Search results for: advanced%20process%20control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2166

Search results for: advanced%20process%20control

1686 Exploring Unexplored Horizons: Innovative Applications of Applied Fluid Mechanics in Sustainable Energy

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper delves into the uncharted territories of innovative applications of applied fluid mechanics in sustainable energy. By exploring the intersection of fluid mechanics principles with renewable energy technologies, the study uncovers untapped potential and novel solutions. Through theoretical analyses, the research investigates how fluid dynamics can be strategically leveraged to enhance the efficiency and sustainability of renewable energy systems. The findings contribute to expanding the discourse on sustainable energy by presenting innovative perspectives and practical insights. This paper serves as a guide for future research endeavors and offers valuable insights for implementing advanced methodologies and technologies to address global energy challenges.

Keywords: fluid mechanics, sustainable energy, sustainble practices, renewable energy

Procedia PDF Downloads 29
1685 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception

Authors: Gabriel Ugalahi, Dominic S. Nyitamen

Abstract:

This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.

Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)

Procedia PDF Downloads 197
1684 (Re)Processing of ND-Fe-B Permanent Magnets Using Electrochemical and Physical Approaches

Authors: Kristina Zuzek, Xuan Xu, Awais Ikram, Richard Sheridan, Allan Walton, Saso Sturm

Abstract:

Recycling of end-of-life REEs based Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the well-documented supply risks related to the REEs. However, challenges on their reprocessing still remain. We report on the possibility of direct electrochemical recycling and reprocessing of Nd-Fe(B)-based magnets. In this investigation, we were able first to electrochemically leach the end-of-life NdFeB magnet and to electrodeposit Nd–Fe using a 1-ethyl-3-methyl imidazolium dicyanamide ([EMIM][DCA]) ionic liquid-based electrolyte. We observed that Nd(III) could not be reduced independently. However, it can be co-deposited on a substrate with the addition of Fe(II). Using advanced TEM techniques of electron-energy-loss spectroscopy (EELS) it was shown that Nd(III) is reduced to Nd(0) during the electrodeposition process. This gave a new insight into determining the Nd oxidation state, as X-ray photoelectron spectroscopy (XPS) has certain limitations. This is because the binding energies of metallic Nd (Nd0) and neodymium oxide (Nd₂O₃) are very close, i. e., 980.5-981.5 eV and 981.7-982.3 eV, respectively, making it almost impossible to differentiate between the two states. These new insights into the electrodeposition process represent an important step closer to efficient recycling of rare piles of earth in metallic form at mild temperatures, thus providing an alternative to high-temperature molten-salt electrolysis and a step closer to deposit Nd-Fe-based magnetic materials. Further, we propose a new concept of recycling the sintered Nd-Fe-B magnets by direct recovering the 2:14:1 matrix phase. Via an electrochemical etching method, we are able to recover pure individual 2:14:1 grains that can be re-used for new types of magnet production. In the frame of physical reprocessing, we have successfully synthesized new magnets out of hydrogen (HDDR)-recycled stocks with a contemporary technique of pulsed electric current sintering (PECS). The optimal PECS conditions yielded fully dense Nd-Fe-B magnets with the coercivity Hc = 1060 kA/m, which was boosted to 1160 kA/m after the post-PECS thermal treatment. The Br and Hc were tackled further and increased applied pressures of 100 – 150 MPa resulted in Br = 1.01 T. We showed that with a fine tune of the PECS and post-annealing it is possible to revitalize the Nd-Fe-B end-of-life magnets. By applying advanced TEM, i.e. atomic-scale Z-contrast STEM combined with EDXS and EELS, the resulting magnetic properties were critically assessed against various types of structural and compositional discontinuities down to atomic-scale, which we believe control the microstructure evolution during the PECS processing route.

Keywords: electrochemistry, Nd-Fe-B, pulsed electric current sintering, recycling, reprocessing

Procedia PDF Downloads 137
1683 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 283
1682 Advanced Simulation of Power Consumption of Electric Vehicles

Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo

Abstract:

Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.

