Search results for: computational fluid dynamics "CFD"
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5711

Search results for: computational fluid dynamics "CFD"

551 Assessment of Morphodynamic Changes at Kaluganga River Outlet, Sri Lanka Due to Poorly Planned Flood Controlling Measures

Authors: G. P. Gunasinghe, Lilani Ruhunage, N. P. Ratnayake, G. V. I. Samaradivakara, H. M. R. Premasiri, A. S. Ratnayake, Nimila Dushantha, W. A. P. Weerakoon, K. B. A. Silva

Abstract:

Sri Lanka is affected by different natural disasters such as tsunami, landslides, lightning, and riverine flood. Out of them, riverine floods act as a major disaster in the country. Different strategies are applied to control the impacts of flood hazards, and the expansion of river mouth is considered as one of the main activities for flood mitigation and disaster reduction. However, due to this expansion process, natural sand barriers including sand spits, barrier islands, and tidal planes are destroyed or subjected to change. This, in turn, can change the hydrodynamics and sediment dynamics of the area leading to other damages to the natural coastal features. The removal of a considerable portion of naturally formed sand barrier at Kaluganga River outlet (Calido Beach), Sri Lanka to control flooding event at Kaluthara urban area on May 2017, has become a serious issue in the area causing complete collapse of river mouth barrier spit bar system leading to rapid coastal erosion Kaluganga river outlet area and saltwater intrusion into the Kaluganga River. The present investigation is focused on assessing effects due to the removal of a considerable portion of naturally formed sand barrier at Kaluganga river mouth. For this study, the beach profiles, the bathymetric surveys, and Google Earth historical satellite images, before and after the flood event were collected and analyzed. Furthermore, a beach boundary survey was also carried out in October 2018 to support the satellite image data. The results of Google Earth satellite images and beach boundary survey data analyzed show a chronological breakdown of the sand barrier at the river outlet. The comparisons of pre and post-disaster bathymetric maps and beach profiles analysis revealed a noticeable deepening of the sea bed at the nearshore zone as well. Such deepening in the nearshore zone can cause the sea waves to break very near to the coastline. This might also lead to generate new diffraction patterns resulting in differential coastal accretion and erosion scenarios. Unless immediate mitigatory measures were not taken, the impacts may cause severe problems to the sensitive Kaluganag river mouth system.

Keywords: bathymetry, beach profiles, coastal features, river outlet, sand barrier, Sri Lanka

Procedia PDF Downloads 137
550 The Neoliberal Social-Economic Development and Values in the Baltic States

Authors: Daiva Skuciene

Abstract:

The Baltic States turned to free market and capitalism after independency. The new socioeconomic system, democracy and priorities about the welfare of citizens formed. The researches show that Baltic states choose the neoliberal development. Related to this neoliberal path, a few questions arouse: how do people evaluate the results of such policy and socioeconomic development? What are their priorities? And what are the values of the Baltic societies that support neoliberal policy? The purpose of this research – to analyze the socioeconomic context and the priorities and the values of the Baltics societies related to neoliberal regime. The main objectives are: firstly, to analyze the neoliberal socioeconomic features and results; secondly, to analyze people opinions and priorities about the results of neoliberal development; thirdly, to analyze the values of the Baltic societies related to the neoliberal policy. For the implementation of the purpose and objectives, the comparative analyses among European countries are used. The neoliberal regime was defined through two indicators: the taxes on capital income and expenditures on social protection. The socioeconomic outcomes of neoliberal welfare regime are defined through the Gini inequality and at risk of the poverty rate. For this analysis, the data of 2002-2013 of Eurostat were used. For the analyses of opinion about inequality and preferences on society, people want to live in, the preferences for distribution between capital and wages in enterprise data of Eurobarometer in 2010-2014 and the data of representative survey in the Baltic States in 2016 were used. The justice variable was selected as a variable reflecting the evaluation of socioeconomic context and analyzed using data of Eurobarometer 2006-2015. For the analyses of values were selected: solidarity, equality, and individual responsibility. The solidarity, equality was analyzed using data of Eurobarometer 2006-2015. The value “individual responsibility” was examined by opinions about reasons of inequality and poverty. The survey of population in the Baltic States in 2016 and data of Eurobarometer were used for this aim. The data are ranged in descending order for understanding the position of opinion of people in the Baltic States among European countries. The dynamics of indicators is also provided to examine stability of values. The main findings of the research are that people in the Baltics are dissatisfied with the results of the neoliberal socioeconomic development, they have priorities for equality and justice, but they have internalized the main neoliberal narrative- individual responsibility. The impact of socioeconomic context on values is huge, resulting in a change in quite stable opinions and values during the period of the financial crisis.

