Search results for: signal intensity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3362

Search results for: signal intensity

2882 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis

Authors: Yao Cheng, Weihua Zhang

Abstract:

Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.

Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution

Procedia PDF Downloads 374
2881 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 504
2880 Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method

Authors: Chong Wang, Alexandre Urbano Hoffmann

Abstract:

Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes.

Keywords: aggregate concrete, boundary element method, two-phase composite, crack extension path, crack/particulate interaction

Procedia PDF Downloads 426
2879 Fractional Order Differentiator Using Chebyshev Polynomials

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh Kumar Pandey

Abstract:

A discrete time fractional orderdifferentiator has been modeled for estimating the fractional order derivatives of contaminated signal. The proposed approach is based on Chebyshev’s polynomials. We use the Riemann-Liouville fractional order derivative definition for designing the fractional order SG differentiator. In first step we calculate the window weight corresponding to the required fractional order. Then signal is convoluted with this calculated window’s weight for finding the fractional order derivatives of signals. Several signals are considered for evaluating the accuracy of the proposed method.

Keywords: fractional order derivative, chebyshev polynomials, signals, S-G differentiator

Procedia PDF Downloads 648
2878 Digital Forgery Detection by Signal Noise Inconsistency

Authors: Bo Liu, Chi-Man Pun

Abstract:

A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.

Keywords: forgery detection, splicing forgery, noise estimation, noise

Procedia PDF Downloads 461
2877 Physiological Responses of Dominant Grassland Species to Different Grazing Intensity in Inner Mongolia, China

Authors: Min Liu, Jirui Gong, Qinpu Luo, Lili Yang, Bo Yang, Zihe Zhang, Yan Pan, Zhanwei Zhai

Abstract:

Grazing disturbance is one of the important land-use types that affect plant growth and ecosystem processes. In order to study the responses of dominant species to grazing in the semiarid temperate grassland of Inner Mongolia, we set five grazing intensity plots: a control and four levels of grazing (light (LG), moderate (MG), heavy (HG) and extreme heavy grazing (EHG)) to test the morphological and physiological responses of Stipa grandis, Leymus chinensis at the individual levels. With the increase of grazing intensity, Stipa grandis and Leymus chinensis both exhibited reduced plant height, leaf area, stem length and aboveground biomass, showing a significant dwarf phenomenon especially in HG and EHG plots. The photosynthetic capacity decreased along the grazing gradient. Especially in the MG plot, the two dominant species have lowest net photosynthetic rate (Pn) and water use efficiency (WUE). However, in the HG and EHG plots, the two species had high light saturation point (LSP) and low light compensation point (LCP), indicating they have high light-use efficiency. They showed a stimulation of compensatory photosynthesis to the remnant leaves as compared with grasses in MG plot. For Leymus chinensis, the lipid peroxidation level did not increase with the low malondialdehyde (MDA) content even in the EHG plot. It may be due to the high enzymes activity of superoxide dismutase (SOD) and peroxidase (POD) to reduce the damage of reactive oxygen species. Meanwhile, more carbohydrate was stored in the leaf of Leymus chinensis to provide energy to the plant regrowth. On the contrary, Stipa grandis showed the high level of lipid peroxidation especially in the HG and EHG plots with decreased antioxidant enzymes activity. The soluble protein content did not change significantly in the different plots. Therefore, with the increase of grazing intensity, plants changed morphological and physiological traits to defend themselves effectively to herbivores. Leymus chinensis is more resistant to grazing than Stipa grandis in terms of tolerance traits, particularly under heavy grazing pressure.

Keywords: antioxidant enzymes activity, grazing density, morphological responses, photosynthesis

Procedia PDF Downloads 365
2876 Investigation of Amorphous Silicon A-Si Thin Films Deposited on Silicon Substrate by Raman Spectroscopy

Authors: Amirouche Hammouda, Nacer Boucherou, Aicha Ziouche, Hayet Boudjellal

Abstract:

Silicon has excellent physical and electrical properties for optoelectronics industry. It is a promising material with many advantages. On Raman characterization of thin films deposited on crystalline silicon substrate, the signal Raman of amorphous silicon is often disturbed by the Raman signal of the crystalline silicon substrate. In this paper, we propose to characterize thin layers of amorphous silicon deposited on crystalline silicon substrates. The results obtained have shown the possibility to bring out the Raman spectrum of deposited layers by optimizing experimental parameters.

