Search results for: hemodynamic monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3191

Search results for: hemodynamic monitoring

2711 Integration of Smart Grid Technologies with Smart Phones for Energy Monitoring and Management

Authors: Arjmand Khaliq, Pemra Sohaib

Abstract:

There is increasing trend of use of smart devices in the present age. The growth of computing techniques and advancement in hardware has also brought the use of sensors and smart devices to a high degree during the course of time. So use of smart devices for control, management communication and optimization has become very popular. This paper gives proposed methodology which involves sensing and switching unite for load, two way communications between utility company and smart phones of consumers using cellular techniques and price signaling resulting active participation of user in energy management .The goal of this proposed control methodology is active participation of user in energy management with accommodation of renewable energy resource. This will provide load adjustment according to consumer’s choice, increased security and reliability for consumer, switching of load according to consumer need and monitoring and management of energy.

Keywords: cellular networks, energy management, renewable energy source, smart grid technology

Procedia PDF Downloads 413
2710 Acoustic Emission Techniques in Monitoring Low-Speed Bearing Conditions

Authors: Faisal AlShammari, Abdulmajid Addali, Mosab Alrashed

Abstract:

It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines ( < 100 rpm). This paper addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this paper program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in the out race. It was found that these parameters effectually identify the presence of a small fault seeded into the outer races. Also, it is concluded that rotational speed has a strong influence on the measured AE parameters but that they are entirely independent of the load under such load and speed conditions.

Keywords: acoustic emission, condition monitoring, NDT, statistical analysis

Procedia PDF Downloads 248
2709 Determining the Effectiveness of Radiation Shielding and Safe Time for Radiation Worker by Employing Monitoring of Accumulation Dose in the Operator Room of CT Scan

Authors: Risalatul Latifah, Bunawas Bunawas, Lailatul Muqmiroh, Anggraini D. Sensusiati

Abstract:

Along with the increasing frequency of the use of CT-Scan for radiodiagnostics purposes, it is necessary to study radiation protection. This study examined aspects of radiation protection of workers. This study tried using thermoluminescent dosimeter (TLD) for evaluating radiation shielding and estimating safe time for workers during CT Scan examination. Six TLDs were placed on door, wall, and window inside and outside of the CT Scan room for 1 month. By using TLD monitoring, it could be seen how much radiation was exposed in the operator room. The results showed the effective dose at door, window, and wall was respectively 0.04 mSv, 0.05 mSv, and 0.04 mSv. With these values, it could be evaluated the effectiveness of radiation shielding on doors, glass and walls were respectively 90.6%, 95.5%, and 92.2%. By applying the dose constraint and the estimation of the accumulated dose for one month, radiation workers were still safe to perform the irradiation for 180 patients.

Keywords: CT scan room, TLD, radiation worker, dose constraint

Procedia PDF Downloads 288
2708 Awareness on Department of Education’s Disaster Risk Reduction Management Program at Oriental Mindoro National High School: Basis for Support School DRRM Program

Authors: Nimrod Bantigue

Abstract:

The Department of Education is continuously providing safe teaching-learning facilities and hazard-free environments to the learners. To achieve this goal, teachers’ awareness of DepEd’s DRRM programs and activities is extremely important; thus, this descriptive correlational quantitative study was conceptualized. This research answered four questions on the profile and level of awareness of the 153 teacher respondents of Oriental Mindoro National High School for the academic year 2018-2019. Stratified proportional sampling was employed, and both descriptive and inferential statistics were utilized to treat data. The findings revealed that the majority of the teachers at OMNHS are female and are in the age bracket of 20-40. Most are married and pursue graduate studies. They have moderate awareness of the Department of Education’s DRRM programs and activities in terms of assessment of risks activities, planning activities, implementation activities during disaster and evaluation and monitoring activities with 3.32, 3.12, 3.40 and 3.31 as computed means, respectively. Further, the result showed a significant relationship between the profile of the respondents such as age, civil status and educational attainment and the level of awareness. On the contrary, sex does not have a significant relationship with the level of awareness. The Support School DRRM program with Utilization Guide on School DRRM Manual was proposed to increase, improve and strengthen the weakest areas of awareness rated in each DRRM activity, such as assessment of risks, planning, and implementation during disasters and monitoring and evaluation.