Keywords: neoliberal, inequality and poverty, solidarity, individual responsibility

Procedia PDF Downloads 256
549 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.

Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption

Procedia PDF Downloads 269
548 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 86
547 Genetic Dissection of QTLs in Intraspecific Hybrids Derived from Muskmelon (Cucumis Melo L.) and Mangalore Melon (Cucumis Melo Var Acidulus) for Shelflife and Fruit Quality Traits

Authors: Virupakshi Hiremata, Ratnakar M. Shet, Raghavendra Gunnaiah, Prashantha A.

Abstract:

Muskmelon is a health-beneficial and refreshing dessert vegetable with a low shelf life. Mangalore melon, a genetic homeologue of muskmelon, has a shelf life of more than six months and is mostly used for culinary purposes. Understanding the genetics of shelf life, yield and yield-related traits and identification of markers linked to such traits is helpful in transfer of extended shelf life from Mangalore melon to the muskmelon through intra-specific hybridization. For QTL mapping, 276 F2 mapping population derived from the cross Arka Siri × SS-17 was genotyped with 40 polymorphic markers distributed across 12 chromosomes. The same population was also phenotyped for yield, shelf life and fruit quality traits. One major QTL (R2 >10) and fourteen minor QTLs (R2 <10) localized on four linkage groups, governing different traits were mapped in F2 mapping population developed from the intraspecific cross with a LOD > 5.5. The phenotypic varience explained by each locus varied from 3.63 to 10.97 %. One QTL was linked to shelf-life (qSHL-3-1), five QTLs were linked to TSS (qTSS-1-1, qTSS-3-3, qTSS-3-1, qTSS-3-2 and qTSS-1-2), two QTLs for flesh thickness (qFT-3-1, and qFT-3-2) and seven QTLs for fruit yield per vine (qFYV-3-1, qFYV-1-1, qFYV-3-1, qFYV1-1, qFYV-1-3, qFYV2-1 and qFYV6-1). QTL flanking markers may be used for marker assisted introgression of shelf life into muskmelon. Important QTL will be further fine-mapped for identifying candidate genes by QTLseq and RNAseq analysis. Fine-mapping of Important Quantitative Trait Loci (QTL) holds immense promise in elucidating the genetic basis of complex traits. Leveraging advanced techniques like QTLseq and RNA sequencing (RNA seq) is crucial for this endeavor. QTLseq combines next-generation sequencing with traditional QTL mapping, enabling precise identification of genomic regions associated with traits of interest. Through high-throughput sequencing, QTLseq provides a detailed map of genetic variations linked to phenotypic variations, facilitating targeted investigations. Moreover, RNA seq analysis offers a comprehensive view of gene expression patterns in response to specific traits or conditions. By comparing transcriptomes between contrasting phenotypes, RNA seq aids in pinpointing candidate genes underlying QTL regions. Integrating QTLseq with RNA seq allows for a multi-dimensional approach, coupling genetic variation with gene expression dynamics.

Keywords: QTL, shelf life, TSS, muskmelon and Mangalore melon

Procedia PDF Downloads 54
546 Analysis of Storm Flood in Typical Sewer Networks in High Mountain Watersheds of Colombia Based on SWMM

Authors: J. C. Hoyos, J. Zambrano Nájera

Abstract:

Increasing urbanization has led to changes in the natural dynamics of watersheds, causing problems such as increases in volumes of runoff, peak flow rates, and flow rates so that the risk of storm flooding increases. Sewerage networks designed 30 – 40 years ago don’t account for these increases in flow volumes and velocities. Besides, Andean cities with high slopes worsen the problem because velocities are even higher not allowing sewerage network work and causing cities less resilient to landscape changes and climatic change. In Latin America, especially Colombia, this is a major problem because urban population at late XX century was more than 70% is in urban areas increasing approximately in 790% in 1940-1990 period. Thus, it becomes very important to study how changes in hydrological behavior affect hydraulic capacity of sewerage networks in Andean Urban Watersheds. This research aims to determine the impact of urbanization in high-sloped urban watersheds in its hydrology. To this end it will be used as study area experimental urban watershed named Palogrande-San Luis watershed, located in the city of Manizales, Colombia. Manizales is a city in central western Colombia, located in Colombian Central Mountain Range (part of Los Andes Mountains) with an abrupt topography (average altitude is 2.153 m). The climate in Manizales is quite uniform, but due to its high altitude it presents high precipitations (1.545 mm/year average) with high humidity (83% average). Behavior of the current sewerage network will be reviewed by the hydraulic model SWMM (Storm Water Management Model). Based on SWMM the hydrological response of urban watershed selected will be evaluated under the design storm with different frequencies in the region, such as drainage effect and water-logging, overland flow on roads, etc. Cartographic information was obtained from a Geographic Information System (GIS) thematic maps of the Institute of Environmental Studies of the Universidad Nacional de Colombia and the utility Aguas de Manizales S.A. Rainfall and streamflow data is obtained from 4 rain gages and 1 stream gages. This information will allow determining critical issues on drainage systems design in urban watershed with very high slopes, and which practices will be discarded o recommended.

