Search results for: partial pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5210

Search results for: partial pressure

140 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 163
139 Crisis Management and Corporate Political Activism: A Qualitative Analysis of Online Reactions toward Tesla

Authors: Roxana D. Maiorescu-Murphy

Abstract:

In the US, corporations have recently embraced political stances in an attempt to respond to the external pressure exerted by activist groups. To date, research in this area remains in its infancy, and few studies have been conducted on the way stakeholder groups respond to corporate political advocacy in general and in the immediacy of such a corporate announcement in particular. The current study aims to fill in this research void. In addition, the study contributes to an emerging trajectory in the field of crisis management by focusing on the delineation between crises (unexpected events related to products and services) and scandals (crises that spur moral outrage). The present study looked at online reactions in the aftermath of Elon Musk’s endorsement of the Republican party on Twitter. Two data sets were collected from Twitter following two political endorsements made by Elon Musk on May 18, 2022, and June 15, 2022, respectively. The total sample of analysis stemming from the data two sets consisted of N=1,374 user comments written as a response to Musk’s initial tweets. Given the paucity of studies in the preceding research areas, the analysis employed a case study methodology, used in circumstances in which the phenomena to be studied had not been researched before. According to the case study methodology, which answers the questions of how and why a phenomenon occurs, this study responded to the research questions of how online users perceived Tesla and why they did so. The data were analyzed in NVivo by the use of the grounded theory methodology, which implied multiple exposures to the text and the undertaking of an inductive-deductive approach. Through multiple exposures to the data, the researcher ascertained the common themes and subthemes in the online discussion. Each theme and subtheme were later defined and labeled. Additional exposures to the text ensured that these were exhaustive. The results revealed that the CEO’s political endorsements triggered moral outrage, leading to Tesla’s facing a scandal as opposed to a crisis. The moral outrage revolved around the stakeholders’ predominant rejection of a perceived intrusion of an influential figure on a domain reserved for voters. As expected, Musk’s political endorsements led to polarizing opinions, and those who opposed his views engaged in online activism aimed to boycott the Tesla brand. These findings reveal that the moral outrage that characterizes a scandal requires communication practices that differ from those that practitioners currently borrow from the field of crisis management. Specifically, because scandals flourish in online settings, practitioners should regularly monitor stakeholder perceptions and address them in real-time. While promptness is essential when managing crises, it becomes crucial to respond immediately as a scandal is flourishing online. Finally, attempts should be made to distance a brand, its products, and its CEO from the latter’s political views.

Keywords: crisis management, communication management, Tesla, corporate political activism, Elon Musk

Procedia PDF Downloads 91
138 Altered Proteostasis Contributes to Skeletal Muscle Atrophy during Chronic Hypobaric Hypoxia: An Insight into Signaling Mechanisms

Authors: Akanksha Agrawal, Richa Rathor, Geetha Suryakumar

Abstract:

Muscle represents about ¾ of the body mass, and a healthy muscular system is required for human performance. A healthy muscular system is dynamically balanced via the catabolic and anabolic process. High altitude associated hypoxia altered this redox balance via producing reactive oxygen and nitrogen species that ultimately modulates protein structure and function, hence, disrupts proteostasis or protein homeostasis. The mechanism by which proteostasis is clinched includes regulated protein translation, protein folding, and protein degradation machinery. Perturbation in any of these mechanisms could increase proteome imbalance in the cellular processes. Altered proteostasis in skeletal muscle is likely to be responsible for contributing muscular atrophy in response to hypoxia. Therefore, we planned to elucidate the mechanism involving altered proteostasis leading to skeletal muscle atrophy under chronic hypobaric hypoxia. Material and Methods-Male Sprague Dawley rats weighing about 200-220 were divided into five groups - Control (Normoxic animals), 1d, 3d, 7d and 14d hypobaric hypoxia exposed animals. The animals were exposed to simulated hypoxia equivalent to 282 torr pressure (equivalent to an altitude of 7620m, 8% oxygen) at 25°C. On completion of chronic hypobaric hypoxia (CHH) exposure, rats were sacrificed, muscle was excised and biochemical, histopathological and protein synthesis signaling were studied. Results-A number of changes were observed with the CHH exposure time period. ROS was increased significantly on 07 and 14 days which were attributed to protein oxidation via damaging muscle protein structure by oxidation of amino acids moiety. The oxidative damage to the protein further enhanced the various protein degradation pathways. Calcium activated cysteine proteases and other intracellular proteases participate in protein turnover in muscles. Therefore, we analysed calpain and 20S proteosome activity which were noticeably increased at CHH exposure as compared to control group representing enhanced muscle protein catabolism. Since inflammatory markers (myokines) affect protein synthesis and triggers degradation machinery. So, we determined inflammatory pathway regulated under hypoxic environment. Other striking finding of the study was upregulation of Akt/PKB translational machinery that was increased on CHH exposure. Akt, p-Akt, p70 S6kinase, and GSK- 3β expression were upregulated till 7d of CHH exposure. Apoptosis related markers, caspase-3, caspase-9 and annexin V was also increased on CHH exposure. Conclusion: The present study provides evidence of disrupted proteostasis under chronic hypobaric hypoxia. A profound loss of muscle mass is accompanied by the muscle damage leading to apoptosis and cell death under CHH. These cellular stress response pathways may play a pivotal role in hypobaric hypoxia induced skeletal muscle atrophy. Further research in these signaling pathways will lead to development of therapeutic interventions for amelioration of hypoxia induced muscle atrophy.