Keywords: awareness, management, monitoring, risk reduction

Procedia PDF Downloads 219
2707 Foot-and-Mouth Virus Detection in Asymptomatic Dairy Cows without Foot-and-Mouth Disease Outbreak

Authors: Duanghathai Saipinta, Tanittian Panyamongkol, Witaya Suriyasathaporn

Abstract:

Animal management aims to provide a suitable environment for animals allowing maximal productivity in those animals. Prevention of disease is an important part of animal management. Foot-and-mouth disease (FMD) is a highly contagious viral disease in cattle and is an economically important animal disease worldwide. Monitoring the FMD virus in farms is useful management for the prevention of the FMD outbreak. A recent publication indicated collection samples from nasal swabs can be used for monitoring FMD in symptomatic cows. Therefore, the objectives of this study were to determine the FMD virus in asymptomatic dairy cattle using nasal swab samples during the absence of an FMD outbreak. The study was conducted from December 2020 to June 2021 using 185 asymptomatic signs of FMD dairy cattle in Chiang Mai Province, Thailand. By random cow selection, nasal mucosal swabs were used to collect samples from the selected cows and then were to evaluate the presence of FMD viruses using the real-time rt-PCR assay. In total, 4.9% of dairy cattle detected FMD virus, including 2 dairy farms in Mae-on (8 samples; 9.6%) and 1 farm in the Chai-Prakan district (1 sample; 1.2%). Interestingly, both farms in Mae-on were the outbreak of the FMD after this detection for 6 months. This indicated that the FMD virus presented in asymptomatic cattle might relate to the subsequent outbreak of FMD. The outbreak demonstrates the presence of the virus in the environment. In conclusion, monitoring of FMD can be performed by nasal swab collection. Further investigation is needed to show whether the FMD virus presented in asymptomatic FMD cattle could be the cause of the subsequent FMD outbreak or not.

Keywords: cattle, foot-and-mouth disease, nasal swab, real-time rt-PCR assay

Procedia PDF Downloads 232
2706 Distributed Framework for Pothole Detection and Monitoring Using Federated Learning

Authors: Ezil Sam Leni, Shalen S.

Abstract:

Transport service monitoring and upkeep are essential components of smart city initiatives. The main risks to the relevant departments and authorities are the ever-increasing vehicular traffic and the conditions of the roads. In India, the economy is greatly impacted by the road transport sector. In 2021, the Ministry of Road Transport and Highways Transport, Government of India, produced a report with statistical data on traffic accidents. The data included the number of fatalities, injuries, and other pertinent criteria. This study proposes a distributed infrastructure for the monitoring, detection, and reporting of potholes to the appropriate authorities. In a distributed environment, the nodes are the edge devices, and local edge servers, and global servers. The edge devices receive the initial model to be employed from the global server. The YOLOv8 model for pothole detection is used in the edge devices. The edge devices run the pothole detection model, gather the pothole images on their path, and send the updates to the nearby edge server. The local edge server selects the clients for its aggregation process, aggregates the model updates and sends the updates to the global server. The global server collects the updates from the local edge servers, performs aggregation and derives the updated model. The updated model has the information about the potholes received from the local edge servers and notifies the updates to the local edge servers and concerned authorities for monitoring and maintenance of road conditions. The entire process is implemented in FedCV distributed environment with the implementation using the client-server model and aggregation entities. After choosing the clients for its aggregation process, the local edge server gathers the model updates and transmits them to the global server. After gathering the updates from the regional edge servers, the global server aggregates them and creates the updated model. Performance indicators and the experimentation environment are assessed, discussed, and presented. Accelerometer data may be taken into consideration for improved performance in the future development of this study, in addition to the images captured from the transportation routes.

Keywords: federated Learning, pothole detection, distributed framework, federated averaging

Procedia PDF Downloads 103
2705 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region

Authors: T. Penkova, A. Korobko, V. Nicheporchuk, L. Nozhenkova, A. Metus

Abstract:

This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.

Keywords: decision making support systems, emergency risk assessment, natural and anthropogenic safety, on-line control, territory

Procedia PDF Downloads 406
2704 Real-Time Inventory Management and Operational Efficiency in Manufacturing

Authors: Tom Wanyama

Abstract:

We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.

Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing

Procedia PDF Downloads 34
2703 Bridging the Gap between M and E, and KM: Towards the Integration of Evidence-Based Information and Policy Decision-Making

Authors: Xueqing Ivy Chen, Christo De Coning

Abstract:

It is clear from practice that a gap exists between Result-Based Monitoring and Evaluation (RBME) as a discipline, and Knowledge Management (KM) on the other hand. Whereas various government departments have institutionalised these functions, KM and M&E has functioned in isolation from each other in a practical sense in the public sector. It’s therefore necessary to explore the relationship between KM and M&E and the necessity for integration, so that a convergence of these disciplines can be established. An integration of KM and M&E will lead to integration and improvement of evidence-based information and policy decision-making. M&E and KM process models are available but the complementarity between specific process steps of these process models are not exploited. A need exists to clarify the relationships between these functions in order to ensure evidence based information and policy decision-making. This paper will depart from the well-known policy process models, such as the generic model and consider recent on the interface between policy, M&E and KM.

Keywords: result-based monitoring and evaluation, RBME, knowledge management, KM, evident based decision making, public policy, information systems, institutional arrangement

Procedia PDF Downloads 152
2702 New Methodology for Monitoring Alcoholic Fermentation Processes Using Refractometry

Authors: Boukhiar Aissa, Iguergaziz Nadia, Halladj Fatima, Lamrani Yasmina, Benamara Salem

Abstract:

Determining the alcohol content in alcoholic fermentation bioprocess has a great importance. In fact, it is a key indicator for monitoring this fermentation bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic...) are used to the determination of this parameter. However, these techniques are very long and require: rigorous preparations, sometimes dangerous chemical reagents, and/or expensive equipment. In the present study, the date juice is used as a substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of this process revealed a good correlation (R2 = 0.98) between initial and final ° Brix: ° Brix f = 0.377× ° Brixi. In addition, we verified the relationship between the variation in final and initial ° Brix (Δ ° Brix) and alcoholic rate produced (A exp): CΔ° Brix / A exp = 1.1. This allows the tracing of abacus isoresponses that permit to determine the alcoholic and residual sugar rates with a mean relative error (MRE) of 5.35%.

Keywords: refractometry, alcohol, residual sugar, fermentation, brix, date, juice

Procedia PDF Downloads 478
2701 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots

Authors: G. Santamato, M. Solazzi, A. Frisoli

Abstract:

Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.

Keywords: pantograph models, phase plots, structural health monitoring, damage detection

Procedia PDF Downloads 362
2700 Screening of Congenital Heart Diseases with Fetal Phonocardiography

Authors: F. Kovács, K. Kádár, G. Hosszú, Á. T. Balogh, T. Zsedrovits, N. Kersner, A. Nagy, Gy. Jeney

Abstract:

The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.

Keywords: cardiac murmurs, fetal phonocardiography, screening of CHDs, telemedicine system

Procedia PDF Downloads 332
2699 The Design of the Multi-Agent Classification System (MACS)

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the design of a .NET Windows Service based agent system called MACS (Multi-Agent Classification System). MACS is a system aims to accurately classify spread-sheet developers competency over a network. It is designed to automatically and autonomously monitor spread-sheet users and gather their development activities based on the utilization of the software Multi-Agent Technology (MAS). This is accomplished in such a way that makes management capable to efficiently allow for precise tailor training activities for future spread-sheet development. The monitoring agents of MACS are intended to be distributed over the WWW in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus methodology is used for the design of the agents of MACS. Prometheus has been used to undertake this phase of the system design because it is developed specifically for specifying and designing agent-oriented systems. Additionally, Prometheus specifies also the communication needed between the agents in order to coordinate to achieve their delegated tasks.

Keywords: classification, design, MACS, MAS, prometheus

Procedia PDF Downloads 399
2698 Monitoring Prolong Use of Intravenous Antibiotics: Antimicrobial Stewardship

Authors: Komal Fizza

Abstract:

Irrational and non-judicious use of antibiotics pave the way for an upsurge in antibiotic resistance, diminished effectiveness of different therapeutic regimens and as well as impounding effect on disease management leading to further morbidities. In the backdrop of this the current research is aimed to assess whether antimicrobial prescribing is in accordance with the Infectious Disease Society of America Guidelines in hospitalized patients at Shifa International Hospital, Islamabad, Pakistan. Shifa International Hospital, Islamabad is a 500 bed hospital. With the help of MIS team a form wad developed that gave the information about medical records number, name of the patient, day of start of antibiotic, the day antibiotic is supposed to be stopped and as well as the diagnosis of the patient. A ward pharmacist was employed to generate this report on a daily basis. The therapeutic regiment was reviewed by the pharmacist by monitoring the clinical progress, laboratory report and diagnosis. On the basis of this information, pharmacist made suggestions and forwarded to the hospital doctors responsible for prescribing antibiotics. If desired, changes were made regularly. In the current research our main focus was to implement this action and therefore, started monitoring patients who were on antibiotic regimens for more than 10-15 days. We took this initiative since November, 2013. At the start of the program a maximum 19 patients/day were reported to be on antibiotic regimen for more than 10-15 days. After the implementation of the initiative, the number of patients was decreased to fifteen patients per day in December, further decreased to 7 in the month of January and 9 and 6 in February and March respectively. The average patient census was 350. The current pilot study highlighted the role of pharmacist in initiating antibiotic stewardship programs in hospital settings.

Keywords: stewardship, antibiotics, resistance, clinical process

Procedia PDF Downloads 353
2697 The Effectiveness of Energy Index Technique in Bearing Condition Monitoring

Authors: Faisal Alshammari, Abdulmajid Addali, Mosab Alrashed, Taihiret Alhashan

Abstract:

The application of acoustic emission techniques is gaining popularity, as it can monitor the condition of gears and bearings and detect early symptoms of a defect in the form of pitting, wear, and flaking of surfaces. Early detection of these defects is essential as it helps to avoid major failures and the associated catastrophic consequences. Signal processing techniques are required for early defect detection – in this article, a time domain technique called the Energy Index (EI) is used. This article presents an investigation into the Energy Index’s effectiveness to detect early-stage defect initiation and deterioration, and compares it with the common r.m.s. index, Kurtosis, and the Kolmogorov-Smirnov statistical test. It is concluded that EI is a more effective technique for monitoring defect initiation and development than other statistical parameters.

Keywords: acoustic emission, signal processing, kurtosis, Kolmogorov-Smirnov test

Procedia PDF Downloads 366
2696 Portable Palpation Probe for Diabetic Foot Ulceration Monitoring

Authors: Bummo Ahn

Abstract:

Palpation is widely used to measure soft tissue firmness or stiffness in the living condition in order to apply detection, diagnosis, and treatment of tumors, scar tissue, abnormal muscle tone, or muscle spasticity. Since these methods are subjective and depend on the proficiency level, it is concluded that there are other diagnoses depending on the condition of the experts and the results are not objective. The mechanical property obtained by using the elasticity of the tissue is important to calculate a predictive variable for monitoring abnormal tissues. If the mechanical load such as reaction force on the foot increases in the same region under the same conditions, the mechanical property of the tissue is changed. Therefore, objective diagnosis is possible not only for experts but also for patients using this quantitative information. Furthermore, the portable system also allows non-experts to easily diagnose at home, not in hospitals or institutions. In this paper, we introduce a portable palpation system that can be used to measure the mechanical properties of human tissue, which can be applied to monitor diabetic foot ulceration patients with measuring the mechanical property change of foot tissue. The system was designed to be smaller and portable in comparison with the conventional palpation systems. It is consists of the probe, the force sensor, linear actuator, micro control unit, the display module, battery, and housing. Using this system, we performed validation experiments by applying different palpations (3 and 5 mm) to soft tissue (silicone rubber) and measured reaction forces. In addition, we estimated the elastic moduli of the soft tissue against different palpations and compare the estimated elastic moduli that show similar value even if the palpation depths are different.

Keywords: palpation probe, portable, diabetic foot ulceration, monitoring, mechanical property

Procedia PDF Downloads 120
2695 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control

Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni

Abstract:

An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.

Keywords: automation, human factors, air traffic controller, MINIMA, OOTL (Out-Of-The-Loop), EEG (Electroencephalography), HMI (Human Machine Interface)

Procedia PDF Downloads 383
2694 Mental Health Monitoring System as an Effort for Prevention and Handling of Psychological Problems in Students

Authors: Arif Tri Setyanto, Aditya Nanda Priyatama, Nugraha Arif Karyanta, Fadjri Kirana A., Afia Fitriani, Rini Setyowati, Moh.Abdul Hakim

Abstract:

The Basic Health Research Report by the Ministry of Health (2018) shows an increase in the prevalence of mental health disorders in the adolescent and early adult age ranges. Supporting this finding, data on the psychological examination of the student health service unit at one State University recorded 115 cases of moderate and severe health problems in the period 2016 - 2019. More specifically, the highest number of cases was experienced by clients in the age range of 21-23 years or equivalent, with the mid-semester stage towards the end. Based on the distribution of cases experienced and the disorder becomes a psychological problem experienced by students. A total of 29% or the equivalent of 33 students experienced anxiety disorders, 25% or 29 students experienced problems ranging from mild to severe, as well as other classifications of disorders experienced, including adjustment disorders, family problems, academics, mood disorders, self-concept disorders, personality disorders, cognitive disorders, and others such as trauma and sexual disorders. Various mental health disorders have a significant impact on the academic life of students, such as low GPA, exceeding the limit in college, dropping out, disruption of social life on campus, to suicide. Based on literature reviews and best practices from universities in various countries, one of the effective ways to prevent and treat student mental health disorders is to implement a mental health monitoring system in universities. This study uses a participatory action research approach, with a sample of 423 from a total population of 32,112 students. The scale used in this study is the Beck Depression Inventory (BDI) to measure depression and the Taylor Minnesota Anxiety Scale (TMAS) to measure anxiety levels. This study aims to (1) develop a digital-based health monitoring system for students' mental health situations in the mental health category. , dangers, or those who have mental disorders, especially indications of symptoms of depression and anxiety disorders, and (2) implementing a mental health monitoring system in universities at the beginning and end of each semester. The results of the analysis show that from 423 respondents, the main problems faced by all coursework, such as thesis and academic assignments. Based on the scoring and categorization of the Beck Depression Inventory (BDI), 191 students experienced symptoms of depression. A total of 24.35%, or 103 students experienced mild depression, 14.42% (61 students) had moderate depression, and 6.38% (27 students) experienced severe or extreme depression. Furthermore, as many as 80.38% (340 students) experienced anxiety in the high category. This article will review this review of the student mental health service system on campus.

Keywords: monitoring system, mental health, psychological problems, students

Procedia PDF Downloads 111
2693 The Role of BPSK (Consumer Dispute Settlement Body) in the Monitoring of Standard Clause Inclusion within Indonesian Customer Protection Law

Authors: Deviana Yuanitasari

Abstract:

The rapid development of world commerce and trade nowadays has created fast-paced demand in every business activities and transactions. That also includes the need for ready to use and practical form of standard contract. For the company or business owner, the use of standard contract is an alternative way to achieve economic goals faster, effectively and efficiently. In the other hand, for the consumer the practice of using standard contract usually unfavorable, because the contract clauses usually have been defined by the company and cannot be individually negotiated. That means consumer cannot influence the substances of the contract clauses. The purpose of this study is to get deeper understanding and analyze the role of Consumer Dispute Settlement Body in the monitoring of standard clause inclusion by businesses and industries within the context of practicing consumer protection law. Furthermore, this study will focus on the procedure of sanction and the effectiveness of the sanction for the business practitioners which disregard the inclusion of the prohibited standard clause. Therefore, this study will depict the law issues and other phenomenon that related with the role of Consumer Dispute Settlement Body in monitoring the inclusion of standard clause and procedure of sanction for the business practitioners that still use exemption clause within Consumer Protection Law System. This study results that BPSK has been assigned to monitor the inclusion of standard clause and settle consumer dispute. At this stage, BPSK role is passive, which means BPSK only takes an action if there are consumer complaints. The procedure of sanction is not part of BPSK tasks, since should there be a violation of standard clause; BPSK can only ask the business practitioners to remove the prohibited clause and not give a sanction. As a result, the procedure of sanction rule for the Standard Clause violation in this context can be considered as ineffective.

Keywords: standard contract, standard clause, consumer protection law, consumer dispute settlement body

Procedia PDF Downloads 334
2692 Assessment of Water Quality Based on Physico-Chemical and Microbiological Parameters in Batllava Lake, Case Study Kosovo

Authors: Albana Kashtanjeva-Bytyçi, Idriz Vehapi, Rifat Morina, Osman Fetoshi

Abstract:

The purpose of this study is to determine the water quality in Batllava Leka through which a part of the population of the Prishtina region is supplied with drinking water. Batllava Leka is a lake built in the 70s. This lake is located in the village of Btlava in the municipality of Podujeva, with coordinates 42 ° 49′33 ″ V 21 ° 18′25 ″ L, with an area of 3.07 km2. Water supply is from the river Brvenica- Batllavë. In order to take preventive measures and improve water quality, we have conducted periodic/monthly monitoring of water quality in Lake Batllava, through microbiological and physico-chemical indicators. The monitoring was carried out during the period December 2020 - December 2021. Samples were taken at three sampling sites: at the entrance of the lake, in the middle and at the overflow, on two levels, water surface and at a depth of 30 cm. The microbiological parameters analyzed are: total coliforms, fecal coliforms, fecal streptococci, aerobic mesophilic bacteria and actinomycetes. Within the physico-chemical parameters: Dissolved Oxygen, Saturation with O2, water temperature, pH value, electrical conductivity, total soluble matter, total suspended matter, turbidity, chemical oxygen demand, biochemical oxygen demand, total organic carbon, nitrate, total hardness, hardness of calcium, calcium, magnesium, ammonium ion, chloride, sulfates, flourine, M-alkalines, bicarbonates and heavy metals, such as: Fe, Pb, Mn, Cu, Cd. The results showed that most of the physico-chemical and microbiological parameters are within the limit allowed by the WHO, except in the case of the rainiest season that exceeded some parameters.

Keywords: batllava lake, monitoring of water, physico-chemical, microbiological, heavy metals

Procedia PDF Downloads 107
2691 Breast Cancer Sensing and Imaging Utilized Printed Ultra Wide Band Spherical Sensor Array

Authors: Elyas Palantei, Dewiani, Farid Armin, Ardiansyah

Abstract:

High precision of printed microwave sensor utilized for sensing and monitoring the potential breast cancer existed in women breast tissue was optimally computed. The single element of UWB printed sensor that successfully modeled through several numerical optimizations was multiple fabricated and incorporated with woman bra to form the spherical sensors array. One sample of UWB microwave sensor obtained through the numerical computation and optimization was chosen to be fabricated. In overall, the spherical sensors array consists of twelve stair patch structures, and each element was individually measured to characterize its electrical properties, especially the return loss parameter. The comparison of S11 profiles of all UWB sensor elements is discussed. The constructed UWB sensor is well verified using HFSS programming, CST programming, and experimental measurement. Numerically, both HFSS and CST confirmed the potential operation bandwidth of UWB sensor is more or less 4.5 GHz. However, the measured bandwidth provided is about 1.2 GHz due to the technical difficulties existed during the manufacturing step. The configuration of UWB microwave sensing and monitoring system implemented consists of 12 element UWB printed sensors, vector network analyzer (VNA) to perform as the transceiver and signal processing part, the PC Desktop/Laptop acting as the image processing and displaying unit. In practice, all the reflected power collected from whole surface of artificial breast model are grouped into several numbers of pixel color classes positioned on the corresponding row and column (pixel number). The total number of power pixels applied in 2D-imaging process was specified to 100 pixels (or the power distribution pixels dimension 10x10). This was determined by considering the total area of breast phantom of average Asian women breast size and synchronizing with the single UWB sensor physical dimension. The interesting microwave imaging results were plotted and together with some technical problems arisen on developing the breast sensing and monitoring system are examined in the paper.

Keywords: UWB sensor, UWB microwave imaging, spherical array, breast cancer monitoring, 2D-medical imaging

Procedia PDF Downloads 194
2690 Estimation of the Dynamic Fragility of Padre Jacinto Zamora Bridge Due to Traffic Loads

Authors: Kimuel Suyat, Francis Aldrine Uy, John Paul Carreon

Abstract:

The Philippines, composed of many islands, is connected with approximately 8030 bridges. Continuous evaluation of the structural condition of these bridges is needed to safeguard the safety of the general public. With most bridges reaching its design life, retrofitting and replacement may be needed. Concerned government agencies allocate huge costs for periodic monitoring and maintenance of these structures. The rising volume of traffic and aging of these infrastructures is challenging structural engineers to give rise for structural health monitoring techniques. Numerous techniques are already proposed and some are now being employed in other countries. Vibration Analysis is one way. The natural frequency and vibration of a bridge are design criteria in ensuring the stability, safety and economy of the structure. Its natural frequency must not be so high so as not to cause discomfort and not so low that the structure is so stiff causing it to be both costly and heavy. It is well known that the stiffer the member is, the more load it attracts. The frequency must not also match the vibration caused by the traffic loads. If this happens, a resonance occurs. Vibration that matches a systems frequency will generate excitation and when this exceeds the member’s limit, a structural failure will happen. This study presents a method for calculating dynamic fragility through the use of vibration-based monitoring system. Dynamic fragility is the probability that a structural system exceeds a limit state when subjected to dynamic loads. The bridge is modeled in SAP2000 based from the available construction drawings provided by the Department of Public Works and Highways. It was verified and adjusted based from the actual condition of the bridge. The bridge design specifications are also checked using nondestructive tests. The approach used in this method properly accounts the uncertainty of observed values and code-based structural assumptions. The vibration response of the structure due to actual loads is monitored using installed sensors on the bridge. From the determinacy of these dynamic characteristic of a system, threshold criteria can be established and fragility curves can be estimated. This study conducted in relation with the research project between Department of Science and Technology, Mapúa Institute of Technology, and the Department of Public Works and Highways also known as Mapúa-DOST Smart Bridge Project deploys Structural Health Monitoring Sensors at Zamora Bridge. The bridge is selected in coordination with the Department of Public Works and Highways. The structural plans for the bridge are also readily available.

Keywords: structural health monitoring, dynamic characteristic, threshold criteria, traffic loads

Procedia PDF Downloads 270
2689 An Industrial Wastewater Management Using Cloud Based IoT System

Authors: Kaarthik K., Harshini S., Karthika M., Kripanandhini T.

Abstract:

Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives.

Keywords: sensors, pH, CO₂, temperature, turbidity

Procedia PDF Downloads 110
2688 Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega 'Sabrang': A Case Study in Klaten, Indonesia

Authors: Chairul Fajar, Muhammad Nur Hidayat, Muksalmina

Abstract:

The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure.

Keywords: over dimension over loading, prototype, microcontroller, Arduino, normality test, paired t-test

Procedia PDF Downloads 34
2687 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel

Authors: F. M. Pisano, M. Ciminello

Abstract:

Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.

Keywords: interactive dashboards, optical fibers, structural health monitoring, visual analytics

Procedia PDF Downloads 124
2686 Using the Timepix Detector at CERN Accelerator Facilities

Authors: Andrii Natochii

Abstract:

The UA9 collaboration in the last two years has installed two different types of detectors to investigate the channeling effect in the bent silicon crystals with high-energy particles beam on the CERN accelerator facilities: Cherenkov detector CpFM and silicon pixel detector Timepix. In the current work, we describe the main performances of the Timepix detector operation at the SPS and H8 extracted beamline at CERN. We are presenting some detector calibration results and tuning. Our research topics also cover a cluster analysis algorithm for the particle hits reconstruction. We describe the optimal acquisition setup for the Timepix device and the edges of its functionality for the high energy and flux beam monitoring. The measurements of the crystal parameters are very important for the future bent crystal applications and needs a track reconstruction apparatus. Thus, it was decided to construct a short range (1.2 m long) particle telescope based on the Timepix sensors and test it at H8 SPS extraction beamline. The obtained results will be shown as well.

Keywords: beam monitoring, channeling, particle tracking, Timepix detector

Procedia PDF Downloads 180
2685 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 277
2684 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 248
2683 Using Wearable Technology to Monitor Workers’ Stress for Construction Safety: A Conceptual Framework

Authors: Namhun Lee, Seong Jin Kim

Abstract:

The construction industry represents one of the largest industries in the United States, yet it continues to face several occupational health and safety challenges. Many workers on construction sites are suffering from extended exposure to stressful situations such as poor and hazardous work environments and task complexity. Stress can be commonly defined as a feeling of emotional or physical tension, which can easily impact construction safety and result in a higher rate of job-related injuries in the construction industry. Physiological signals transmitted from wearable biosensors can be used to detect excessive stress. Therefore, workers’ stress should be detected and mitigated to prevent any type of serious incident or accident proactively. By doing this, construction productivity, as well as job satisfaction, would also be improved in the construction industry. To establish a foundation in this field of research, a conceptual framework for using wearable technology for construction safety has been developed for continuous and automatic monitoring of worker’s stress. The conceptual framework will serve as a foothold in future studies on the application of wearable technology for construction safety.

Keywords: construction safety, occupational stress, stress monitoring, wearable biosensors

Procedia PDF Downloads 161
2682 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System

Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan

Abstract:

Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.

Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle

Procedia PDF Downloads 294