Keywords: land cover changes, storm sewer system, urban hydrology, urban planning

Procedia PDF Downloads 261
545 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 179
544 Astronomy in the Education Area: A Narrative Review

Authors: Isabella Lima Leite de Freitas

Abstract:

The importance of astronomy for humanity is unquestionable. Despite being a robust science, capable of bringing new discoveries every day and quickly increasing the ability of researchers to understand the universe more deeply, scientific research in this area can also help in various applications outside the domain of astronomy. The objective of this study was to review and conduct a descriptive analysis of published studies that presented the importance of astronomy in the area of education. A narrative review of the literature has been performed, considering the articles published in the last five years. As astronomy involves the study of physics, chemistry, biology, mathematics and technology, one of the studies evaluated presented astronomy as the gateway to science, demonstrating the presence of astronomy in 52 school curricula in 37 countries, with celestial movement the dominant content area. Another intervention study, evaluating individuals aged 4-5 years, demonstrated that the attribution of personal characteristics to cosmic bodies, in addition to the use of comprehensive astronomy concepts, favored the learning of science in preschool-age children, considering the use of practical activities of accompaniment and free drawing. Aiming to measure scientific literacy, another study developed in Turkey, motivated the authorities of this country to change the teaching materials and curriculum of secondary schools after the term “astronomy” appeared as one of the most attractive subjects for young people aged 15 to 24. There are also reports in the literature of the use of pedagogical tools, such as the representation of the Solar System on a human scale, where students can walk along the orbits of the planets while studying the laws of dynamics. The use of this tool favored the teaching of the relationship between distance, duration and speed over the period of the planets, in addition to improving the motivation and well-being of students aged 14-16. An important impact of astronomy on education was demonstrated in the study that evaluated the participation of high school students in the Astronomical Olympiads and the International Astronomy Olympiad. The study concluded that these Olympics have considerable influence on students who pursue a career in teaching or research later on, many of whom are in the area of astronomy itself. In addition, the literature indicates that the teaching of astronomy in the digital age has facilitated the availability of data for researchers, but also for the general population. This fact can increase even more the curiosity that the astronomy area has always instilled in people and promote the dissemination of knowledge on an expanded scale. Currently, astronomy has been considered an important ally in strengthening the school curricula of children, adolescents and young adults. This has been used as teaching tools, in addition to being extremely useful for scientific literacy, being increasingly used in the area of education.

Keywords: astronomy, education area, teaching, review

Procedia PDF Downloads 103
543 Structural Strength Evaluation and Wear Prediction of Double Helix Steel Wire Ropes for Heavy Machinery

Authors: Krunal Thakar

Abstract:

Wire ropes combine high tensile strength and flexibility as compared to other general steel products. They are used in various application areas such as cranes, mining, elevators, bridges, cable cars, etc. The earliest reported use of wire ropes was for mining hoist application in 1830s. Over the period, there have been substantial advancement in the design of wire ropes for various application areas. Under operational conditions, wire ropes are subjected to varying tensile loads and bending loads resulting in material wear and eventual structural failure due to fretting fatigue. The conventional inspection methods to determine wire failure is only limited to outer wires of rope. However, till date, there is no effective mathematical model to examine the inter wire contact forces and wear characteristics. The scope of this paper is to present a computational simulation technique to evaluate inter wire contact forces and wear, which are in many cases responsible for rope failure. Two different type of ropes, IWRC-6xFi(29) and U3xSeS(48) were taken for structural strength evaluation and wear prediction. Both ropes have a double helix twisted wire profile as per JIS standards and are mainly used in cranes. CAD models of both ropes were developed in general purpose design software using in house developed formulation to generate double helix profile. Numerical simulation was done under two different load cases (a) Axial Tension and (b) Bending over Sheave. Different parameters such as stresses, contact forces, wear depth, load-elongation, etc., were investigated and compared between both ropes. Numerical simulation method facilitates the detailed investigation of inter wire contact and wear characteristics. In addition, various selection parameters like sheave diameter, rope diameter, helix angle, swaging, maximum load carrying capacity, etc., can be quickly analyzed.