Keywords: raman scattering, amorphous silicon, crystalline silicon, thin films

Procedia PDF Downloads 73
2875 Food Losses Reducing by Extending the Minimum Durability Date of Thermally Processed Products

Authors: Dorota Zielińska, Monika Trząskowska, Anna Łepecka, Katarzyna Neffe-Skocińska, Beata Bilska, Marzena Tomaszewska, Danuta Kołożyn-Krajewska

Abstract:

Minimum durability date (MDD) labeled food is known to have a long shelf life. A properly stored or transported food retains its physical, chemical, microbiological, and sensory properties up to MDD. The aim of the study was to assess the sensory quality and microbiological safety of selected thermally processed products,i.e., mayonnaise, jam, and canned tuna within and after MDD. The scope of the study was to determine the markers of microbiological quality, i.e., the total viable count (TVC), the Enterobacteriaceae count and the total yeast and mold (TYMC) count on the last day of MDD and after 1 and 3 months of storage, after the MDD expired. In addition, the presence of Salmonella and Listeria monocytogenes was examined on the last day of MDD. The sensory quality of products was assessed by quantitative descriptive analysis (QDA), the intensity of differentiators (quality features), and overall quality were defined and determined. It was found that during three months storage of tested food products, after the MDD expired, the microbiological quality slightly decreased, however, regardless of the tested sample, TVC was at the level of <3 log cfu/g, similarly, the Enterobacretiaceae, what indicates the good microbiological quality of the tested foods. The TYMC increased during storage but did not exceed 2 logs cfu/g of product. Salmonella and Listeria monocytogenes were not found in any of the tested food samples. The sensory quality of mayonnaise negatively changed during storage. After three months from the expiry of MDD, a decrease in the "fat" and "egg" taste and aroma intensity, as well as the "density" were found. The "sour" taste intensity of blueberry jam after three months of storage was slightly higher, compared to the jam tested on the last day of MDD, without affecting the overall quality. In the case of tuna samples, an increase in the "fishy" taste and aroma intensity was observed during storage, and the overall quality did not change. Tested thermally processed products (mayonnaise, jam, and canned tuna) were characterized by good microbiological and sensory quality on the last day of MDD, as well as after three months of storage under conditions recommended by the producer. These findings indicate the possibility of reducing food losses by extending or completely abolishing the MDD of selected thermal processed food products.

Keywords: food wastes, food quality and safety, mayonnaise, jam, tuna

Procedia PDF Downloads 129
2874 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection

Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour

Abstract:

The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.

Keywords: EEG, wavelet, epilepsy, detection

Procedia PDF Downloads 538
2873 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 427
2872 Construction and Application of Zr-MCM41 Nanoreactors as Highly Active and Efficiently Catalyst in the Synthesis of Biginelli-Type Compounds

Authors: Zohreh Derikvand

Abstract:

Nanoreactors Zr-MCM-41were prepared via the reaction of ZrOCl2, Fumed silica, sodium hydroxide and cethyltrimethyl ammonium bromide under hydrothermal condition. The prepared nanoreactors were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), Scanning electron micrographs (SEM) and nitrogen adsorption-desorption. The XRD pattern of Zr-MCM-41 exhibits a high-intensity (100) and two low-intensity reflections (110 and 200) which are characteristic of hexagonal structure, exhibiting the long-range order and good textural uniformity of mesoporous structure. Based on the green chemistry approach, we report an efficient and environmentally benign protocol to study the catalytic activity of Zr-MCM-41 in the Biginelli type reactions initially. Nanoreactors Zr-MCM-41 were used as highly recoverable and reusable catalyst for synthesis of 3,4-dihydropyrimidin-2(1H)-one, octahydroquinazolinone, benzimidazolo-quinazolineone and 4,6-diarylpyrimidin-2(1H)-one. The methodology offers several advantages such as short reaction time, high yields and simple operation. The catalyst was active up to three cycles.

