Search results for: elastic net regression
3568 Factors Affecting Green Consumption Behaviors of the Urban Residents in Hanoi, Vietnam
Authors: Phan Thi Song Thuong
Abstract:
This paper uses data from a survey on the green consumption behavior of Hanoi residents in October 2022. Data was gathered from a survey conducted in ten districts in the center of Hanoi, with 393 respondents. The hypothesis focuses on understanding the factors that may affect green consumption behavior, such as demographic characteristics, concerns about the environment and health, people living around, self-efficiency, and mass media. A number of methods, such as the T-test, exploratory factor analysis, and a linear regression model, are used to prove the hypotheses. Accordingly, the results show that gender, age, and education level have separate effects on the green consumption behavior of respondents.Keywords: green consumption, urban residents, environment, sustainable, linear regression
Procedia PDF Downloads 1313567 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK
Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi
Abstract:
This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.Keywords: cement admixtures, soft soil stabilisation, geotechnical parameters, multi-regression model
Procedia PDF Downloads 3663566 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model
Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura
Abstract:
This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.Keywords: Malawi rainfall, forecast model, predictors, SST
Procedia PDF Downloads 3913565 Employee Aggression, Labeling and Emotional Intelligence
Authors: Martin Popescu D. Dana Maria
Abstract:
The aims of this research are to broaden the study on the relationship between emotional intelligence and counterproductive work behavior (CWB). The study sample consisted in 441 Romanian employees from companies all over the country. Data has been collected through web surveys and processed with SPSS. The results indicated an average correlation between the two constructs and their sub variables, employees with a high level of emotional intelligence tend to be less aggressive. In addition, labeling was considered an individual difference which has the power to influence the level of employee aggression. A regression model was used to underline the importance of emotional intelligence together with labeling as predictors of CWB. Results have shown that this regression model enforces the assumption that labeling and emotional intelligence, taken together, predict CWB. Employees, who label themselves as victims and have a low degree of emotional intelligence, have a higher level of CWB.Keywords: aggression, CWB, emotional intelligence, labeling
Procedia PDF Downloads 4733564 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3933563 Modelling Agricultural Commodity Price Volatility with Markov-Switching Regression, Single Regime GARCH and Markov-Switching GARCH Models: Empirical Evidence from South Africa
Authors: Yegnanew A. Shiferaw
Abstract:
Background: commodity price volatility originating from excessive commodity price fluctuation has been a global problem especially after the recent financial crises. Volatility is a measure of risk or uncertainty in financial analysis. It plays a vital role in risk management, portfolio management, and pricing equity. Objectives: the core objective of this paper is to examine the relationship between the prices of agricultural commodities with oil price, gas price, coal price and exchange rate (USD/Rand). In addition, the paper tries to fit an appropriate model that best describes the log return price volatility and estimate Value-at-Risk and expected shortfall. Data and methods: the data used in this study are the daily returns of agricultural commodity prices from 02 January 2007 to 31st October 2016. The data sets consists of the daily returns of agricultural commodity prices namely: white maize, yellow maize, wheat, sunflower, soya, corn, and sorghum. The paper applies the three-state Markov-switching (MS) regression, the standard single-regime GARCH and the two regime Markov-switching GARCH (MS-GARCH) models. Results: to choose the best fit model, the log-likelihood function, Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance information criterion (DIC) are employed under three distributions for innovations. The results indicate that: (i) the price of agricultural commodities was found to be significantly associated with the price of coal, price of natural gas, price of oil and exchange rate, (ii) for all agricultural commodities except sunflower, k=3 had higher log-likelihood values and lower AIC and BIC values. Thus, the three-state MS regression model outperformed the two-state MS regression model (iii) MS-GARCH(1,1) with generalized error distribution (ged) innovation performs best for white maize and yellow maize; MS-GARCH(1,1) with student-t distribution (std) innovation performs better for sorghum; MS-gjrGARCH(1,1) with ged innovation performs better for wheat, sunflower and soya and MS-GARCH(1,1) with std innovation performs better for corn. In conclusion, this paper provided a practical guide for modelling agricultural commodity prices by MS regression and MS-GARCH processes. This paper can be good as a reference when facing modelling agricultural commodity price problems.Keywords: commodity prices, MS-GARCH model, MS regression model, South Africa, volatility