Keywords: steel wire ropes, numerical simulation, material wear, structural strength, axial tension, bending over sheave

Procedia PDF Downloads 152
542 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 121
541 Consequences to Financial Reporting by Implementing Sri Lanka Financial Reporting Standard 13 on Measuring the Fair Value of Financial Instruments: Evidence from Three Sri Lankan Organizations

Authors: Nayoma Ranawaka

Abstract:

The demand for the high quality internationally comparable financial information has been increased than ever with the expansion of economic activities beyond its national boundaries. Thus, the necessity of converging accounting practices across the world is now continuously discussed with greater emphasis. The global convergence to International Financial Reporting Standards has been one of the main objectives of the International Accounting Standards Setting Board (IASB) since its establishment in 2001. Accordingly, Sri Lanka has adopted IFRSs in 2012. Among the other standards as a newly introduced standard by the IASB, IFRS 13 plays a pivotal role as it deals with the Fair Value Accounting (FVA). Therefore, it is valuable to obtain knowledge about the consequences of implementing IFRS 13 in Sri Lanka and compare results across nations. According to the IFRS Jurisdictional provision of Sri Lanka, Institute of Chartered Accountants of Sri Lanka has taken official steps to adopt IFRS 13 by introducing SLFRS 13 with de jure convergence. Then this study was identified the de facto convergence of the SLFRS 13 in measuring the Fair Value of Financial Instruments in the Sri Lankan context. Accordingly, the objective of this study is to explore the consequences to financial reporting by implementing SLFRS 13 on measuring the financial instruments. In order to achieve the objective of the study expert interview and in-depth interviews with the interviewees from the selected three case studies and their independent auditor were carried out using customized three different interview guides. These three cases were selected from three different industries; Banking, Manufacturing and Finance. NVivo version 10 was used to analyze the data collected through in-depth interviews. Then the content analysis was carried out and conclusions were derived based on the findings. Contribution to the knowledge by this study can be identified in different aspects. Findings of this study facilitate accounting practitioners to get an overall picture of application of fair value standard in measuring the financial instruments and to identify the challenges and barriers to the adoption process. Further, assist auditors in carrying out their audit procedures to check the level of compliance to the fair value standard in measuring the financial instruments. Moreover, this would enable foreign investors in assessing the reliability of the financial statements of their target investments as a result of SLFRS 13 in measuring the FVs of the FIs. The findings of the study could be used to open new avenues of thinking for policy formulators to provide the necessary infrastructure to eliminate disparities exists among different regulatory bodies to facilitate full convergence and thereby growth of the economy. Further, this provides insights to the dynamics of FVA implementation that are also relevant for other developing countries.

Keywords: convergence, fair value, financial instruments, IFRS 13

Procedia PDF Downloads 126
540 A Transnational Feminist Analysis of the Experiences of Return Migrant Women to Kosova

Authors: Kaltrina Kusari

Abstract:

Displaced populations have received increasing attention, yet the experiences of return migrants remain largely hidden within social sciences. Existing research, albeit limited, suggests that policies which impact return migrants, especially those forced to return to their home countries, do not reflect their voices. Specifically, the United Nations Hight Commissioner for Refugees has adopted repatriation as a preferred policy solution, despite research which substantiates that returning to one’s home country is neither durable nor the end of the migration cycle; as many of 80% of returnees decide to remigrate. This one-size-fits-all approach to forced displacement does not recognize the impact of intersecting identity categories on return migration, thus failing to consider how ethnicity, gender, and class, among others, shape repatriation. To address this, this qualitative study examined the repatriation experiences of return migrant women from Kosovo and the role of social workers in facilitating return. In 2015, Kosovars constituted the fourth largest group of asylum seekers in the European Union, yet 96% of them were rejected. Additionally, since 1999 Kosovo has ranked among the top 10 countries of origin for return migrants. Considering that return migration trends are impacted by global power dynamics, this study relied on a postcolonial and transnational feminist framework to contextualize the mobility of displaced peoples in terms of globalization and conceptualize migration as a gendered process. Postcolonial and feminist theories suggest that power is partly operationalized through language, thus, Critical Discourse Analysis was used as a research methodology. CDA is concerned with examining how power, language, and discourses shape social processes and relationships of dominance. Data collection included interviews with 15 return migrant women (eight ethnic minorities and seven Albanian) and 18 service providers in Kosovo. The main findings illustrate that both returnee women and service providers rely on discourses which 1) challenge the voluntariness and sustainability of repatriation; 2) construct Kosovo as inferior to EU countries; and 3) highlight the impact of patriarchy and ethnic racism on return migration. A postcolonial transnational feminist analysis demonstrates that despite Kosovars’ challenges with repatriation, European Union countries use their power to impose repatriation as a preferred solution for Kosovo’s government. These findings add to the body of existing repatriation literature and provide important implications for how return migration might be carried out, not only in Kosovo but other countries as well.