Keywords: electric vehicles, EV, power consumption, power management, simulation

Procedia PDF Downloads 489
1681 Role of Power Electronics in Grid Integration of Renewable Energy Systems

Authors: M. N. Tandjaoui, C. Banoudjafar, C. Benachaiba, O. Abdelkhalek, A. Kechich

Abstract:

Advanced power electronic systems are deemed to be an integral part of renewable, green, and efficient energy systems. Wind energy is one of the renewable means of electricity generation that is now the world’s fastest growing energy source can bring new challenges when it is connected to the power grid due to the fluctuation nature of the wind and the comparatively new types of its generators. The wind energy is part of the worldwide discussion on the future of energy generation and use and consequent effects on the environment. However, this paper will introduce some of the requirements and aspects of the power electronic involved with modern wind generation systems, including modern power electronics and converters, and the issues of integrating wind turbines into power systems.

Keywords: power electronics, renewable energy, smart grid, green energy, power technology

Procedia PDF Downloads 629
1680 Agriculture and Forests: A Perception of Farmers on Sustainable Agro-Ecological Practices

Authors: Kever Gomes, Rosana Martins

Abstract:

The use of environmental indicators is today an important strategy for analyzing the sustainability of agricultural systems. Despite of the considerable importance of family agriculture for Brazilian economy, sustainable agricultural practices are still weakly known, and the known ones, underused. Currently, economic aspects of the relationship between man and nature lead to the destruction of natural ecosystems, which justifies the urgent need for dissemination and usage of new sustainable production techniques. The study shows the agro-social and social-cultural trajectory of the farmers and hypothesis are advanced on what would imply the adoption of agroforestry systems in family agriculture. This study aimed to investigate aspects related to the perception of sustainable agriculture, especially on agroforestry systems in farms of farmers from Distrito Federal-Brazil. Agro-social characteristics of farmers were systematized considering their perceptions about agroforestry systems for the preparation of proposal for a program of Environmental Services Payment, intended for families who are involved in the various activities of home gardens. This study used qualitative methodological approaches of quantitative research, using descriptive exploratory research. To get the necessary elements for the intended analysis, interviews were conducted at 40 heads of households of which 15 were men and 25 women. The results were analyzed using descriptive statistics, having been considered in the analysis the frequency, consistency, coherence and originality of responses. It was found that the lack of financial resources and lack of technical assistance are limiting factors for the dissemination and use of sustainable agricultural practices. Considering the great number of species found for the main categories of use, it can be inferred that the home gardens play important functions for the interviewed families, contributing for the food and medicine production destined for the consumption by the families themselves, and also playing an important esthetic function thanks to the variety of their ornamental plants. The wealth of these home gardens may be related to the rural origin and to the culture of the owners, who still keep a cultivation tradition. It was found that the products obtained from the home gardens contributed for the diet’s variety of the informants, representing a promising potential for the improvement of the population alimentation. The study reached the conclusion over the need to motivate the interest of these farmers to seek information and resources to enable the implementation of Agroforestry projects, including the recovery of areas in their properties, even those distinct from their backyards. The study shows the agro-social and social-cultural trajectory of the farmers and hypothesis are advanced on what would imply the adoption of agroforestry systems in family agriculture.

Keywords: agro-biodiversity, natural conservation, silviculture, urban agriculture

Procedia PDF Downloads 179
1679 Safety-Security Co-Engineering of Control Systems

Authors: Elena A. Troubitsyna

Abstract:

Designers of modern safety-critical control systems are increasingly relying on networking to provide the systems with advanced functionality and satisfy customer’s needs. However, networking nature of modern control systems also brings new technological challenges associated with ensuring system safety in the presence of openness and hence, potential security threats. In this paper, we propose a methodology that relies on systems-theoretic analysis to enable an integrated analysis of safety and security requirements of controlling software. We demonstrate how to create a safety case – a structured argument about system safety – with explicit representation of both safety and security goals. Our approach provides the designers with a systematic approach to analysing safety and security interdependencies while designing safety-critical control systems.

