fundamental term and a significant reduction in low order harmonics with the same commutations per time that control sine PWM. To achieve this, the modulating wave is compared to a triangular carrier with variable frequency over the period of the modulator. Therefore, it is, advantageous for the modulating signal to have a large amount of sinusoidal “information” in the areas of greater sampling. A triangular signal with a frequency that varies over the modulator’s period is used as a carrier, for obtaining more samples in the area with the greatest slope. A power inverter controlled by PWM proposed technique is connected to a transformer. Results: In order to verify the derived thermal parameters under different operation conditions, another ambient and loading scenario is involved for a further verification, which was sampled from the same power transformer. Temperatures of different parts of the transformer will be exposed for each PWM control technique analyzed. An assessment of the temperature be done with different techniques PWM control and hence the life of the transformer is calculated for each technique. Conclusion: This paper analyzes such as transformer heating produced by this technique and compared with other forms of PWM control. In it can be seen as a reduction the harmonic content produces less heat transformer and therefore, an increase in the life of the transformer.Keywords: heating, power-inverter, PWM, transformer
Procedia PDF Downloads 4134993 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films
Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete
Abstract:
SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide
Procedia PDF Downloads 2754992 The Study of the Physical, Chemical and Mechanical Properties of Recycled Thermoplastic Polypropylene and Polyamide Materials Used in the Automotive Industry
Authors: Sevim Gecici, Erdinc Doganci
Abstract:
Thermoplastic materials are widely used in the automotive industry due to their lightweight nature, durability, recyclability and versatility in shaping. They serve various purposes in the automotive sector, including interior and exterior components, vehicle body parts and insulation. The recycling of thermoplastic polymer materials used in the automotive industry helps reduce waste and mitigate environmental impacts. The aim of this study is to facilitate the recycling of thermoplastic materials used in the automotive industry. Recycled materials, such as sprues and defective parts, are generated from thermoplastic polymer materials used in the automotive sector after the injection process. In this study, the physical, chemical and mechanical properties of the recycled parts obtained from the reprocessing of these materials were determined through various tests. Thermoplastic products (PP and PA) that were recycled after the injection process were processed through a grinding unit and then subjected to a second injection process with physical, chemical and mechanical tests applied to the resulting products. This is a result of the initial grinding process. The same procedures were applied to each thermoplastic material through a series of steps first injection, first grinding, second injection, second grinding, third injection, third grinding, fourth injection and fourth grinding, followed by product testing. Subsequently, the test results of the original raw material's Technical Data Sheet (TDS) were compared with the results obtained from the products after the injection process to determine the raw material based on physical, chemical and mechanical changes. The study included tests for Density, Melt Flow Rate, Tensile Modulus, Tensile Stress, Flexural Modulus (Injection Molded), Charpy Notched Impact Strength, Notched Izod Impact Strength, Shore Hardness, Heat Deflection Temperature, Vicat Softening Temperature and UV tests. Additionally, more specific tests such as Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Heat Aging, FTIR, SEM and TEM analyses were conducted to examine structural changes in thermoplastic materials subjected to multiple recycling processes. In the later stages of the study, injection molding process trials will be conducted with raw materials such as ABS, PC, PC-ABS and PE.Keywords: injection molding, recycling, automotive, polypropylene, thermoplastic
Procedia PDF Downloads 224991 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology
Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea
Abstract:
The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties
Procedia PDF Downloads 1734990 An AFM Approach of RBC Micro and Nanoscale Topographic Features During Storage
Authors: K. Santacruz-Gomez, E. Silva-Campa, S. Álvarez-García, V. Mata-Haro, D. Soto-Puebla, M. Pedroza-Montero
Abstract:
Blood gamma irradiation is the only available method to prevent transfusion-associated graft versus host disease (TA-GVHD). However, when blood is irradiated, determine blood shelf time is crucial. Non-irradiated blood has a self-time from 21 to 35 days when is preserved with an anticoagulated solution and stored at 4°C. During their storage, red blood cells (RBC) undergo a series of biochemical, biomechanical and molecular changes involving what is known as storage lesion (SL). SL include loss of structural integrity of RBC, a decrease of 2,3-diphosphatidylglyceric acid levels, and an increase of both ion potassium concentration and hemoglobin (Hb). On the other hand, Atomic force Microscopy (AFM) represents a versatile tool for a nano-scale high-resolution topographic analysis in biological systems. In order to evaluate SL in irradiated and non-irradiated blood, RBC topography and morphometric parameters were obtained from an AFM XE-BIO system. Cell viability was followed using flow cytometry. Our results showed that early markers as nanoscale roughness, allow us to evaluate blood quality since another perspective.Keywords: AFM, blood γ-irradiation, roughness, storage lesion