Keywords: migration, gender, repatriation, transnational feminism

Procedia PDF Downloads 82
539 Determination of Friction and Damping Coefficients of Folded Cover Mechanism Deployed by Torsion Springs

Authors: I. Yilmaz, O. Taga, F. Kosar, O. Keles

Abstract:

In this study, friction and damping coefficients of folded cover mechanism were obtained in accordance with experimental studies and data. Friction and damping coefficients are the most important inputs to accomplish a mechanism analysis. Friction and damping are two objects that change the time of deployment of mechanisms and their dynamic behaviors. Though recommended friction coefficient values exist in literature, damping is differentiating feature according to mechanic systems. So the damping coefficient should be obtained from mechanism test outputs. In this study, the folded cover mechanism use torsion springs for deploying covers that are formerly close folded position. Torsion springs provide folded covers with desirable deploying time according to variable environmental conditions. To verify all design revisions with system tests will be so costly so that some decisions are taken in accordance with numerical methods. In this study, there are two folded covers required to deploy simultaneously. Scotch-yoke and crank-rod mechanisms were combined to deploy folded covers simultaneously. The mechanism was unlocked with a pyrotechnic bolt onto scotch-yoke disc. When pyrotechnic bolt was exploded, torsion springs provided rotational movement for mechanism. Quick motion camera was recording dynamic behaviors of system during deployment case. Dynamic model of mechanism was modeled as rigid body with Adams MBD (multi body dynamics) then torque values provided by torsion springs were used as an input. A well-advised range of friction and damping coefficients were defined in Adams DOE (design of experiment) then a large number of analyses were performed until deployment time of folded covers run in with test data observed in record of quick motion camera, thus the deployment time of mechanism and dynamic behaviors were obtained. Same mechanism was tested with different torsion springs and torque values then outputs were compared with numerical models. According to comparison, it was understood that friction and damping coefficients obtained in this study can be used safely when studying on folded objects required to deploy simultaneously. In addition to model generated with Adams as rigid body the finite element model of folded mechanism was generated with Abaqus then the outputs of rigid body model and finite element model was compared. Finally, the reasonable solutions were suggested about different outputs of these solution methods.

Keywords: damping, friction, pyro-technic, scotch-yoke

Procedia PDF Downloads 322
538 Dynamics of Hepatitis B Infection Prevention Practices among Pregnant Women Attending Antenatal Care in Central Uganda Using the Constructs of Information-Motivation-Behavioral Skills Model: A Case of Lubaga Hospital Kampala

Authors: Ismail Bamidele Afolabi, Abdulmujeeb Babatunde Aremu, Lawal Abdurraheem Maidoki, Nnodimele Onuigbo Atulomah

Abstract:

Background: Hepatitis B virus infection remains a significant global public health challenge with infectivity as well as the potential for transmission more than 50 to 100 times that of HIV. Annually, global HBV-related mortality is linked primarily to cirrhosis and liver carcinoma. The ever-increasing endemicity of HBV among children under-5-years, owing to vertical transmission and its lingering chronicity in developing countries, will hamper the global efforts concertedly endorsed towards eliminating viral hepatitis as a global public health threat by 2030. Objective: This study assessed information motivation behavioral skills model constructs as predictors of HBV infection prevention practices among consenting expectant mothers attending antenatal care in Central Uganda as a focal point of intervention towards breaking materno-foetal transmission of HBV. Methods: A cross-sectional study with a quantitative data collection approach based on the constructs of the IMB model was used to capture data on the study variables among 385 randomly selected pregnant women between September and October 2020. Data derived from the quantitative instrument were transformed into weighted aggregate scores using SPSS version 26. ANOVA and regression analysis were done to ascertain the study hypotheses with a significance level set as (p ≤ 0.05). Results: Relatively 60% of the respondents were aged between 18 and 28. Expectant mothers with secondary education (42.3%) were predominant. Furthermore, an average but inadequate knowledge (X ̅=5.97±6.61; B=0.57; p<.001), incorrect perception (X ̅=17.10±18.31; B=0.97; p=.014), and good behavioral skills (X ̅=12.39±13.37; B=0.56; p<.001) for adopting prevention practices all statistically predicted the unsatisfactory level of prevention practices (X ̅=15.03±16.20) among the study respondents as measured on rating scales of 12, 33, 21 and 30 respectively. Conclusion: Evidence from this study corroborates the imperativeness of IMB constructs in reducing the burden of HBV infection in developing countries. Therefore, the inadequate HBV knowledge and misperception among obstetric populations necessitate personalized health education during antenatal visits and subsequent health campaigns in order to inform better prevention practices and, in turn, reduce the lingering chronicity of HBV infection in developing countries.