Keywords: Akt/PKB translational machinery, chronic hypobaric hypoxia, muscle atrophy, protein degradation

Procedia PDF Downloads 268
137 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls

Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac

Abstract:

No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.

Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations

Procedia PDF Downloads 317
136 Sustainable Urbanism: Model for Social Equity through Sustainable Development

Authors: Ruchira Das

Abstract:

The major Metropolises of India are resultant of Colonial manifestation of Production, Consumption and Sustenance. These cities grew, survived, and sustained on the basic whims of Colonial Power and Administrative Agendas. They were symbols of power, authority and administration. Within them some Colonial Towns remained as small towns within the close vicinity of the major metropolises and functioned as self–sufficient units until peripheral development due to tremendous pressure occurred in the metropolises. After independence huge expansion in Judiciary and Administration system resulted City Oriented Employment. A large number of people started residing within the city or within commutable distance of the city and it accelerated expansion of the cities. Since then Budgetary and Planning expenditure brought a new pace in Economic Activities. Investment in Industry and Agriculture sector generated opportunity of employment which further led towards urbanization. After two decades of Budgetary and Planning economic activities in India, a new era started in metropolitan expansion. Four major metropolises started further expansion rapidly towards its suburbs. A concept of large Metropolitan Area developed. Cities became nucleus of suburbs and rural areas. In most of the cases such expansion was not favorable to the relationship between City and its hinterland due to absence of visualization of Compact Sustainable Development. The search for solutions needs to weigh the choices between Rural and Urban based development initiatives. Policymakers need to focus on areas which will give the greatest impact. The impact of development initiatives will spread the significant benefit to all. There is an assumption that development integrates Economic, Social and Environmental considerations with equal weighing. The traditional narrower and almost exclusive focus on economic criteria as the determinant of the level of development is thus re–described and expanded. The Social and Environmental aspects are equally important as Economic aspect to achieve Sustainable Development. The arrangement of opportunities for Public, Semi – Public facilities for its citizen is very much relevant to development. It is responsibility of the administration to provide opportunities for the basic requirement of its inhabitants. Development should be in terms of both Industrial and Agricultural to maintain a balance between city and its hinterland. Thus, policy is to formulate shifting the emphasis away from Economic growth towards Sustainable Human Development. The goal of Policymaker should aim at creating environments in which people’s capabilities can be enhanced by the effective dynamic and adaptable policy. The poverty could not be eradicated simply by increasing income. The improvement of the condition of the people would have to lead to an expansion of basic human capabilities. In this scenario the suburbs/rural areas are considered as environmental burden to the metropolises. A new living has to be encouraged in the suburban or rural. We tend to segregate agriculture from the city and city life, this leads to over consumption, but this urbanism model attempts both these to co–exists and hence create an interesting overlapping of production and consumption network towards sustainable Rurbanism.

Keywords: socio–economic progress, sustainability, social equity, urbanism

Procedia PDF Downloads 305
135 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 148
134 Nursing Experience in Caring for a Patient with Terminal Gastric Cancer and Abdominal Aortic Aneurysm

Authors: Pei-Shan Liang

Abstract:

Objective: This article explores the nursing experience of caring for a patient with terminal gastric cancer complicated by an abdominal aortic aneurysm. The patient experienced physical discomfort due to the disease, initially unable to accept the situation, leading to anxiety, and eventually accepting the need for surgery. Methods: The nursing period was from June 6 to June 10, 2024. Through observation, direct care, conversations, and physical assessments, and using Gordon's eleven functional health patterns for a one-on-one holistic assessment, interdisciplinary team meetings were held with the critical care team and family. Three nursing health issues were identified: pain related to the disease and invasive procedures, anxiety related to uncertainty about disease recovery, and decreased cardiac tissue perfusion related to hemodynamic instability. Results: Open communication techniques and empathetic care were employed to establish a trusting nurse-patient relationship, and patient-centered nursing interventions were developed. Pain was assessed using a 10-point pain scale, and pain medications were adjusted by a pharmacist. Initially, Fentanyl 500mcg with pump run at 1ml/hr was administered, later changed to Ultracet 37.5mg/325mg, 1 tablet every 6 hours orally, reducing the pain score to 3. Lavender aromatherapy and listening to crystal music were used as distractions to alleviate pain, allowing the patient to sleep uninterrupted for at least 7 hours. The patient was encouraged to express feelings and fears through LINE messages or drawings, and a psychologist was invited to provide support. Family members were present at least twice a day for over an hour each time, reducing psychological distress and uncertainty about the prognosis. According to the Beck Anxiety Inventory, the anxiety score dropped from 17 (moderate anxiety) to 6 (no anxiety). Focused nursing care was implemented with close monitoring of vital signs maintaining systolic blood pressure between 112-118 mmHg to ensure adequate myocardial perfusion. The patient was encouraged to get out of bed for postoperative rehabilitation and to strengthen cardiopulmonary function. A chest X-ray showed no abnormalities, and breathing was smooth with Triflow use, maintaining at least 5 seconds with 2 balls four times a day, and SpO2 >96%. Conclusion: The care process highlighted the importance of addressing psychological care in addition to maintaining life when the patient’s condition changes. The presence of family often provided the greatest source of comfort for the patient, helping to reduce anxiety and pain. Nurses must play multiple roles, including advocate, coordinator, educator, and consultant, using various communication techniques and fostering hope by listening to and accepting the patient’s emotional responses. It is hoped that this report will provide a reference for clinical nursing staff and contribute to improving the quality of care.