Procedia PDF Downloads 2043562 Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions
Authors: D. Chronopoulos, I. Antoniadis, V. Spitas, D. Koulocheris, V. Polenta
Abstract:
A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased.Keywords: wave propagation, periodic structures, wave damping, mechanical engineering
Procedia PDF Downloads 3573561 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals
Authors: Bharatendra Rai
Abstract:
Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.Keywords: degradation signal, drill-bit breakage, random forest, multinomial logistic regression
Procedia PDF Downloads 3533560 Investigating the Minimum RVE Size to Simulate Poly (Propylene carbonate) Composites Reinforced with Cellulose Nanocrystals as a Bio-Nanocomposite
Authors: Hamed Nazeri, Pierre Mertiny, Yongsheng Ma, Kajsa Duke
Abstract:
The background of the present study is the use of environment-friendly biopolymer and biocomposite materials. Among the recently introduced biopolymers, poly (propylene carbonate) (PPC) has been gaining attention. This study focuses on the size of representative volume elements (RVE) in order to simulate PPC composites reinforced by cellulose nanocrystals (CNCs) as a bio-nanocomposite. Before manufacturing nanocomposites, numerical modeling should be implemented to explore and predict mechanical properties, which may be accomplished by creating and studying a suitable RVE. In other studies, modeling of composites with rod shaped fillers has been reported assuming that fillers are unidirectionally aligned. But, modeling of non-aligned filler dispersions is considerably more difficult. This study investigates the minimum RVE size to enable subsequent FEA modeling. The matrix and nano-fillers were modeled using the finite element software ABAQUS, assuming randomly dispersed fillers with a filler mass fraction of 1.5%. To simulate filler dispersion, a Monte Carlo technique was employed. The numerical simulation was implemented to find composite elastic moduli. After commencing the simulation with a single filler particle, the number of particles was increased to assess the minimum number of filler particles that satisfies the requirements for an RVE, providing the composite elastic modulus in a reliable fashion.Keywords: biocomposite, Monte Carlo method, nanocomposite, representative volume element
Procedia PDF Downloads 4443559 A Study on Reliability of Gender and Stature Determination by Odontometric and Craniofacial Anthropometric Parameters
Authors: Churamani Pokhrel, C. B. Jha, S. R. Niraula, P. R. Pokharel
Abstract:
Human identification is one of the most challenging subjects that man has confronted. The determination of adult sex and stature are two of the four key factors (sex, stature, age, and race) in identification of an individual. Craniofacial and odontometric parameters are important tools for forensic anthropologists when it is not possible to apply advanced techniques for identification purposes. The present study provides anthropometric correlation of the parameters with stature and gender and also devises regression formulae for reconstruction of stature. A total of 312 Nepalese students with equal distribution of sex i.e., 156 male and 156 female students of age 18-35 years were taken for the study. Total of 10 parameters were measured (age, sex, stature, head circumference, head length, head breadth, facial height, bi-zygomatic width, mesio-distal canine width and inter-canine distance of both maxilla and mandible). Co-relation and regression analysis was done to find the association between the parameters. All parameters were found to be greater in males than females and each was found to be statistically significant. Out of total 312 samples, the best regressor for the determination of stature was head circumference and mandibular inter-canine width and that for gender was head circumference and right mandibular teeth. The accuracy of prediction was 83%. Regression equations and analysis generated from craniofacial and odontometric parameters can be a supplementary approach for the estimation of stature and gender when extremities are not available.Keywords: craniofacial, gender, odontometric, stature
Procedia PDF Downloads 1923558 Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher.Keywords: deep foundations, slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), non-cohesive soil
Procedia PDF Downloads 3003557 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation
Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling
Abstract:
The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling
Procedia PDF Downloads 3413556 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network
Authors: Jui-Chen Huang, Shou-Hsiung Cheng
Abstract:
This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.Keywords: fall, fuzzy neural network, health belief model, telecare, willingness
Procedia PDF Downloads 2023555 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors
Authors: Katawut Kaewbanjong
Abstract:
We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.Keywords: prediction model, statistical analysis, software project, user satisfaction factor
Procedia PDF Downloads 1243554 The Effect of Peer Pressure and Leisure Boredom on Substance Use Among Adolescents in Low-Income Communities in Capetown
Authors: Gaironeesa Hendricks, Shazly Savahl, Maria Florence
Abstract:
The aim of the study is to determine whether peer pressure and leisure boredom influence substance use among adolescents in low-income communities in Cape Town. Non-probability sampling was used to select 296 adolescents between the ages of 16–18 from schools located in two low-income communities. The measurement tools included the Drug Use Disorders Identification Test, the Resistance to Peer Influence and Leisure Boredom Scales. Multiple regression revealed that the combined influence of peer pressure and leisure boredom predicted substance use, while peer pressure emerged as a stronger predictor than leisure boredom on substance use among adolescents.Keywords: substance use, peer pressure, leisure boredom, adolescents, multiple regression
Procedia PDF Downloads 5993553 Understanding the Effect of Fall Armyworm and Integrated Pest Management Practices on the Farm Productivity and Food Security in Malawi
Authors: Innocent Pangapanga, Eric Mungatana
Abstract:
Fall armyworm (FAW) (Spodoptera frugiperda), an invasive lepidopteran pest, has caused substantial yield loss since its first detection in September 2016, thereby threatening the farm productivity food security and poverty reduction initiatives in Malawi. Several stakeholders, including households, have adopted chemical pesticides to control FAW without accounting for its costs on welfare, health and the environment. Thus, this study has used panel data endogenous switching regression model to investigate the impact of FAW and the integrated pest management (IPM) –related practices on-farm productivity and food security. The study finds that FAW substantively reduces farm productivity by seven (7) percent and influences the adoption of IPM –related practices, namely, intercropping, mulching, and agroforestry, by 6 percent, ceteris paribus. Interestingly, multiple adoptions of the IPM -related practices noticeably increase farm productivity by 21 percent. After accounting for potential endogeneity through the endogenous switching regression model, the IPM practices further demonstrate tenfold more improvement on food security, implying the role of the IPM –related practices in containing the effect of FAW at the household level.Keywords: hunger, invasive fall army worms, integrated pest management practices, farm productivity, endogenous switching regression
Procedia PDF Downloads 1383552 From Liquid to Solid: Advanced Characterization of Glass Applying Oscillatory Rheometry
Authors: Christopher Giehl, Anja Allabar, Daniela Ehgartner
Abstract:
Rotational rheometry is standard practice for the viscosity measurement of molten glass, neglecting the viscoelastic properties of this material, especially at temperatures approaching the glass transition. Oscillatory rheometry serves as a powerful toolbox for glass melt characterization beyond viscosity measurements. Heating and cooling rates and the time-dependent visco-elastic behavior influence the temperature where materials undergo the glass transition. This study presents quantitative thermo-mechanical visco-elasticity measurements on three samples in the Na-K-Al-Si-O system. The measurements were performed with a Furnace Rheometer System combined with an air-bearing DSR 502 measuring head (Anton Paar) and a Pt90Rh10 measuring geometry. Temperature ramps were conducted in rotation and oscillation, and the (complex) viscosity values were compared to calculated viscosity values based on sample composition. Furthermore, temperature ramps with different frequencies were conducted, also revealing the frequency-dependence of the shear loss modulus G’’ and the shear storage modulus G’. Here, lower oscillatory frequency results in lower glass transition temperature, as defined by the G’-G’’ crossover point. This contribution demonstrates that oscillatory rheometry serves as a powerful toolbox beyond viscosity measurements, as it considers the visco-elasticity of glass melts quantifying viscous and elastic moduli. Further, it offers a strong definition of Tg beyond the 10^12 Pas concept, which cannot be utilized with rotational viscometry data.Keywords: frequency dependent glass transition, Na-K-Al-Si-O glass melts, oscillatory rheometry, visco-elasticity
Procedia PDF Downloads 1083551 Dynamic Simulation of Disintegration of Wood Chips Caused by Impact and Collisions during the Steam Explosion Pre-Treatment
Authors: Muhammad Muzamal, Anders Rasmuson
Abstract:
Wood material is extensively considered as a raw material for the production of bio-polymers, bio-fuels and value-added chemicals. However, the shortcoming in using wood as raw material is that the enzymatic hydrolysis of wood material is difficult because the accessibility of enzymes to hemicelluloses and cellulose is hindered by complex chemical and physical structure of the wood. The steam explosion (SE) pre-treatment improves the digestion of wood material by creating both chemical and physical modifications in wood. In this process, first, wood chips are treated with steam at high pressure and temperature for a certain time in a steam treatment vessel. During this time, the chemical linkages between lignin and polysaccharides are cleaved and stiffness of material decreases. Then the steam discharge valve is rapidly opened and the steam and wood chips exit the vessel at very high speed. These fast moving wood chips collide with each other and with walls of the equipment and disintegrate to small pieces. More damaged and disintegrated wood have larger surface area and increased accessibility to hemicelluloses and cellulose. The energy required for an increase in specific