Keywords: behavioral skills, HBV infection, knowledge, perception, pregnant women, prevention practices

Procedia PDF Downloads 92
537 High-Speed Particle Image Velocimetry of the Flow around a Moving Train Model with Boundary Layer Control Elements

Authors: Alexander Buhr, Klaus Ehrenfried

Abstract:

Trackside induced airflow velocities, also known as slipstream velocities, are an important criterion for the design of high-speed trains. The maximum permitted values are given by the Technical Specifications for Interoperability (TSI) and have to be checked in the approval process. For train manufactures it is of great interest to know in advance, how new train geometries would perform in TSI tests. The Reynolds number in moving model experiments is lower compared to full-scale. Especially the limited model length leads to a thinner boundary layer at the rear end. The hypothesis is that the boundary layer rolls up to characteristic flow structures in the train wake, in which the maximum flow velocities can be observed. The idea is to enlarge the boundary layer using roughness elements at the train model head so that the ratio between the boundary layer thickness and the car width at the rear end is comparable to a full-scale train. This may lead to similar flow structures in the wake and better prediction accuracy for TSI tests. In this case, the design of the roughness elements is limited by the moving model rig. Small rectangular roughness shapes are used to get a sufficient effect on the boundary layer, while the elements are robust enough to withstand the high accelerating and decelerating forces during the test runs. For this investigation, High-Speed Particle Image Velocimetry (HS-PIV) measurements on an ICE3 train model have been realized in the moving model rig of the DLR in Göttingen, the so called tunnel simulation facility Göttingen (TSG). The flow velocities within the boundary layer are analysed in a plain parallel to the ground. The height of the plane corresponds to a test position in the EN standard (TSI). Three different shapes of roughness elements are tested. The boundary layer thickness and displacement thickness as well as the momentum thickness and the form factor are calculated along the train model. Conditional sampling is used to analyse the size and dynamics of the flow structures at the time of maximum velocity in the train wake behind the train. As expected, larger roughness elements increase the boundary layer thickness and lead to larger flow velocities in the boundary layer and in the wake flow structures. The boundary layer thickness, displacement thickness and momentum thickness are increased by using larger roughness especially when applied in the height close to the measuring plane. The roughness elements also cause high fluctuations in the form factors of the boundary layer. Behind the roughness elements, the form factors rapidly are approaching toward constant values. This indicates that the boundary layer, while growing slowly along the second half of the train model, has reached a state of equilibrium.

Keywords: boundary layer, high-speed PIV, ICE3, moving train model, roughness elements

Procedia PDF Downloads 305
536 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 39
535 Long-Term Variabilities and Tendencies in the Zonally Averaged TIMED-SABER Ozone and Temperature in the Middle Atmosphere over 10°N-15°N

Authors: Oindrila Nath, S. Sridharan

Abstract:

Long-term (2002-2012) temperature and ozone measurements by Sounding of Atmosphere by Broadband Emission Radiometry (SABER) instrument onboard Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite zonally averaged over 10°N-15°N are used to study their long-term changes and their responses to solar cycle, quasi-biennial oscillation and El Nino Southern Oscillation. The region is selected to provide more accurate long-term trends and variabilities, which were not possible earlier with lidar measurements over Gadanki (13.5°N, 79.2°E), which are limited to cloud-free nights, whereas continuous data sets of SABER temperature and ozone are available. Regression analysis of temperature shows a cooling trend of 0.5K/decade in the stratosphere and that of 3K/decade in the mesosphere. Ozone shows a statistically significant decreasing trend of 1.3 ppmv per decade in the mesosphere although there is a small positive trend in stratosphere at 25 km. Other than this no significant ozone trend is observed in stratosphere. Negative ozone-QBO response (0.02ppmv/QBO), positive ozone-solar cycle (0.91ppmv/100SFU) and negative response to ENSO (0.51ppmv/SOI) have been found more in mesosphere whereas positive ozone response to ENSO (0.23ppmv/SOI) is pronounced in stratosphere (20-30 km). The temperature response to solar cycle is more positive (3.74K/100SFU) in the upper mesosphere and its response to ENSO is negative around 80 km and positive around 90-100 km and its response to QBO is insignificant at most of the heights. Composite monthly mean of ozone volume mixing ratio shows maximum values during pre-monsoon and post-monsoon season in middle stratosphere (25-30 km) and in upper mesosphere (85-95 km) around 10 ppmv. Composite monthly mean of temperature shows semi-annual variation with large values (~250-260 K) in equinox months and less values in solstice months in upper stratosphere and lower mesosphere (40-55 km) whereas the SAO becomes weaker above 55 km. The semi-annual variation again appears at 80-90 km, with large values in spring equinox and winter months. In the upper mesosphere (90-100 km), less temperature (~170-190 K) prevails in all the months except during September, when the temperature is slightly more. The height profiles of amplitudes of semi-annual and annual oscillations in ozone show maximum values of 6 ppmv and 2.5 ppmv respectively in upper mesosphere (80-100 km), whereas SAO and AO in temperature show maximum values of 5.8 K and 4.6 K in lower and middle mesosphere around 60-85 km. The phase profiles of both SAO and AO show downward progressions. These results are being compared with long-term lidar temperature measurements over Gadanki (13.5°N, 79.2°E) and the results obtained will be presented during the meeting.