Keywords: intensive care, gastric cancer, aortic aneurysm, quality of care

Procedia PDF Downloads 22
133 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System

Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar

Abstract:

Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.

Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel

Procedia PDF Downloads 133
132 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 52
131 Stress Reduction Techniques for First Responders: Scientifically Proven Methods

Authors: Esther Ranero Carrazana, Maria Karla Ramirez Valdes

Abstract:

First responders, including firefighters, police officers, and emergency medical personnel, are frequently exposed to high-stress scenarios that significantly increase their risk of mental health issues such as depression, anxiety, and post-traumatic stress disorder (PTSD). Their work involves life-threatening situations, witnessing suffering, and making critical decisions under pressure, all contributing to psychological strain. The objectives of this research on "Stress Reduction Techniques for First Responders: Scientifically Proven Methods" are as follows. One of them is to evaluate the effectiveness of stress reduction techniques. The primary objective is to assess the efficacy of various scientifically proven stress reduction techniques explicitly tailored for first responders. Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness are scrutinized for their ability to mitigate stress-related symptoms. Furthermore, we evaluate and enhance the understanding of stress mechanisms in first responders by exploring how different techniques influence the physiological and psychological responses to stress. The study aims to deepen the understanding of stress mechanisms in high-risk professions. Additionally, the study promotes psychological resilience by seeking to identify and recommend methods that can significantly enhance the psychological resilience of first responders, thereby supporting their mental health and operational efficiency in high-stress environments. Guide training and policy development is an additional objective to provide evidence-based recommendations that can be used to guide training programs and policy development aimed at improving the mental health and well-being of first responders. Lastly, the study aims to contribute valuable insights to the existing body of knowledge in stress management, specifically tailored to the unique needs of first responders. This study involved a comprehensive literature review assessing the effectiveness of various stress reduction techniques tailored for first responders. Techniques evaluated include Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness, focusing on their ability to alleviate stress-related symptoms. The review indicates promising results for several stress reduction methods. HRV Training demonstrates the potential to reflect stress vulnerability and enhance physiological and behavioral flexibility. Interoception and Exteroception help modulate the stress response by enhancing awareness of the body's internal state and its interaction with the environment. Sensory integration plays a crucial role in adaptive responses to stress by focusing on individual senses and their integration. Therefore, body perception awareness addresses stress and anxiety through enhanced body perception and mindfulness. The evaluated techniques show significant potential in reducing stress and improving the mental health of first responders. Implementing these scientifically supported methods into routine training could significantly enhance their psychological resilience and operational effectiveness in high-stress environments.

Keywords: first responders, HRV training, mental health, sensory integration, stress reduction

Procedia PDF Downloads 37
130 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: bioeconomy, lipids, microalgae, proteins, saccharides

Procedia PDF Downloads 244
129 A Rural Journey of Integrating Interprofessional Education to Foster Trust

Authors: Julia Wimmers Klick

Abstract:

Interprofessional Education (IPE) is widely recognized as a valuable approach in healthcare education, despite the challenges it presents. This study explores IP surface anatomy lab sessions, with a focus on fostering trust and collaboration among healthcare students. The research is conducted within the context of rural healthcare settings in British Columbia (BC), where a medical school and a physical therapy (PT) program operate under the Faculty of Medicine at the University of British Columbia (UBC). While IPE sessions addressing soft skills have been implemented, the integration of hard skills, such as Anatomy, remains limited. To address this gap, a pilot feasibility study was conducted with a positive outcome, a follow-up study involved these IPE sessions aimed at exploring the influence of bonding and trust between medical and PT students. Data were collected through focus groups comprising participating students and faculty members, and a structured SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis was conducted. The IPE sessions, 3 in total, consisted of a 2.5-hour lab on surface anatomy, where PT students took on the teaching role, and medical students were newly exposed to surface anatomy. The focus of the study was on the relationship-building process and trust development between the two student groups, rather than assessing the acquisition of surface anatomy skills. Results indicated that the surface anatomy lab served as a suitable tool for the application and learning of soft skills. Faculty members observed positive outcomes, including productive interaction between students, reversed hierarchy with PT students teaching medical students, practicing active listening skills, and using a mutual language of anatomy. Notably, there was no grade assessment or external pressure to perform. The students also reported an overall positive experience; however, the specific impact on the development of soft skill competencies could not be definitively determined. Participants expressed a sense of feeling respected, welcomed, and included, all of which contributed to feeling safe. Within the small group environment, students experienced becoming a part of a community of healthcare providers that bonded over a shared interest in health professions education. They enjoyed sharing diverse experiences related to learning across their varied contexts, without fear of judgment and reprisal that were often intimidating in single professional contexts. During a joint Christmas party for both cohorts, faculty members observed students mingling, laughing, and forming bonds. This emphasized the importance of early bonding and trust development among healthcare colleagues, particularly in rural settings. In conclusion, the findings emphasize the potential of IPE sessions to enhance trust and collaboration among healthcare students, with implications for their future professional lives in rural settings. Early bonding and trust development are crucial in rural settings, where healthcare professionals often rely on each other. Future research should continue to explore the impact of content-concentrated IPE on the development of soft skill competencies.

Keywords: interprofessional education, rural healthcare settings, trust, surface anatomy

Procedia PDF Downloads 68
128 Cross-cultural Training in International Cooperation Efforts

Authors: Shawn Baker-Garcia, Janna O. Schaeffer

Abstract:

As the global and national communities and governments strive to address ongoing and evolving threats to humanity and pervasive or emerging “shared” global priorities on environmental, economic, political, and security, it is more urgent than ever before to understand each other, communicate effectively with one another, identify models of cooperation that yield improved, mutually reinforcing outcomes across and within cultures. It is within the backdrop of this reality that the presentation examines whether cultural training as we have approached it in recent decades is sufficiently meeting our current needs and what changes may be applied to foster better and more productive and sustainable intercultural interactions. Domestic and global relations face multiple challenges to peaceable cooperation. The last two years, in particular, have been defined by a travel-restricted COVID-19 pandemic yielding increased intercultural interactions over virtual platforms, polarized politics dividing nations and regions, and the commensurate rise in weaponized social and traditional media communication. These societal and cultural fissures are noticeably challenging our collective and individual abilities to constructively interact both at home and abroad. It is within this pressure cooker environment that the authors believe it is time to reexamine existing and broadly accepted inter- and cross- cultural training approaches and concepts to determine their level of effectiveness in setting conditions for optimal human understanding and relationships both in the national and international context. In order to better understand the amount and the type of intercultural training practitioners professionally engaging in international partnership building have received throughout their careers and its perceived effectiveness, a survey was designed and distributed to US and international professionals presently engaged in the fields of diplomacy, military, academia, and international business. The survey questions were deigned to address the two primary research questions investigators posed in this exploratory study. Research questions aimed to examine practitioners’ view of the role and effectiveness of current and traditional cultural training and education as a means to fostering improved communication, interactions, understanding, and cooperation among inter, cross, or multi-cultural communities or efforts.Responses were then collected and analyzed for themes present in the participants’ reflections. In their responses, the practitioners identified the areas of improvement and desired outcomes in regards to intercultural training and awareness raising curricular approaches. They also raised issues directly and indirectly pertaining to the role of foreign language proficiency in intercultural interactions and a need for a solid grasp on cultural and regional issues (regional expertise) to facilitate such an interaction. Respondents indicated knowledge, skills, abilities, and capabilities that the participants were not trained on but learned through ad hoc personal and professional intercultural interactions, which they found most valuable and wished they had acquired prior to the intercultural experience.

Keywords: cultural training, improved communication, intercultural competence, international cooperation

Procedia PDF Downloads 131
127 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles

Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster

Abstract:

Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.

Keywords: clay, enzyme, polyelectrolyte, formulation

Procedia PDF Downloads 266
126 Dynamic Thermomechanical Behavior of Adhesively Bonded Composite Joints

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Benyahia

Abstract:

Composite materials are increasingly being used as a substitute for metallic materials in many technological applications like aeronautics, aerospace, marine and civil engineering applications. For composite materials, the thermomechanical response evolves with the strain rate. The energy balance equation for anisotropic, elastic materials includes heat source terms that govern the conversion of some of the kinetic work into heat. The remainder contributes to the stored energy creating the damage process in the composite material. In this paper, we investigate the bulk thermomechanical behavior of adhesively-bonded composite assemblies to quantitatively asses the temperature rise which accompanies adiabatic deformations. In particular, adhesively bonded joints in glass/vinylester composite material are subjected to in-plane dynamic loads under a range of strain rates. Dynamic thermomechanical behavior of this material is investigated using compression Split Hopkinson Pressure Bars (SHPB) coupled with a high speed infrared camera and a high speed camera to measure in real time the dynamic behavior, the damage kinetic and the temperature variation in the material. The interest of using high speed IR camera is in order to view in real time the evolution of heat dissipation in the material when damage occurs. But, this technique does not produce thermal values in correlation with the stress-strain curves of composite material because of its high time response in comparison with the dynamic test time. For this reason, the authors revisit the application of specific thermocouples placed on the surface of the material to ensure the real thermal measurements under dynamic loading using small thermocouples. Experiments with dynamically loaded material show that the thermocouples record temperatures values with a short typical rise time as a result of the conversion of kinetic work into heat during compression test. This results show that small thermocouples can be used to provide an important complement to other noncontact techniques such as the high speed infrared camera. Significant temperature rise was observed in in-plane compression tests especially under high strain rates. During the tests, it has been noticed that sudden temperature rise occur when macroscopic damage occur. This rise in temperature is linked to the rate of damage. The more serve the damage is, a higher localized temperature is detected. This shows the strong relationship between the occurrence of damage and induced heat dissipation. For the case of the in plane tests, the damage takes place more abruptly as the strain rate is increased. The difference observed in the obtained thermomechanical response in plane compression is explained only by the difference in the damage process being active during the compression tests. In this study, we highlighted the dependence of the thermomechanical response on the strain rate of bonded specimens. The effect of heat dissipation of this material cannot hence be ignored and should be taken into account when defining damage models during impact loading.

Keywords: adhesively-bonded composite joints, damage, dynamic compression tests, energy balance, heat dissipation, SHPB, thermomechanical behavior

Procedia PDF Downloads 210
125 Piezotronic Effect on Electrical Characteristics of Zinc Oxide Varistors

Authors: Nadine Raidl, Benjamin Kaufmann, Michael Hofstätter, Peter Supancic

Abstract:

If polycrystalline ZnO is properly doped and sintered under very specific conditions, it shows unique electrical properties, which are indispensable for today’s electronic industries, where it is used as the number one overvoltage protection material. Under a critical voltage, the polycrystalline bulk exhibits high electrical resistance but becomes suddenly up to twelve magnitudes more conductive if this voltage limit is exceeded (i.e., varistor effect). It is known that these peerless properties have their origin in the grain boundaries of the material. Electric charge is accumulated in the boundaries, causing a depletion layer in their vicinity and forming potential barriers (so-called Double Schottky Barriers, or DSB) which are responsible for the highly non-linear conductivity. Since ZnO is a piezoelectric material, mechanical stresses induce polarisation charges that modify the DSB heights and as a result the global electrical characteristics (i.e., piezotronic effect). In this work, a finite element method was used to simulate emerging stresses on individual grains in the bulk. Besides, experimental efforts were made to testify a coherent model that could explain this influence. Electron back scattering diffraction was used to identify grain orientations. With the help of wet chemical etching, grain polarization was determined. Micro lock-in infrared thermography (MLIRT) was applied to detect current paths through the material, and a micro 4-point probes method system (M4PPS) was employed to investigate current-voltage characteristics between single grains. Bulk samples were tested under uniaxial pressure. It was found that the conductivity can increase by up to three orders of magnitude with increasing stress. Through in-situ MLIRT, it could be shown that this effect is caused by the activation of additional current paths in the material. Further, compressive tests were performed on miniaturized samples with grain paths containing solely one or two grain boundaries. The tests evinced both an increase of the conductivity, as observed for the bulk, as well as a decreased conductivity. This phenomenon has been predicted theoretically and can be explained by piezotronically induced surface charges that have an impact on the DSB at the grain boundaries. Depending on grain orientation and stress direction, DSB can be raised or lowered. Also, the experiments revealed that the conductivity within one single specimen can increase and decrease, depending on the current direction. This novel finding indicates the existence of asymmetric Double Schottky Barriers, which was furthermore proved by complementary methods. MLIRT studies showed that the intensity of heat generation within individual current paths is dependent on the direction of the stimulating current. M4PPS was used to study the relationship between the I-V characteristics of single grain boundaries and grain orientation and revealed asymmetric behavior for very specific orientation configurations. A new model for the Double Schottky Barrier, taking into account the natural asymmetry and explaining the experimental results, will be given.

Keywords: Asymmetric Double Schottky Barrier, piezotronic, varistor, zinc oxide

Procedia PDF Downloads 266
124 Small Town Big Urban Issues the Case of Kiryat Ono, Israel

Authors: Ruth Shapira

Abstract:

Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all – the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. This is reflected in the quality of the urban form and life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 100,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may be generic for similar cases. Basic Methodologies: The OBJECT, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue. Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the PLACE consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a coherent way. In Conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy framework for the accelerated urbanization of our chaotic present.