Keywords: controlling software, integrated analysis, security, safety-security co-engineering

Procedia PDF Downloads 476
1678 Mechanic and Thermal Analysis on an 83 kW Electric Motorcycle: A First-Principles Study

Authors: Martín Felipe García Romero, Nancy Mondragón Escamilla, Ismael Araujo Vargas, Viviana Basurto Rios, Kevin Cano Pulido, Pedro Enrique Velázquez Elisondo

Abstract:

This paper presents a preliminary prototype of an 83 kW all-electric motorbike since, nowadays, electric motorbikes have advanced drastically in their technology in such a way that lately, there has been a boom in the field of competition of medium power electric vehicles. The field of electric vehicle racing mainly pursues the aim of obtaining an optimal performance of all the motorbike components in order to obtain a safe racing vehicle fast enough while looking for the stability of all the systems onboard. A general description of the project is given up to date, detailing the parts of the system, integration, numerical estimations, and a rearrangement proposal of the actual prototype with the aim to mechanically and thermally improve the vehicle.

Keywords: electric motorcycle, thermal analysis, mechanic analysis, electric vehicle

Procedia PDF Downloads 95
1677 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability

Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola

Abstract:

Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.

Keywords: data, employee, malware, work place

Procedia PDF Downloads 361
1676 Thermal Stability and Insulation of a Cement Mixture Using Graphene Oxide Nanosheets

Authors: Nasser A. M. Habib

Abstract:

The impressive physical properties of graphene derivatives, including thermal properties, have made them an attractive addition to advanced construction nanomaterial. In this study, we investigated the impact of incorporating low amounts of graphene oxide (GO) into cement mixture nanocomposites on their heat storage and thermal stability. The composites were analyzed using Fourier transmission infrared, thermo-gravimetric analysis, and field emission scanning electron microscopy. Results showed that GO significantly improved specific heat by 30%, reduced thermal conductivity by 15%, and reduced thermal decomposition to only 3% at a concentration of 1.2 wt%. These findings suggest that the cement mixture can withstand high temperatures and may be suitable for specific applications requiring thermal stability and insulation properties.

Keywords: cement mixture composite, graphene oxide, thermal decomposition, thermal conductivity

Procedia PDF Downloads 39
1675 On the Rational Roots of the Agnosticism and the Faith

Authors: Lola Rosalia Saavedra Guzman, Plamen Neytchev Netchev

Abstract:

In general, agnosticism is perceived as an uncertainty between a well-structured (religious) belief (in some Christian or pagan deity) and its absolute and total absence, often causing the suspicion that an agnostic is an atheist, which is "reinsured" in case if their personal belief is wrong. All of this, along with the prevailing view among the naturalists that science has already demonstrated the inexistence of God, has compelled us to seek the foundation of agnosticism and faith in the contemporary formal human logic, advanced mathematics, and the natural sciences. Along the way, we will find that no natural science can demonstrate the existence of God, nor could it discard it for rational considerations, which show that there is something beyond. After all, it seems that the human intellect is insufficient to respond surely with yes or no to the existence of higher intelligences leaving unconditional faith as the only path to God for Christians and transcendent techniques, for pagan religious beliefs.

Keywords: agnosticism, formal logic, axioms and postulates, Gödel theorems, and logical faults

Procedia PDF Downloads 181
1674 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter

Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba

Abstract:

In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.