Keywords: Zr-MCM-41 nanoreactors, Biginelli like reactions, 3, 4-dihydropyrimidin-2(1H)-ones, ctahydroquinazolinones

Procedia PDF Downloads 206
2871 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 330
2870 Optimal Concentration of Fluorescent Nanodiamonds in Aqueous Media for Bioimaging and Thermometry Applications

Authors: Francisco Pedroza-Montero, Jesús Naín Pedroza-Montero, Diego Soto-Puebla, Osiris Alvarez-Bajo, Beatriz Castaneda, Sofía Navarro-Espinoza, Martín Pedroza-Montero

Abstract:

Nanodiamonds have been widely studied for their physical properties, including chemical inertness, biocompatibility, optical transparency from the ultraviolet to the infrared region, high thermal conductivity, and mechanical strength. In this work, we studied how the fluorescence spectrum of nanodiamonds quenches concerning the concentration in aqueous solutions systematically ranging from 0.1 to 10 mg/mL. Our results demonstrated a non-linear fluorescence quenching as the concentration increases for both of the NV zero-phonon lines; the 5 mg/mL concentration shows the maximum fluorescence emission. Furthermore, this behaviour is theoretically explained as an electronic recombination process that modulates the intensity in the NV centres. Finally, to gain more insight, the FRET methodology is used to determine the fluorescence efficiency in terms of the fluorophores' separation distance. Thus, the concentration level is simulated as follows, a small distance between nanodiamonds would be considered a highly concentrated system, whereas a large distance would mean a low concentrated one. Although the 5 mg/mL concentration shows the maximum intensity, our main interest is focused on the concentration of 0.5 mg/mL, which our studies demonstrate the optimal human cell viability (99%). In this respect, this concentration has the feature of being as biocompatible as water giving the possibility to internalize it in cells without harming the living media. To this end, not only can we track nanodiamonds on the surface or inside the cell with excellent precision due to their fluorescent intensity, but also, we can perform thermometry tests transforming a fluorescence contrast image into a temperature contrast image.

Keywords: nanodiamonds, fluorescence spectroscopy, concentration, bioimaging, thermometry

Procedia PDF Downloads 405
2869 Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application

Authors: Raja Chinnappan, Huda Alanazi, Shanmugam Easwaramoorthi, Tanveer Mir, Balamurugan Kanagasabai, Ahmed Yaqinuddin, Sandhanasamy Devanesan, Mohamad S. AlSalhi

Abstract:

Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins.

Keywords: serum albumin, fluorescent sensing probe, liver diseases, twisted intramolecular charge transfer

Procedia PDF Downloads 18
2868 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation

Authors: O. Hinrichs, H. Franz, G. Reiter

Abstract:

Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.

Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing

Procedia PDF Downloads 337
2867 Investigation of the EEG Signal Parameters during Epileptic Seizure Phases in Consequence to the Application of External Healing Therapy on Subjects

Authors: Karan Sharma, Ajay Kumar

Abstract:

Epileptic seizure is a type of disease due to which electrical charge in the brain flows abruptly resulting in abnormal activity by the subject. One percent of total world population gets epileptic seizure attacks.Due to abrupt flow of charge, EEG (Electroencephalogram) waveforms change. On the display appear a lot of spikes and sharp waves in the EEG signals. Detection of epileptic seizure by using conventional methods is time-consuming. Many methods have been evolved that detect it automatically. The initial part of this paper provides the review of techniques used to detect epileptic seizure automatically. The automatic detection is based on the feature extraction and classification patterns. For better accuracy decomposition of the signal is required before feature extraction. A number of parameters are calculated by the researchers using different techniques e.g. approximate entropy, sample entropy, Fuzzy approximate entropy, intrinsic mode function, cross-correlation etc. to discriminate between a normal signal & an epileptic seizure signal.The main objective of this review paper is to present the variations in the EEG signals at both stages (i) Interictal (recording between the epileptic seizure attacks). (ii) Ictal (recording during the epileptic seizure), using most appropriate methods of analysis to provide better healthcare diagnosis. This research paper then investigates the effects of a noninvasive healing therapy on the subjects by studying the EEG signals using latest signal processing techniques. The study has been conducted with Reiki as a healing technique, beneficial for restoring balance in cases of body mind alterations associated with an epileptic seizure. Reiki is practiced around the world and is recommended for different health services as a treatment approach. Reiki is an energy medicine, specifically a biofield therapy developed in Japan in the early 20th century. It is a system involving the laying on of hands, to stimulate the body’s natural energetic system. Earlier studies have shown an apparent connection between Reiki and the autonomous nervous system. The Reiki sessions are applied by an experienced therapist. EEG signals are measured at baseline, during session and post intervention to bring about effective epileptic seizure control or its elimination altogether.