Keywords: housing, architecture, urban qualities, urban regeneration, conservation, intensification

Procedia PDF Downloads 361
123 Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Zero Order Release of Vildagliptin

Authors: Hend Ben Tkhayat , Khaled Al Zahabi, Husam Younes

Abstract:

Introduction: Vildagliptin (VG), a dipeptidyl peptidase-4 inhibitor (DPP-4), was proven to be an active agent for the treatment of type 2 diabetes. VG works by enhancing and prolonging the activity of incretins which improves insulin secretion and decreases glucagon release, therefore lowering blood glucose level. It is usually used with various classes, such as insulin sensitizers or metformin. VG is currently only marketed as an immediate-release tablet that is administered twice daily. In this project, we aim to formulate an extended-release with a zero-order profile tableted lipid microparticles of VG that could be administered once daily ensuring the patient’s convenience. Method: The spray-congealing technique was used to prepare VG microparticles. Compritol® was heated at 10 oC above its melting point and VG was dispersed in the molten carrier using a homogenizer (IKA T25- USA) set at 13000 rpm. VG dispersed in the molten Compritol® was added dropwise to the molten Gelucire® 50/13 and PEG® (400, 6000, and 35000) in different ratios under manual stirring. The molten mixture was homogenized and Carbomer® amount was added. The melt was pumped through the two-fluid nozzle of the Buchi® Spray-Congealer (Buchi B-290, Switzerland) using a Pump drive (Master flex, USA) connected to a silicone tubing wrapped with silicone heating tape heated at the same temperature of the pumped mix. The physicochemical properties of the produced VG-loaded microparticles were characterized using Mastersizer, Scanning Electron Microscope (SEM), Differential Scanning Calorimeter (DSC) and X‐Ray Diffractometer (XRD). VG microparticles were then pressed into tablets using a single punch tablet machine (YDP-12, Minhua pharmaceutical Co. China) and in vitro dissolution study was investigated using Agilent Dissolution Tester (Agilent, USA). The dissolution test was carried out at 37±0.5 °C for 24 hours in three different dissolution media and time phases. The quantitative analysis of VG in samples was realized using a validated High-Pressure Liquid Chromatography (HPLC-UV) method. Results: The microparticles were spherical in shape with narrow distribution and smooth surface. DSC and XRD analyses confirmed the crystallinity of VG that was lost after being incorporated into the amorphous polymers. The total yields of the different formulas were between 70% and 80%. The VG content in the microparticles was found to be between 99% and 106%. The in vitro dissolution study showed that VG was released from the tableted particles in a controlled fashion. The adjustment of the hydrophilic/hydrophobic ratio of excipients, their concentration and the molecular weight of the used carriers resulted in tablets with zero-order kinetics. The Gelucire 50/13®, a hydrophilic polymer was characterized by a time-dependent profile with an important burst effect that was decreased by adding Compritol® as a lipophilic carrier to retard the release of VG which is highly soluble in water. PEG® (400,6000 and 35 000) were used for their gelling effect that led to a constant rate delivery and achieving a zero-order profile. Conclusion: Tableted spray-congealed lipid microparticles for extended-release of VG were successfully prepared and a zero-order profile was achieved.

Keywords: vildagliptin, spray congealing, microparticles, controlled release

Procedia PDF Downloads 120
122 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models

Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi

Abstract:

Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.

Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel

Procedia PDF Downloads 178
121 Modeling of Hot Casting Technology of Beryllium Oxide Ceramics with Ultrasonic Activation

Authors: Zamira Sattinova, Tassybek Bekenov

Abstract:

The article is devoted to modeling the technology of hot casting of beryllium oxide ceramics. The stages of ultrasonic activation of beryllium oxide slurry in the plant vessel to improve the rheological property, hot casting in the moulding cavity with cooling and solidification of the casting are described. Thermoplastic slurry (hereinafter referred to as slurry) shows the rheology of a non-Newtonian fluid with yield and plastic viscosity. Cooling-solidification of the slurry in the forming cavity occurs in the liquid, taking into account crystallization and solid state. In this work is the method of calculation of hot casting of the slurry using the method of effective molecular viscosity of viscoplastic fluid. It is shown that the slurry near the cooled wall is in a state of crystallization and plasticity, and the rest may still be in the liquid phase. Nonuniform distribution of temperature, density and concentration of kinetically free binder takes place along the cavity section. This leads to compensation of shrinkage by the influx of slurry from the liquid into the crystallization zones and plasticity of the castings. In the plasticity zone, the shrinkage determined by the concentration of kinetically free binder is compensated under the action of the pressure gradient. The solidification mechanism, as well as the mechanical behavior of the casting mass during casting, the rheological and thermophysical properties of the thermoplastic BeO slurry due to ultrasound exposure have not been well studied. Nevertheless, experimental data allow us to conclude that the effect of ultrasonic vibrations on the slurry mass leads to it: a change in structure, an increase in technological properties, a decrease in heterogeneity and a change in rheological properties. In the course of experiments, the effect of ultrasonic treatment and its duration on the change in viscosity and ultimate shear stress of the slurry depending on temperature (55-75℃) and the mass fraction of the binder (10 - 11.7%) have been studied. At the same time, changes in these properties before and after ultrasound exposure have been analyzed, as well as the nature of the flow in the system under study. The experience of operating the unit with ultrasonic impact has shown that at the same time, the casting capacity of the slurry increases by an average of 15%, and the viscosity decreases by more than half. Experimental study of physicochemical properties and phase change with simultaneous consideration of all factors affecting the quality of products in the process of continuous casting is labor-intensive. Therefore, an effective way to control the physical processes occurring in the formation of articles with predetermined properties and shapes is to simulate the process and determine its basic characteristics. The results of the calculations show the whole stage of hot casting of beryllium oxide slurry, taking into account the change in its state of aggregation. Ultrasonic treatment improves rheological properties and increases the fluidity of the slurry in the forming cavity. Calculations show the influence of velocity, temperature factors and structural data of the cavity on the cooling-solidification process of the casting. In the calculations, conditions for molding with shrinkage of the slurry by hot casting have been found, which makes it possible to obtain a solidifying product with a uniform beryllium oxide structure at the outlet of the cavity.