Keywords: diesel engine, helicopter, simulation, environmental impact

Procedia PDF Downloads 546
1673 Design and Implementation of a Wearable Artificial Kidney Prototype for Home Dialysis

Authors: R. A. Qawasma, F. M. Haddad, H. O. Salhab

Abstract:

Hemodialysis is a life-preserving treatment for a number of patients with kidney failure. The standard procedure of hemodialysis is three times a week during the hemodialysis procedure, the patient usually suffering from many inconvenient, exhausting feeling and effect on the heart and cardiovascular system are the most common signs. This paper provides a solution to reduce the previous problems by designing a wearable artificial kidney (WAK) taking in consideration a minimization the size of the dialysis machine. The WAK system consists of two circuits: blood circuit and dialysate circuit. The blood from the patient is filtered in the dialyzer before returning back to the patient. Several parameters using an advanced microcontroller and array of sensors. WAK equipped with visible and audible alarm system to aware the patients if there is any problem.

Keywords: artificial kidney, home dialysis, renal failure, wearable kidney

Procedia PDF Downloads 214
1672 Mask-Prompt-Rerank: An Unsupervised Method for Text Sentiment Transfer

Authors: Yufen Qin

Abstract:

Text sentiment transfer is an important branch of text style transfer. The goal is to generate text with another sentiment attribute based on a text with a specific sentiment attribute while maintaining the content and semantic information unrelated to sentiment unchanged in the process. There are currently two main challenges in this field: no parallel corpus and text attribute entanglement. In response to the above problems, this paper proposed a novel solution: Mask-Prompt-Rerank. Use the method of masking the sentiment words and then using prompt regeneration to transfer the sentence sentiment. Experiments on two sentiment benchmark datasets and one formality transfer benchmark dataset show that this approach makes the performance of small pre-trained language models comparable to that of the most advanced large models, while consuming two orders of magnitude less computing and memory.

Keywords: language model, natural language processing, prompt, text sentiment transfer

Procedia PDF Downloads 53
1671 Effect of Iron Contents on Rheological Properties of Syndiotactic Polypropylene/iron Composites

Authors: Naveed Ahmad, Farooq Ahmad, Abdul Aal

Abstract:

The effect of iron contents on the rheological behavior of sPP/iron composites in the melt phase was investigated using a series of syndiotactic polypropylene/iron (sPP/iron) composite samples. Using the Advanced Rheometric Expansion System, studies with small amplitude oscillatory shear were conducted (ARES). It was discovered that the plateau modulus rose along with the iron loading. Also it was found that both entanglement molecular weight and packing length decrease with increase in iron loading.. This finding demonstrates how iron content in polymer/iron composites affects chain parameters and dimensions, which in turn affects the entire chain dynamics.

Keywords: plateau modulus, packing lenght, polymer/iron composites, rheology, entanglement molecular weight

Procedia PDF Downloads 134
1670 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X

Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira

Abstract:

An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.

Keywords: boundary-layer, scramjet, simple algorithm, shock wave

Procedia PDF Downloads 461
1669 The Effect of Human Relation on Employee Performance at Faculty of Economics of Syiah Kuala University

Authors: Yurnalis Usman

Abstract:

In an organization, institution or enterprise, human resource is very important aspect since many human skills cannot be replaced by technology tools even though technology has advanced rapidly now. The relationship among people is very necessary to create a subordinate and leader relation in the assumption that human beings are creatures who have feeling, desires, needs, aspirations and ideas differing from one another. This study on human relation was conducted at the Faculty of Economics of UNSYIAH, Darussalam, Banda Aceh, while the research object is associated with human relations and employee performance in Faculty of Economics of UNSYIAH. To determine the extent of employee relations in Faculty of Economics with fellow employees or superiors, the employees are given some questions. The result shows that human relations influence the employee performance at Faculty of Economics UNSYIAH strongly.