Keywords: EEG signal, Reiki, time consuming, epileptic seizure

Procedia PDF Downloads 406
2866 Implementation of Real-Time Multiple Sound Source Localization and Separation

Authors: Jeng-Shin Sheu, Qi-Xun Zheng

Abstract:

This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation.

Keywords: real-time, spectrum analysis, sound source localization, sound source separation

Procedia PDF Downloads 155
2865 Signal Strength Based Multipath Routing for Mobile Ad Hoc Networks

Authors: Chothmal

Abstract:

In this paper, we present a route discovery process which uses the signal strength on a link as a parameter of its inclusion in the route discovery method. The proposed signal-to-interference and noise ratio (SINR) based multipath reactive routing protocol is named as SINR-MP protocol. The proposed SINR-MP routing protocols has two following two features: a) SINR-MP protocol selects routes based on the SINR of the links during the route discovery process therefore it select the routes which has long lifetime and low frame error rate for data transmission, and b) SINR-MP protocols route discovery process is multipath which discovers more than one SINR based route between a given source destination pair. The multiple routes selected by our SINR-MP protocol are node-disjoint in nature which increases their robustness against link failures, as failure of one route will not affect the other route. The secondary route is very useful in situations where the primary route is broken because we can now use the secondary route without causing a new route discovery process. Due to this, the network overhead caused by a route discovery process is avoided. This increases the network performance greatly. The proposed SINR-MP routing protocol is implemented in the trail version of network simulator called Qualnet.

Keywords: ad hoc networks, quality of service, video streaming, H.264/SVC, multiple routes, video traces

Procedia PDF Downloads 249
2864 Effect of Palatal Lift Prosthesis on Speech Clarity in Flaccid Dysarthria

Authors: Firas Alfwaress, Abdelraheem Bebers Abdelhadi Hamasha, Maha Abu Awaad

Abstract:

Objectives: The aim of the present study was to investigate the effect of Palatal Lift Prosthesis (PLP) on speech clarity in patients with Flaccid Dysarthria. Five speech measures were investigated including Nasalance Scores, Diadchokinetic (DDK), Vowel Duration, airflow, and Sound Intensity. Participants: Twelve (7 Males and 5 females) native speakers of Jordanian Arabic with Flaccid Dysarthria following stroke, traumatic brain injury, and amyotrophic lateral sclerosis were included. The age of the participants ranged from 8–65 years with an average of 31.75 years. Design: Nasalance Scores, Diadchokinetic rate, Vowel Duration, and Sound Intensity were obtained using the Nasometer II, Model 6450 in three conditions. The first condition included obtaining the five measures without wearing the customized Palatal Lift Prosthesis. The second and third conditions included obtaining the five measures immediately after wearing the Palatal Lift Prosthesis and three months later. Results: Palatal lift prosthesis was found to be effective in individuals with flaccid dysarthria. Results showed decrease in the Nasalance Scores for the syllable repetition tasks and vowel prolongation tasks when comparing the means in the pre PLP with the post PLP at p≤0.001 except for the /m/ prolongation task. Results showed increased DDK repetition task, airflow amount, and sound intensity, and a decrease in vowel length at p≤0.001. Conclusions: The use of palatal lift prosthesis is effective in improving the speech of patients with flaccid dysarthria.

Keywords: palatal lift prosthesis, flaccid dysarthria, hypernasality, speech clarity, diadchokinetic rate

Procedia PDF Downloads 386
2863 Beam Methods Applications to the Design of Curved Pulsed Beams

Authors: Timor Melamed

Abstract:

In this study, we consider two methods for synthesizing a pulsed curved beam along a generic beam-axis trajectory. In the first approach, we evaluate the space-time aperture field distribution that radiates the beam along a predefined trajectory by constructing a time-dependent caustic surface around the beam-axis skeleton. We derive the aperture field delay to form a caustic of rays along the beam axis and extend this method to other points over the aperture. In the second approach, we harness the proven capabilities of beam methods to address the challenge of designing curved intensity profiles in three-dimensional free space. By leveraging advanced beam propagation techniques, we create and manipulate complex intensity patterns along arbitrarily curved trajectories, offering additional possibilities for precision control in various wave-based applications. Numerical examples are presented to demonstrate the robust capabilities of both methods.