surface area by same value is 70 % more in conventional mechanical technique, i.e. attrition mill as compared to steam explosion process. The mechanism of wood disintegration during the SE pre-treatment is very little studied. In this study, we have simulated collision and impact of wood chips (dimension 20 mm x 20 mm x 4 mm) with each other and with walls of the vessel. The wood chips are simulated as a 3D orthotropic material. Damage and fracture in the wood material have been modelled using 3D Hashin’s damage model. This has been accomplished by developing a user-defined subroutine and implementing it in the FE software ABAQUS. The elastic and strength properties used for simulation are of spruce wood at 12% and 30 % moisture content and at 20 and 160 OC because the impacted wood chips are pre-treated with steam at high temperature and pressure. We have simulated several cases to study the effects of elastic and strength properties of wood, velocity of moving chip and orientation of wood chip at the time of impact on the damage in the wood chips. The disintegration patterns captured by simulations are very similar to those observed in experimentally obtained steam exploded wood. Simulation results show that the wood chips moving with higher velocity disintegrate more. Moisture contents and temperature decreases elastic properties and increases damage. Impact and collision in specific directions cause easy disintegration. This model can be used to efficiently design the steam explosion equipment.Keywords: dynamic simulation, disintegration of wood, impact, steam explosion pretreatment
Procedia PDF Downloads 4013550 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops
Procedia PDF Downloads 2823549 Reliability of Using Standard Penetration Test (SPT) in Evaluation of Soil Properties
Authors: Hossein Alimohammadi, Mohsen Amirmojahedi, Mehrdad Rowhani
Abstract:
Soil properties are used by geotechnical engineers to evaluate and analyze site conditions for designing purposes. Although basic soil classification tests are easy to perform and provide useful information to determine the properties of soils, it may take time to get the result and add some costs to the projects. Standard Penetration Test (SPT) provides an opportunity to evaluate soil parameters without performing laboratory tests. In addition to its simplicity and cheapness, the results become available immediately. This research provides a guideline on the application of the SPT test method, reliability of adapting the SPT test results in evaluating soil physical and mechanical properties such as Atterberg limits, shear strength, and compressive strength compressibility parameters. A total of 70 boreholes were investigated in this study by taking soil samples between depths of 1.2 to 15.25 meters. The project site was located in Morrow County, Ohio. A regression-based formula was proposed based on Tobit regression with a stepwise variable selection analysis conducted between SPT and other typical soil properties obtained from soil tests. The results of the research illustrated that the shear strength and physical properties of the soil affect the SPT number. The proposed correlation can help engineers to use SPT test results in their design with higher accuracy.Keywords: standard penetration test, soil properties, soil classification, regression method
Procedia PDF Downloads 1893548 Impact of Grade Sensitivity on Learning Motivation and Academic Performance
Authors: Salwa Aftab, Sehrish Riaz
Abstract:
The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.Keywords: academic performance, correlation, grade sensitivity, learning motivation, regression
Procedia PDF Downloads 4013547 The Effects of a Mathematics Remedial Program on Mathematics Success and Achievement among Beginning Mathematics Major Students: A Regression Discontinuity Analysis
Authors: Kuixi Du, Thomas J. Lipscomb
Abstract:
The proficiency in Mathematics skills is fundamental to success in the STEM disciplines. In the US, beginning college students who are placed in remedial/developmental Mathematics courses frequently struggle to achieve academic success. Therefore, Mathematics remediation in college has become an important concern, and providing Mathematics remediation is a prevalent way to help the students who may not be fully prepared for college-level courses. Programs vary, however, and the effectiveness of a particular remedial Mathematics program must be empirically demonstrated. The purpose of this study was to apply the sharp regression discontinuity (RD) technique to determine the effectiveness of the Jack Leaps Summer (JLS) Mathematic remediation program in supporting improved Mathematics learning outcomes among newly admitted Mathematics students in the South Dakota State University. The researchers studied the newly admitted Fall 2019 cohort of Mathematics majors (n=423). The results indicated that students whose pretest score was lower than the cut-off point and who were assigned to the JLS program experienced significantly higher scores on the post-test (Math 101 final score). Based on these results, there is evidence that the JLS program is effective in meeting its primary objective.Keywords: causal inference, mathematisc remedial program evaluation, quasi-experimental research design, regression discontinuity design, cohort studies
Procedia PDF Downloads 973546 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 4373545 How Do Crisis Affect Economic Policy?