Keywords: human relation, employee performance, communication, Syiah Kuala

Procedia PDF Downloads 262
1668 Silage for Dairy Production: A Case Study of Pakistan

Authors: Noor-ul-Ain, Muhammad Thair Khan, Adeela Ajmal, Hamid Mustafa

Abstract:

Pakistan is an agricultural country and livestock only share 11.8 percent to national GDP during 2015-16. Pakistan is a 3rd largest milk producing country having 41.2, 35.6, 29.4, 68.4 and 1.0 million head cattle, buffalo, sheep, goat and camel, respectively. Modern urbanization and shortage of feed resources for livestock species in a country is an alarming threat. The introduction of new technology and advanced techniques solve this issue. This includes drought feeding, increase production, aid to crop management, balance nutrition and easily storaged of wet feed products. It is therefore clear that silage has important role in animal feed and feeding. Financial model of this study clear the effectiveness of silage. Therefore, it is revealed from this study that silage is a cost-effective option for a profitable dairy farming in Pakistan.

Keywords: feed, silage, dairy, production, Pakistan

Procedia PDF Downloads 409
1667 Nature-Based Solutions: An Intelligent Method to Enhance Urban Resilience in Response to Climate Change

Authors: Mario Calabrese, Francesca Iandolo, Pietro Vito, Raffaele D'Amore, Francesco Caputo

Abstract:

This article presents a synopsis of Nature-Based Solutions (NBS), a fresh and emerging concept in mitigating and adapting to climate change. It outlines a classification of NBS, from the least intrusive to the most advanced engineering, and provides illustrations of each. Moreover, it gives an overview of the 'Life Metro Adapt' initiative, which dealt with the climatic challenges faced by the Milan Metropolitan City and encouraged the development of climate change adaptation methods using alternative, nature-focused solutions. Lastly, the article emphasizes the necessity of raising awareness about environmental issues to ensure that NBS becomes a regular practice today and can be refined in the future.

Keywords: nature-based solutions, urban resilience, climate change adaptation, life metro adapt initiative

Procedia PDF Downloads 89
1666 On the Equalization of Nonminimum Phase Electroacoustic Systems Using Digital Inverse Filters

Authors: Avelino Marques, Diamantino Freitas

Abstract:

Some important electroacoustic systems, like loudspeaker systems, exhibit a nonminimum phase behavior that poses considerable effort when applying advanced digital signal processing techniques, such as linear equalization. In this paper, the position and the number of zeros and poles of the inverse filter, FIR type or IIR type, designed using time domain techniques, are studied, compared and related to the nonminimum phase zeros of system to be equalized. Conclusions about the impact of the position of the system non-minimum phase zeros, on the length/order of the inverse filter and on the delay of the equalized system are outlined as a guide to previously decide which type of filter will be more adequate.

Keywords: loudspeaker systems, nonminimum phase system, FIR and IIR filter, delay

Procedia PDF Downloads 49
1665 Sensing to Respond & Recover in Emergency

Authors: Alok Kumar, Raviraj Patil

Abstract:

The ability to respond to an incident of a disastrous event in a vulnerable area is very crucial an aspect of emergency management. The ability to constantly predict the likelihood of an event along with its severity in an area and react to those significant events which are likely to have a high impact allows the authorities to respond by allocating resources optimally in a timely manner. It provides for measuring, monitoring, and modeling facilities that integrate underlying systems into one solution to improve operational efficiency, planning, and coordination. We were particularly involved in this innovative incubation work on the current state of research and development in collaboration. technologies & systems for a disaster.

Keywords: predictive analytics, advanced analytics, area flood likelihood model, area flood severity model, level of impact model, mortality score, economic loss score, resource allocation, crew allocation

Procedia PDF Downloads 295
1664 Realistic Study Discover Some Posture Deformities According to Some Biomechanical Variables for Schoolchildren

Authors: Basman Abdul Jabbar

Abstract:

The researchers aimed to improve the importance of the good posture without any divisions & deformities. The importance of research lied in the discovery posture deformities early so easily treated before its transformation into advanced abnormalities difficult to treat and may need surgical intervention. Research problem was noting that some previous studies were based on the discovery of posture deformities, which was dependent on the (self-evaluation) which this type did not have accuracy to discover deformities. The Samples were (500) schoolchildren aged (9-11 years, males) at Baghdad al Karak. They were students at primary schools. The measure included all posture deformities. The researcher used video camera to analyze the posture deformities according to biomechanical variables by Kinovea software for motion analysis. The researcher recommended the need to use accurate scientific methods for early detection of posture deformities in children which contribute to the prevention and reduction of distortions.