Keywords: trends, QBO, solar cycle, ENSO, ozone, temperature

Procedia PDF Downloads 410
534 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia

Authors: Marwa Djebbi, Hakim Gabtni

Abstract:

Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.

Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation

Procedia PDF Downloads 298
533 Multi-omics Integrative Analysis with Genome-Scale Metabolic Model Simulation Reveals Reaction Essentiality data in Human Astrocytes Under the Lipotoxic Effect of Palmitic Acid

Authors: Janneth Gonzalez, Andres Pinzon Velasco, Maria Angarita, Nicolas Mendoza

Abstract:

Astrocytes play an important role in various processes in the brain, including pathological conditions such as neurodegenerative diseases. Recent studies have shown that the increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatory pathways in the brain. The use of synthetic neurosteroids such as tibolone has demonstrated neuro-protective mechanisms. However, there are few studies on the neuro-protective mechanisms of tibolone, especially at the systemic (omic) level. In this study, we performed the integration of multi-omic data (transcriptome and proteome) into a human astrocyte genomic scale metabolic model to study the astrocytic response during palmitate treatment. We evaluated metabolic fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment under PA inflammation). We also use control theory to identify those reactions that control the astrocytic system. Our results suggest that PA generates a modulation of central and secondary metabolism, showing a change in energy source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of ketone bodies formation.We found 25 metabolic switches under PA-mediated cellular regulation, 9 of which were critical only in the inflammatory scenario but not in the protective tibolone one. Within these reactions, inhibitory, total, and directional coupling profiles were key findings, playing a fundamental role in the (de)regulation in metabolic pathways that increase neurotoxicity and represent potential treatment targets. Finally, this study framework facilitates the understanding of metabolic regulation strategies, andit can be used for in silico exploring the mechanisms of astrocytic cell regulation, directing a more complex future experimental work in neurodegenerative diseases.

Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics, control theory

Procedia PDF Downloads 121
532 How Strategic Urban Design Promote Sustainable Urban Mobility: A Comparative Analysis of Cities from Global North and Global South

Authors: Rati Sandeep Choudhari

Abstract:

Mobility flows are considered one of the most important elements of urbanisation, with transport infrastructure serving as a backbone of urban fabrics. Although rapid urbanisation and changing land use patterns have led to an increase in urban mobility levels around the globe, mobility, in general, has become an unpleasant experience for city dwellers, making locations around the city inconvenient to access. With public transport featured in almost every sustainable mobility plan in developing countries, the intermodality and integration with appropriate non–motorised transport infrastructure is often neglected. As a result, people choose to use private cars and two-wheelers to travel, rendering public transit systems underutilised, and encroaching onto pedestrian space on streets, thus making urban mobility unsafe and inconvenient for a major section of society. On the other hand, cities in the West, especially in Europe, depend heavily on inter–modal transit systems, allowing people to shift between metros, buses, trams, walking, and cycling to access even the remote locations of the city. Keeping accessibility as the focal point while designing urban mobility plans and policies, these cities have appropriately refined their urban form, optimised urban densities, developed a multimodal transit system, and adopted place-making strategies to foster a sense of place, thus, improving the quality of urban mobility experience in cities. Using a qualitative research approach, the research looks in detail into the existing literature on what kind of strategies can be applied to improve the urban mobility experience for city dwellers. It further studies and draws out a comparative analysis of cities in both developed and developing parts of the world where these strategies have been used to create people-centric mobility systems, fostering a sense of place with respect to urban mobility and how these strategies affected their social, economic, and environmental dynamics. The examples reflect on how different strategies like redefining land use patterns to form close knit neighbourhoods, development of non – motorise transit systems, and their integration with public transport infrastructure and place-making approach has helped in enhancing the quality and experience of mobility infrastructure in cities. The research finally concludes by laying out strategies that can be adopted by cities of the Global South to develop future mobility systems in a people-centric and sustainable way.