Authors: Eva Kotlánová
Abstract:
After recession that began in 2007 in the United States and subsequently spilled over the Europe we could expect recovery of economic growth. According to the last estimation of economic progress of European countries, this recovery is not strong enough. Among others, it will depend on economic policy, where and in which way, the economic indicators will proceed. Economic theories postulate that the economic subjects prefer stably, continual economic policy without repeated and strong fluctuations. This policy is perceived as support of economic growth. Mostly in crises period, when the government must cope with consequences of recession, the economic policy becomes unpredictable for many subjects and economic policy uncertainty grows, which have negative influence on economic growth. The aim of this paper is to use panel regression to prove or disprove this hypothesis on the example of five largest European economies in the period 2008–2012.Keywords: economic crises in Europe, economic policy, uncertainty, panel analysis regression
Procedia PDF Downloads 3873544 Age Estimation from Upper Anterior Teeth by Pulp/Tooth Ratio Using Peri-Apical X-Rays among Egyptians
Authors: Fatma Mohamed Magdy Badr El Dine, Amr Mohamed Abd Allah
Abstract:
Introduction: Age estimation of individuals is one of the crucial steps in forensic practice. Different traditional methods rely on the length of the diaphysis of long bones of limbs, epiphyseal-diaphyseal union, fusion of the primary ossification centers as well as dental eruption. However, there is a growing need for the development of precise and reliable methods to estimate age, especially in cases where dismembered corpses, burnt bodies, purified or fragmented parts are recovered. Teeth are the hardest and indestructible structure in the human body. In recent years, assessment of pulp/tooth area ratio, as an indirect quantification of secondary dentine deposition has received a considerable attention. However, scanty work has been done in Egypt in terms of applicability of pulp/tooth ratio for age estimation. Aim of the Work: The present work was designed to assess the Cameriere’s method for age estimation from pulp/tooth ratio of maxillary canines, central and lateral incisors among a sample from Egyptian population. In addition, to formulate regression equations to be used as population-based standards for age determination. Material and Methods: The present study was conducted on 270 peri-apical X-rays of maxillary canines, central and lateral incisors (collected from 131 males and 139 females aged between 19 and 52 years). The pulp and tooth areas were measured using the Adobe Photoshop software program and the pulp/tooth area ratio was computed. Linear regression equations were determined separately for canines, central and lateral incisors. Results: A significant correlation was recorded between the pulp/tooth area ratio and the chronological age. The linear regression analysis revealed a coefficient of determination (R² = 0.824 for canine, 0.588 for central incisor and 0.737 for lateral incisor teeth). Three regression equations were derived. Conclusion: As a conclusion, the pulp/tooth ratio is a useful technique for estimating age among Egyptians. Additionally, the regression equation derived from canines gave better result than the incisors.Keywords: age determination, canines, central incisors, Egypt, lateral incisors, pulp/tooth ratio
Procedia PDF Downloads 1843543 Dietary Patterns and Hearing Loss in Older People
Authors: N. E. Gallagher, C. E. Neville, N. Lyner, J. Yarnell, C. C. Patterson, J. E. Gallacher, Y. Ben-Shlomo, A. Fehily, J. V. Woodside
Abstract:
Hearing loss is highly prevalent in older people and can reduce quality of life substantially. Emerging research suggests that potentially modifiable risk factors, including risk factors previously related to cardiovascular disease risk, may be associated with a decreased or increased incidence of hearing loss. This has prompted investigation into the possibility that certain nutrients, foods or dietary patterns may also be associated with incidence of hearing loss. The aim of this study was to determine any associations between dietary patterns and hearing loss in men enrolled in the Caerphilly study. The Caerphilly prospective cohort study began in 1979-1983 with recruitment of 2512 men aged 45-59 years. Dietary data was collected using a self-administered, semi-quantitative, 56-item food frequency questionnaire (FFQ) at baseline (1979-1983), and 7-day weighed food intake (WI) in a 30% sub-sample, while pure-tone unaided audiometric threshold was assessed at 0.5, 1, 2 and 4 kHz, between 1984 and 1988. Principal components analysis (PCA) was carried out to determine