Keywords: biomechanics, children, deformities, posture

Procedia PDF Downloads 264
1663 The Impact of Speech Style on the Production of Spanish Vowels by Spanish-English Bilinguals and Spanish Monolinguals

Authors: Vivian Franco

Abstract:

There has been a great deal of research about vowel production of second language learners of Spanish, vowel variation across Spanish dialects, and more recently, research related to Spanish heritage speakers’ vowel production based on speech style. However, there is little investigation reported on Spanish heritage speakers’ vowel production in regard to task modality by incorporating own comparison groups of monolinguals and late bilinguals. Thus, the present study investigates the influence of speech style on Spanish heritage speakers’ vowel production by comparing Spanish-English early and late bilinguals and Spanish monolinguals. The study was guided by the following research question: How do early bilinguals (heritage speakers) differ/relate to advanced L2 speakers of Spanish (late bilinguals) and Spanish monolinguals in their vowel quality (acoustic distribution) and quantity (duration) based on speech style? The participants were a total of 11 speakers of Spanish: 7 early Spanish-English bilinguals with a similar linguistic background (simultaneous bilinguals of the second generation); 2 advanced L2 speakers of Spanish; and 2 Spanish monolinguals from Mexico. The study consisted of two tasks. The first one adopted a semi-spontaneous style by a solicited narration of life experiences and a description of a favorite movie with the purpose to collect spontaneous speech. The second task was a reading activity in which the participants read two paragraphs of a Mexican literary essay 'La nuez.' This task aimed to obtain a more controlled speech style. From this study, it can be concluded that early bilinguals and monolinguals show a smaller formant vowel space overall compared to the late bilinguals in both speech styles. In terms of formant values by stress, the early bilinguals and the late bilinguals resembled in the semi-spontaneous speech style as their unstressed vowel space overlapped with that of the unstressed vowels different from the monolinguals who displayed a slightly reduced unstressed vowel space. For the controlled data, the early bilinguals were similar to the monolinguals as their stressed and unstressed vowel spaces overlapped in comparison to the late bilinguals who showed a more clear reduction of unstressed vowel space. In regard to stress, the monolinguals revealed longer vowel duration overall. However, findings of duration by stress showed that the early bilinguals and the monolinguals remained stable with shorter values of unstressed vowels in the semi-spontaneous data and longer duration in the controlled data when compared to the late bilinguals who displayed opposite results. These findings suggest an implication for Spanish heritage speakers and L2 Spanish vowels research as it has been frequently argued that Spanish bilinguals differ from the Spanish monolinguals by their vowel reduction and centralized vowel space influenced by English. However, some Spanish varieties are characterized by vowel reduction especially in certain phonetic contexts so that some vowels present more weakening than others. Consequently, it would not be conclusive to affirm an English influence on the Spanish of these bilinguals.

Keywords: Spanish-English bilinguals, Spanish monolinguals, spontaneous and controlled speech, vowel production.

Procedia PDF Downloads 109
1662 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation

Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes

Abstract:

Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.

Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor

Procedia PDF Downloads 112
1661 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy

Authors: Grishma D. Solanki, Karshan Kandoriya

Abstract:

In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.

Keywords: copy-move image forgery, digital forensics, image forensics, image forgery

Procedia PDF Downloads 269
1660 Architectural Advancements: Lightweight Structures and Future Applications in Ultra-High-Performance Concrete, Fabrics, and Flexible Photovoltaics

Authors: Pratik Pankaj Pawar

Abstract:

Lightweight structures - structures with reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring proper durability and strength, safety, indoor environmental quality, and energy efficiency; structures that strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental, and technological factors. The growing interest in lightweight structures design makes them an ever more significant field of research. This article focuses on the architectural aspects of lightweight structures and on their contemporary and future applications. The selected advanced building technologies - i.e., Ultra-High-Performance Concrete, fabrics, and flexible photovoltaics.