Keywords: pulsed Airy beams, pulsed beams, pulsed curved beams, transient fields

Procedia PDF Downloads 22
2862 Raman and FTIR Studies of Azobenzene: Experimental and Theoretical Approach

Authors: Gomti Devi

Abstract:

Photoisomerization has been attracting to researchers due to its wide range of applications in optical switches, polymeric chains, liquid-crystalline systems and bilayer membranes etc. Azobenzene is a photochromic molecule which exhibits a reversible isomerisation process between its trans and cis isomers of different stability. An investigation has been conducted of the effects of temperature on intensity and position of Raman band of N=N, C-N stretching modes of Azobenzene (AZBN). It was found that the N=N stretching mode of Raman band shape shifts to lower frequency region with the increase in temperature. The Raman intensity was also decreased with the increase of temperature. The change in bandwidth with the increase in temperature has been studied. The FTIR spectrum of the molecule is recorded so as to complement the Raman spectra. In order to investigate the possibility of undergoing dimerization and trimerization as well as the stability of this molecule, ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed. Theoretically calculated values are found in good agreement with the experimental results.

Keywords: azobenzene, temperature, ab-initio, frequency

Procedia PDF Downloads 336
2861 Compilation of Load Spectrum of Loader Drive Axle

Authors: Wei Yongxiang, Zhu Haoyue, Tang Heng, Yuan Qunwei

Abstract:

In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.

Keywords: load spectrum, axle, torque, rain-flow counting method, extrapolation

Procedia PDF Downloads 364
2860 Efficient Alias-Free Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to an alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm.

Keywords: alias-free, level crossing sampling, spectrum, trigonometric polynomial

Procedia PDF Downloads 209
2859 Marketing Parameters on Consumer's Perceptions of Farmed Sea Bass in Greece

Authors: Sophia Anastasiou, Cosmas Nathanailides, Fotini Kakali, Kostas Karipoglou

Abstract:

Wild fish are considered as testier and in fish restaurants are offered at twice the price of farmed fish. Several chemical and structural differences can affect the consumer's attitudes for farmed fish. The structure and chemical composition of fish muscle is also important for the performance of farmed fish during handling, storage and processing. In the present work we present the chemical and sensory parameters which are used as indicators of fish flesh quality and we investigated the perceptions of consumers for farmed sea bass and the organoleptic differences between samples of wild and farmed sea bass. A questionnaire was distributed to a group of various ages that were regular consumers of sea bass. The questionnaire included a survey on the perceptions on taste and appearance differences between wild and farmed sea bass. A significant percentage (>40%) of the participants stated their perception of superior taste of wild sea bass versus the farmed fish. The participants took part in an organoleptic assessment of wild and farmed sea bass prepared and cooked by a local fish restaurant. Portions were evaluated for intensity of sensorial attributes from 1 (low intensity) to 5 (high intensity). The results indicate that contrary to the assessor's perception, farmed sea bass scored better in al organoleptic parameters assessed with marked superiority in texture and taste over the wild sea bass. This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund.

Keywords: fish marketing, farmed fish, seafood quality, wild fish

Procedia PDF Downloads 403
2858 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718

Authors: Pushpendra S. Bharti, S. Maheshwari

Abstract:

Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.

Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization

Procedia PDF Downloads 354
2857 Ending Communal Conflicts in Africa: The Relevance of Traditional Approaches to Conflict Resolution

Authors: Kindeye Fenta Mekonnen, Alagaw Ababu Kifle

Abstract:

The failure of international responses to armed conflict to address local preconditions for national stability has recently attracted what has been called the ‘local turn’ in peace building. This ‘local turn’ in peace building amplified a renewed interest in traditional/indigenous methods of conflict resolution, a field that has been hitherto dominated by anthropologists with their focus on the procedures and rituals of such approaches. This notwithstanding, there is still limited empirical work on the relevance of traditional methods of conflict resolution to end localized conflicts vis-à-vis hybrid and modern approaches. The few exceptions to this generally draw their conclusion from very few (almost all successful) cases that make it difficult to judge the validity and cross-case application of their results. This paper seeks to fill these gaps by undertaking a quantitative analysis of the trend and applications of different communal conflict resolution initiatives, their potential to usher in long-term peace, and the extent to which their outcomes are influenced by the intensity and scope of a conflict. The paper makes the following three tentative conclusions. First, traditional mechanisms and traditional actors still dominate the communal conflict resolution landscape, either individually or in combination with other methods. Second, traditional mechanisms of conflict resolution tend to be more successful in ending a conflict and preventing its re-occurrence compared to hybrid and modern arrangements. This notwithstanding and probably due to the scholarly call for local turn in peace building, contemporary communal conflict resolution approaches are becoming less and less reliant on traditional mechanisms alone and (therefore) less effective. Third, there is yet inconclusive evidence on whether hybridization is an asset or a liability in the resolution of communal conflicts and the extent to which this might be mediated by the intensity of a conflict.