a posteriori dietary patterns and multivariate linear and logistic regression models were used to examine associations with hearing level (pure tone average (PTA) of frequencies 0.5, 1, 2 and 4 kHz in decibels (dB)) for linear regression and with hearing loss (PTA>25dB) for logistic regression. Three dietary patterns were determined using PCA on the FFQ data- Traditional, Healthy, High sugar/Alcohol avoider. After adjustment for potential confounding factors, both linear and logistic regression analyses showed a significant and inverse association between the Healthy pattern and hearing loss (P<0.001) and linear regression analysis showed a significant association between the High sugar/Alcohol avoider pattern and hearing loss (P=0.04). Three similar dietary patterns were determined using PCA on the WI data- Traditional, Healthy, High sugar/Alcohol avoider. After adjustment for potential confounding factors, logistic regression analyses showed a significant and inverse association between the Healthy pattern and hearing loss (P=0.02) and a significant association between the Traditional pattern and hearing loss (P=0.04). A Healthy dietary pattern was found to be significantly inversely associated with hearing loss in middle-aged men in the Caerphilly study. Furthermore, a High sugar/Alcohol avoider pattern (FFQ) and a Traditional pattern (WI) were associated with poorer hearing levels. Consequently, the role of dietary factors in hearing loss remains to be fully established and warrants further investigation.Keywords: ageing, diet, dietary patterns, hearing loss
Procedia PDF Downloads 2313542 A Study of Anthropometric Correlation between Upper and Lower Limb Dimensions in Sudanese Population
Authors: Altayeb Abdalla Ahmed
Abstract:
Skeletal phenotype is a product of a balanced interaction between genetics and environmental factors throughout different life stages. Therefore, interlimb proportions are variable between populations. Although interlimb proportion indices have been used in anthropology in assessing the influence of various environmental factors on limbs, an extensive literature review revealed that there is a paucity of published research assessing interlimb part correlations and possibility of reconstruction. Hence, this study aims to assess the relationships between upper and lower limb parts and develop regression formulae to reconstruct the parts from one another. The left upper arm length, ulnar length, wrist breadth, hand length, hand breadth, tibial length, bimalleolar breadth, foot length, and foot breadth of 376 right-handed subjects, comprising 187 males and 189 females (aged 25-35 years), were measured. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then sex-specific simple and multiple linear regression models were used to estimate upper limb parts from lower limb parts and vice-versa. The results of this study indicated significant sexual dimorphism for all variables. The results indicated a significant correlation between the upper and lower limbs parts (p < 0.01). Linear and multiple (stepwise) regression equations were developed to reconstruct the limb parts in the presence of a single or multiple dimension(s) from the other limb. Multiple stepwise regression equations generated better reconstructions than simple equations. These results are significant in forensics as it can aid in identification of multiple isolated limb parts particularly during mass disasters and criminal dismemberment. Although a DNA analysis is the most reliable tool for identification, its usage has multiple limitations in undeveloped countries, e.g., cost, facility availability, and trained personnel. Furthermore, it has important implication in plastic and orthopedic reconstructive surgeries. This study is the only reported study assessing the correlation and prediction capabilities between many of the upper and lower dimensions. The present study demonstrates a significant correlation between the interlimb parts in both sexes, which indicates a possibility to reconstruction using regression equations.Keywords: anthropometry, correlation, limb, Sudanese
Procedia PDF Downloads 2953541 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 1573540 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach
Authors: Sanchali Das, Swapan Debbarma
Abstract:
Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.Keywords: Christian Kokborok song, mood classification, music information retrieval, regression
Procedia PDF Downloads 2223539 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression
Authors: Issam Aouari, Abdelmalek Abdelhamid
Abstract:
For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.Keywords: duration, earthquake, prediction, regression, soft soil
Procedia PDF Downloads 153