Keywords: light weight building, carbyne, aerographite, geopolymer reinforced wood particles aggregate

Procedia PDF Downloads 32
1659 Optimization of Fenton Process for the Treatment of Young Municipal Leachate

Authors: Bouchra Wassate, Younes Karhat, Khadija El Falaki

Abstract:

Leachate is a source of surface water and groundwater contamination if it has not been pretreated. Indeed, due to its complex structure and its pollution load make its treatment extremely difficult to achieve the standard limits required. The objective of this work is to show the interest of advanced oxidation processes on leachate treatment of urban waste containing high concentrations of organic pollutants. The efficiency of Fenton (Fe2+ +H2O2 + H+) reagent for young leachate recovered from collection trucks household waste in the city of Casablanca, Morocco, was evaluated with the objectives of chemical oxygen demand (COD) and discoloration reductions. The optimization of certain physicochemical parameters (initial pH value, reaction time, and [Fe2+], [H2O2]/ [Fe2+] ratio) has yielded good results in terms of reduction of COD and discoloration of the leachate.

Keywords: COD removal, color removal, Fenton process, oxidation process, leachate

Procedia PDF Downloads 268
1658 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments

Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora

Abstract:

Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.

Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver

Procedia PDF Downloads 295
1657 Slope Stability and Landslides Hazard Analysis, Limitations of Existing Approaches, and a New Direction

Authors: Alisawi Alaa T., Collins P. E. F.

Abstract:

The analysis and evaluation of slope stability and landslide hazards are landslide hazards are critically important in civil engineering projects and broader considerations of safety. The level of slope stability risk should be identified due to its significant and direct financial and safety effects. Slope stability hazard analysis is performed considering static and/or dynamic loading circumstances. To reduce and/or prevent the failure hazard caused by landslides, a sophisticated and practical hazard analysis method using advanced constitutive modeling should be developed and linked to an effective solution that corresponds to the specific type of slope stability and landslides failure risk. Previous studies on slope stability analysis methods identify the failure mechanism and its corresponding solution. The commonly used approaches include used approaches include limit equilibrium methods, empirical approaches for rock slopes (e.g., slope mass rating and Q-slope), finite element or finite difference methods, and district element codes. This study presents an overview and evaluation of these analysis techniques. Contemporary source materials are used to examine these various methods on the basis of hypotheses, the factor of safety estimation, soil types, load conditions, and analysis conditions and limitations. Limit equilibrium methods play a key role in assessing the level of slope stability hazard. The slope stability safety level can be defined by identifying the equilibrium of the shear stress and shear strength. The slope is considered stable when the movement resistance forces are greater than those that drive the movement with a factor of safety (ratio of the resistance of the resistance of the driving forces) that is greater than 1.00. However, popular and practical methods, including limit equilibrium approaches, are not effective when the slope experiences complex failure mechanisms, such as progressive failure, liquefaction, internal deformation, or creep. The present study represents the first episode of an ongoing project that involves the identification of the types of landslides hazards, assessment of the level of slope stability hazard, development of a sophisticated and practical hazard analysis method, linkage of the failure type of specific landslides conditions to the appropriate solution and application of an advanced computational method for mapping the slope stability properties in the United Kingdom, and elsewhere through geographical information system (GIS) and inverse distance weighted spatial interpolation(IDW) technique. This study investigates and assesses the different assesses the different analysis and solution techniques to enhance the knowledge on the mechanism of slope stability and landslides hazard analysis and determine the available solutions for each potential landslide failure risk.

Keywords: slope stability, finite element analysis, hazard analysis, landslides hazard

Procedia PDF Downloads 78