Keywords: urban mobility, sustainable transport, strategic planning, people-centric approach

Procedia PDF Downloads 128
531 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing

Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren

Abstract:

Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 255
530 In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells

Authors: Urvi Panwar, Kanchan Mishra, Kanjaksha Ghosh, ShankerLal Kothari

Abstract:

Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available.

Keywords: bone marrow, cell therapy, explant culture method, flow cytometer, human umbilical cord, mesenchymal stem cells, neurodegenerative diseases, neuroprotective, regeneration

Procedia PDF Downloads 202
529 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes

Authors: Rikke Lybæk

Abstract:

This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.

Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management

Procedia PDF Downloads 103
528 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors

Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran

Abstract:

Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.

Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold

Procedia PDF Downloads 243
527 Investigation of Heat Conduction through Particulate Filled Polymer Composite

Authors: Alok Agrawal, Alok Satapathy

Abstract:

In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.

Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite

Procedia PDF Downloads 321
526 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 113
525 Unraveling the Evolution of Mycoplasma Hominis Through Its Genome Sequence

Authors: Boutheina Ben Abdelmoumen Mardassi, Salim Chibani, Safa Boujemaa, Amaury Vaysse, Julien Guglielmini, Elhem Yacoub

Abstract:

Background and aim: Mycoplasma hominis (MH) is a pathogenic bacterium belonging to the Mollicutes class. It causes a wide range of gynecological infections and infertility among adults. Recently, we have explored for the first time the phylodistribution of Tunisian M. hominis clinical strains using an expanded MLST. We have demonstrated their distinction into two pure lineages, which each corresponding to a specific pathotype: genital infections and infertility. The aim of this project is to gain further insight into the evolutionary dynamics and the specific genetic factors that distinguish MH pathotypes Methods: Whole genome sequencing of Mycoplasma hominis clinical strains was performed using illumina Miseq. Denovo assembly was performed using a publicly available in-house pipeline. We used prokka to annotate the genomes, panaroo to generate the gene presence matrix and Jolytree to establish the phylogenetic tree. We used treeWAS to identify genetic loci associated with the pathothype of interest from the presence matrix and phylogenetic tree. Results: Our results revealed a clear categorization of the 62 MH clinical strains into two distinct genetic lineages, with each corresponding to a specific pathotype.; gynecological infections and infertility[AV1] . Genome annotation showed that GC content is ranging between 26 and 27%, which is a known characteristic of Mycoplasma genome. Housekeeping genes belonging to the core genome are highly conserved among our strains. TreeWas identified 4 virulence genes associated with the pathotype gynecological infection. encoding for asparagine--tRNA ligase, restriction endonuclease subunit S, Eco47II restriction endonuclease, and transcription regulator XRE (involved in tolerance to oxidative stress). Five genes have been identified that have a statistical association with infertility, tow lipoprotein, one hypothetical protein, a glycosyl transferase involved in capsule synthesis, and pyruvate kinase involved in biofilm formation. All strains harbored an efflux pomp that belongs to the family of multidrug resistance ABC transporter, which confers resistance to a wide range of antibiotics. Indeed many adhesion factors and lipoproteins (p120, p120', p60, p80, Vaa) have been checked and confirmed in our strains with a relatively 99 % to 96 % conserved domain and hypervariable domain that represent 1 to 4 % of the reference sequence extracted from gene bank. Conclusion: In summary, this study led to the identification of specific genetic loci associated with distinct pathotypes in M hominis.

Keywords: mycoplasma hominis, infertility, gynecological infections, virulence genes, antibiotic resistance

Procedia PDF Downloads 97
524 Mixing Enhancement with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure Micromixer Using Different Mixing Fluids

Authors: Ayalew Yimam Ali

Abstract:

The T-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the T-junction microchannel can be difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The newly developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the T-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal, triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on the top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the T-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.

Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement.

Procedia PDF Downloads 20
523 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization

Authors: Aitor Bilbao, Dragos Axinte, John Billingham

Abstract:

The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.

Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation

Procedia PDF Downloads 275
522 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 112