Keywords: traditional conflict resolution, hybrid conflict resolution, communal conflict, relevance, conflict intensity

Procedia PDF Downloads 82
2856 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing

Authors: Carolina Gouveia, José Vieira, Pedro Pinho

Abstract:

The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.

Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR

Procedia PDF Downloads 141
2855 Epistemic Emotions during Cognitive Conflict: Associations with Metacognitive Feelings in High Conflict Scenarios

Authors: Katerina Nerantzaki, Panayiota Metallidou, Anastasia Efklides

Abstract:

The aim of the study was to investigate: (a) changes in the intensity of various epistemic emotions during cognitive processing in a decision-making task and (b) their associations with metacognitive feelings of difficulty and confidence. One hundred and fifty-two undergraduate university students were asked individually to read in the e-prime environment decision-making scenarios about moral dilemmas concerning self-driving cars, which differed in the level of conflict they produced, and then to make a choice between two options. Further, the participants were asked to rate on a four-point scale four epistemic emotions (surprise, curiosity, confusion, and wonder) and two metacognitive feelings (feeling of difficulty and feeling of confidence) after making their choice in each scenario. Changes in cognitive processing due to the level of conflict affected differently the intensity of the specific epistemic emotions. Further, there were interrelations of epistemic emotions with metacognitive feelings.

Keywords: confusion, curiosity, epistemic emotions, metacognitive experiences, surprise

Procedia PDF Downloads 79
2854 Experimental Study for Examination of Nature of Diffusion Process during Wine Microoxygenation

Authors: Ilirjan Malollari, Redi Buzo, Lorina Lici

Abstract:

This study was done for the characterization of polyphenols changes of anthocyanins, flavonoids, the color intensity and total polyphenols index, maturity and oxidation index during the process of micro-oxygenation of wine that comes from a specific geographic area in the southeastern region of the country. Also, through mathematical modeling of the oxygen distribution within solution of wort for wine fermentation, was shown the strong impact of carbon dioxide present in the liquor. Analytical results show periodic increases of color intensity and tonality, reduction level of free anthocyanins and flavonoids free because of polycondensation reactions between tannins and anthocyanins, increased total polyphenols index and decrease the ratio between the flavonoids and anthocyanins offering a red stabilize wine proved by sensory degustation tasting for color intensity, tonality, body, tannic perception, taste and remained back taste which comes by specific area associated with environmental indications. Micro-oxygenation of wine is a wine-making technique, which consists in the addition of small and controlled amounts of oxygen in the different stages of wine production but more efficiently after end of alcoholic fermentation. The objectives of the process include improved mouth feel (body and texture), color enhanced stability, increased oxidative stability, and decreased vegetative aroma during polyphenols changes process. A very important factor is polyphenolics organic grape composition strongly associated with the environment geographical specifics area in which it is grown the grape.

Keywords: micro oxygenation, polyphenols, environment, wine stability, diffusion modeling

Procedia PDF Downloads 210
2853 Enhancement of Light Out Efficiency of PLED Device Employing Designed Substrate Combined with Nano-Line Patterns

Authors: Ting-Ting Wen, H. C. Lin

Abstract:

This paper reports a study for the light outcoupling efficiency of the PLED device. In use of a designed substrate combined with nano-line patterns in PLED device, the light outcoupling efficiency can be significantly enhanced. The designed substrate was made by UV imprinting technology, such as triangular microlens arrays on the front and periodic corrugated patterns on the back surface. The nano-line patterns in PLED device was fabricated by advanced microstamping and ink-jet printing techniques. For high angles of observation with respect to the substrate surface normal, the light out intensity of the developed PLED device is increased from 0.05 (a.u.) up to 0.69 (a.u.) at the view angle 85 degree. The designed integration leads to 64% increase of the light out intensity compared with the conventional PLED device.

Keywords: triangular microlens, corrugation patterns, nano-line patterns, PLED device, UV imprinting technology, microstamping

Procedia PDF Downloads 478