Procedia PDF Downloads 5354989 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 2644988 Extraction of Cellulose Nanocrystals from Soy Pods
Authors: Maycon dos Santos, Marivane Turim Koschevic, Karina Sayuri Ueda, Marcello Lima Bertuci, Farayde Matta Fackhouri, Silvia Maria Martelli
Abstract:
The use of cellulose nanocrystals as reinforcing agents in polymer nanocomposites is promising. In this study, we tested four different methods of mercerization were divided into two stages. The sample was treated in 5% NaOH solution for 30 minutes at 50 ° C in the first stage and 30vol H2O2 for 2 hours at 50 ° C in the second step, which showed better results. For the extraction of the sample obtained nanocrystals positive result was that the solution was treated with H2SO4 60% (w / w) for 1 hour at 50 ° C. The results were positive and showed that it is possible to extract CNC at low temperatures.Keywords: soy pods, cellulose nanocrystals, temperature, acid concentration
Procedia PDF Downloads 2994987 Hafnium Doped Zno Nanostructures: An Eco-Friendly Synthesis for Optoelectronic Applications
Authors: Mohamed Achehboune, Mohammed Khenfouch, Issam Boukhoubza, Bakang Mothudi, Izeddine Zorkani, Anouar Jorio
Abstract:
Zinc Oxide (ZnO) nanostructures have been attracting growing interest in recent years; their optical and electrical properties make them useful as attractive and promising materials for optoelectronic applications. In this study, pure and Hafnium doped ZnO nanostructures were synthesized using a green processing method. The structural, optical and electrical properties of samples were investigated structural and optical spectroscopies and electrical measurements. The synthesis and chemical composition of pure and Hafnium doped ZnO were confirmed by SEM observation. The XRD studies of Hafnium doped ZnO demonstrate the formation of wurtzite structure with preferred c-axis orientation. Moreover, the optical and electrical properties of doped material have improved after the doping process. The experimental results obtained for our material show that Hf doped ZnO nanostructures could be a promising material in optoelectronic applications such as photovoltaic cell and light emitting diode devices.Keywords: green synthesis, hafnium-doped-zinc oxide, nanostructures, optoelectronic
Procedia PDF Downloads 2754986 Simulation of Red Blood Cells in Complex Micro-Tubes
Authors: Ting Ye, Nhan Phan-Thien, Chwee Teck Lim, Lina Peng, Huixin Shi
Abstract:
In biofluid flow systems, often the flow problems of fluids of complex structures, such as the flow of red blood cells (RBCs) through complex capillary vessels, need to be considered. In this paper, we aim to apply a particle-based method, Smoothed Dissipative Particle Dynamics (SDPD), to simulate the motion and deformation of RBCs in complex micro-tubes. We first present the theoretical models, including SDPD model, RBC-fluid interaction model, RBC deformation model, RBC aggregation model, and boundary treatment model. After that, we show the verification and validation of these models, by comparing our numerical results with the theoretical, experimental and previously-published numerical results. Finally, we provide some simulation cases, such as the motion and deformation of RBCs in rectangular, cylinder, curved, bifurcated, and constricted micro-tubes, respectively.Keywords: aggregation, deformation, red blood cell, smoothed dissipative particle dynamics
Procedia PDF Downloads 1764985 Role of GM1 in the Interaction between Amyloid Prefibrillar Oligomers of Salmon Calcitonin and Model Membranes
Authors: Cristiano Giordani, Marco Diociaiuti, Cecilia Bombelli, Laura Zanetti-Polzi, Marcello Belfiore, Raoul Fioravanti, Gianfranco Macchia
Abstract:
We investigated induced functional effects by evaluating Ca2+-influx in liposomes and cell viability in HT22-DIFF neurons. Only solutions rich in unstructured Prefibrillar-Oligomers (PFOs) were able, in the presence of Monosialoganglioside-GM1 (GM1), to induce Ca2+-influx and were also neurotoxic, suggesting a correlation between the two phenomena. Thus, in the presence of GM1, we investigated the protein conformation and liposome modification due to the interaction. Circular Dichroism showed that GM1 fostered the formation of β-structures and Energy Filtered-Transmission Electron Microscopy that PFOs formed “amyloid-channels” as reported for Aβ. We speculate that electrostatic forces occurring between the positive PFOs and negative GM1 drive the initial binding, while the hydrophobic profile of the flexible PFO is responsible for the subsequent pore formation. Conversely, the rigid β-structured mature/fibers (MFs) and proto-fibers (PFs) were unable to induce membrane damage and Ca2+- influx.Keywords: amyloid proteins, neurotoxicity, lipid-rafts, GM1
Procedia PDF Downloads 1934984 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer
Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan
Abstract:
Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer
Procedia PDF Downloads 1004983 Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface
Authors: Rattanan Tippayaphalapholgul, Yasothorn Sapsathiarn
Abstract:
Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.Keywords: effective engineering properties, electroelastic response, imperfect interface, piezocomposite
Procedia PDF Downloads 2354982 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame
Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi
Abstract:
The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame
Procedia PDF Downloads 2804981 Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown
Authors: Dalila Chouder, Djaafer Benachour
Abstract:
This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity.Keywords: polymerization, electrochemical, conductivity, complexing metal ions
Procedia PDF Downloads 270