Keywords: hot casting, thermoplastic slurry molding, shrinkage, beryllium oxide

Procedia PDF Downloads 22
120 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 50
119 The Côa Valley Ecosystem (Douro, Portugal) as a Cultural Landscape. Approach to the Management Challenges

Authors: Mariana Durana Pinto, Thierry Aubry, Eduarda Vieira

Abstract:

The Côa River is one of the tributaries of the Douro River, which in turn connects two Portuguese regions: Beira-Alta (Serra das Mesas, Sabugal) and Trás-os-Montes (Douro River, Vila Nova de Foz Côa). The river, which is approximately 140 kilometres in length, is surrounded by characteristic Northern-Estearn Portugal landscape. The dominant flora in the region includes olive and almond trees and vines, which provide habitat for a diverse range of native species. These include mammals such as the lynx and Iberian wolf, as well as birds of prey such as the Egyptian vulture and the griffon vulture. Additionally, herbivorous species such as red deer and roe deer also inhabit the region. However, the Vale Côa is inextricably linked with the rocky outcrops bearing the emblematic open-air Upper Palaeolithic rock art, indeed, it houses the world's largest collection of prehistoric open-air rock art, inscribed on the World Heritage list by UNESCO in 1998. From the initial discovery of the first engravings in 1991 to the present day, approximally 1,500 panels with rock art, mostly engravings and carving, but also some paintings, have been discovered, inventoried and recorded spanning from earlu Upper Paleolithic to the 20th century. The study and interpretation of the engravings and its geoarchaeological context, allow the construction of a chronological timeline of the human occupation and graphical production in this region. The area has been inhabited since the Early Palaeolithic, with human communities exploiting the diversity of the natural resources of the environment and adapting it to their needs. This led to the creation of an archaeological and historical cultural landscape.The region is currently inhabited by rural communities whose primary source of income is derived from agricultural activities, with a particular focus on olive oil and wine production, including the emblematic Vinho do Porto. Additionally, the region is distinguished by activities such as stone exploration and extraction (e.g. schist and granite quarries) and tourism. The latter has progressively assumed a role in the promotion and development of the region, primarily due to the engravings of the Côa Valley itself, as well as the Alto Douro Wine Region. Furthermore, this cultural landscape has been inscribed in the UNESCO World Heritage Site in 2001. The aforementioned factors give rise to a series of challenges and issues pertaining to the management and safeguarding of rock art on a daily basis. These include: I) the management of conflicts between cultural heritage and economic activity (between Rock art and vineyards, both classified as World Heritage Sites); II) the management of land-use planning in areas where the engravings are located (since the areas with engravings are larger than those identified as buffer zones by UNESCO); III) the absence of the legal figure of an 'archaeological park' and the need to solve this issue; IV) the management of tourist pressure and unauthorised visits; and V) the management of vandalism (as a consequence of misinformation and denial).

Keywords: Douro and Côa Valleys, archaeological cultural landscapes, rock art, Douro wine, conservation challenges

Procedia PDF Downloads 6
118 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning

Authors: Christina Largent, Tazley Hobbs

Abstract:

Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.

Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent

Procedia PDF Downloads 123
117 The Adolescent Vaping Crisis in Urban India

Authors: Arushi S. Goyal, Jo Aggarwal, Ravi Jasuja

Abstract:

Statement of the Problem: Vapes have always been marketed as safer alternatives to traditional cigarettes; however, research suggests that perceived safety of e-cigarettes use may be overstated. While the addictive properties of nicotine have garnered significant scientific interest, the adverse effects of ‘inert’ ingredients in vapes are being investigated only recently. Seemingly harmless components in vapes such as propylene glycol have been shown to damage astrocytes and oligodendrocytes, and certain flavorings are causatively associated with neuroinflammation. With ease of concealment and varied aromas, vape usage amongst high school students continues unabated in countries like India, which have instituted comprehensive bans on e-cigarettes. With overt government ban, there is paucity of public data on determinants of teenage vaping patterns and parental engagement in curbing this debilitating dependency. Additionally, the large body of peer reviewed studies on vaping have been primarily conducted in Western countries. Accordingly, the purpose of this study was to examine the factors affecting the causes and attitudes towards vaping among adolescents in urban India, as well as the gaps in parental awareness. We posit that this study would lay out a reusable framework for extending the studies across conservative societies where adolescents support vaping behavior even with strong governmental policies. Methodology & Theoretical Orientation: Two surveys were used to collect data. Participants from eight private schools in Bangalore completed an online survey. The first survey sampled adolescents aged 14-18, while the second surveyed the parents of children in the same age group from the same schools. Informed consent was obtained from all participants, and all data collected was anonymous. Results: We find substantial discordance in self-reported vape use by the adolescents and the parents’ knowledge of their child’s exposure to vaping. Over one fifth of respondents (22.4%) reported using e-cigarettes, while only 5% of parents reported that their children used e-cigarettes. Even though over 70% of adolescents believe that vaping is addictive, only 22.8% of respondents were aware of the components, or the extent of its impact. While peer pressure is often perceived to be the enabling factor, curiosity was reported as the primary reason for the initiation. Adolescents who vape saw regulations on sales and marketing as the most effective deterrent. In contrast, parents and other students leaned on school infrastructure to intervene. There has been a significant increase in vaping and a substantial discordance between parental perceptions and adolescent vaping. Conclusion & Significance: Despite a complete ban, vapes continue to be easily accessible. The data suggests that an open discussion about the adverse health consequences of untested, “seemingly inert” ingredients in these unregulated vape liquids would galvanize the student community by demystifying vaping. While increased regulation against the sale of vapes deters open use, increased parental involvement could enable open dialog with children and assist in reducing the prevalence of vaping. A reduction in vaping could have a considerable impact on the health and educational outcomes for the youth of India.

Keywords: adolescent, e-cigarettes, health consequences, India, parental awareness, vapes

Procedia PDF Downloads 21
116 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization

Procedia PDF Downloads 156
115 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework

Authors: Robert Pocklington

Abstract:

Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.

Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language

Procedia PDF Downloads 109
114 Development of a Context Specific Planning Model for Achieving a Sustainable Urban City

Authors: Jothilakshmy Nagammal

Abstract:

This research paper deals with the different case studies, where the Form-Based Codes are adopted in general and the different implementation methods in particular are discussed to develop a method for formulating a new planning model. The organizing principle of the Form-Based Codes, the transect is used to zone the city into various context specific transects. An approach is adopted to develop the new planning model, city Specific Planning Model (CSPM), as a tool to achieve sustainability for any city in general. A case study comparison method in terms of the planning tools used, the code process adopted and the various control regulations implemented in thirty two different cities are done. The analysis shows that there are a variety of ways to implement form-based zoning concepts: Specific plans, a parallel or optional form-based code, transect-based code /smart code, required form-based standards or design guidelines. The case studies describe the positive and negative results from based zoning, Where it is implemented. From the different case studies on the method of the FBC, it is understood that the scale for formulating the Form-Based Code varies from parts of the city to the whole city. The regulating plan is prepared with the organizing principle as the transect in most of the cases. The various implementation methods adopted in these case studies for the formulation of Form-Based Codes are special districts like the Transit Oriented Development (TOD), traditional Neighbourhood Development (TND), specific plan and Street based. The implementation methods vary from mandatory, integrated and floating. To attain sustainability the research takes the approach of developing a regulating plan, using the transect as the organizing principle for the entire area of the city in general in formulating the Form-Based Codes for the selected Special Districts in the study area in specific, street based. Planning is most powerful when it is embedded in the broader context of systemic change and improvement. Systemic is best thought of as holistic, contextualized and stake holder-owned, While systematic can be thought of more as linear, generalisable, and typically top-down or expert driven. The systemic approach is a process that is based on the system theory and system design principles, which are too often ill understood by the general population and policy makers. The system theory embraces the importance of a global perspective, multiple components, interdependencies and interconnections in any system. In addition, the recognition that a change in one part of a system necessarily alters the rest of the system is a cornerstone of the system theory. The proposed regulating plan taking the transect as an organizing principle and Form-Based Codes to achieve sustainability of the city has to be a hybrid code, which is to be integrated within the existing system - A Systemic Approach with a Systematic Process. This approach of introducing a few form based zones into a conventional code could be effective in the phased replacement of an existing code. It could also be an effective way of responding to the near-term pressure of physical change in “sensitive” areas of the community. With this approach and method the new Context Specific Planning Model is created towards achieving sustainability is explained in detail this research paper.

Keywords: context based planning model, form based code, transect, systemic approach

Procedia PDF Downloads 334
113 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 448
112 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine

Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski

Abstract:

The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization

Procedia PDF Downloads 385
111 Eco-Friendly Cultivation

Authors: Shah Rucksana Akhter Urme

Abstract:

Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.

Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming

Procedia PDF Downloads 58