Search results for: neural stem/precursor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5548

Search results for: neural stem/precursor cells

508 Effect of Psychological Stress to the Mucosal IL-6 and Helicobacter pylori Activity in Functional Dyspepsia and Myocytes

Authors: Eryati Darwin, Arina Widya Murni, Adnil Edwin Nurdin

Abstract:

Background: Functional dyspepsia (FD) is a highly prevalent and heterogeneous disorder. Most patients with FD complain of symptoms related to the intake of meals. Psychological stress may promote peptic ulcer and had an effect on ulcers associated Hp, and may also trigger worsen symptoms in inflammatory disorders of the gastrointestinal. Cells in mucosal gastric stimulate the production of several cytokines, which might associated with Helicobacter pylori infection. The cascade of biological events leading to stress-induced FD remains poorly understood. Aim of Study: To determine the prion-flammatory cytokine IL-6, and Helicobacter pylori activity on mucosal gastric of FD and their association with psychological stress. Methods: The subjects of this study were dyspeptic patients who visited M. Djamil General Hospital and in two Community Health Centers in Padang. On the basis of the stress index scale to identify psychological stress by using Depression Anxiety and Stress Scale (DASS 42), subjects were divided into two groups of 20 each, stress groups and non-stress groups. All diagnoses were confirmed by review of cortisol and esophagogastroduodenoscopy reports. Gastric biopsy samples and peripheral blood were taken during diagnostic procedures. Immunohistochemistry methods were used to determine the expression of IL-6 and Hp in gastric mucosal. The data were statistically analyzed by univariate and bivariate analysis. All procedures of this study were approved by Research Ethics Committee of Medical Faculty Andalas University. Results: In this study, we enrolled 40 FD patients (26 woman and 14 men) in range between 35-56 years old. Cortisol level of blood FD patients as parameter of stress hormone which taken in the morning was significantly higher in stress group than non-stress group. The expression of IL-6 in gastric mucosa was significantly higher in stress group in compared to non-stress group (p<0,05). Helicobacter pylori activity in gastric mucosal in stress group were significantly higher than non-stress group. Conclusion: The present study showed that psychological stress can induce gastric mucosal inflammation and increase of Helicobacter pylori activity.

Keywords: functional dyspepsia, Helicobacter pylori, interleukin-6, psychological stress

Procedia PDF Downloads 264
507 In vitro and in vivo Potential Effect of the N-Acylsulfonamide Bis-oxazolidin-2-ones on Toxoplasma gondii

Authors: Benlaifa Meriem, Berredjem Hajira, Bouasla Radia, Berredjem Malika, Djebar Med Reda

Abstract:

Toxoplasmosis is a cosmopolitan infection due to Toxoplasma gondii (T.gondii). It is a significant cause of congenital disease and an important opportunistic pathogen which has become a worldwide increasing problem due to the AIDS epidemic. Current available drugs do not give satisfactory results and often have only a static and several adverse side effects as it is the case of pyrimethamine. So, the need to develop and evaluate new drugs is critical. The purpose of this study is to investigate the in vitro and in vivo effects of the new chiral N-acylsulfonamide bis-oxazolidin-2-ones on T.gondii. In this study, anti-T.gondii RH strain activities, of two new chiral N-acylsulfonamide bis-oxazolidin-2-ones were evaluated in vitro, using a MRC-5 fibroblast tissue cultures to determine the concentration that inhibit parasite multiplication by 50% (IC50) of each drug and in vivo, by PCR detection of the tachyzoites in mice ascites after new molecules treatment, using the 35-fold repetitive B1 gene of T.gondii. The in vitro results demonstrated that the treatment with the tested molecules decreased the amount of tachyzoites in cell culture in a dose-dependent manner. The inhibition was complete for concentrations over 4 mg/ml. The IC50 of Mol 1 and Mol 2 were 1.5 and 3 mg/ml, respectively, and were quite similar to the control one (2 mg/ml). The Mol 1 was highly active against T.gondii in cell cultures than Mol 2; these results were similar to those of sulfadiazine-treated group (p < 0.05). Toxoplasma-specific DNA was demonstrated in all ascites samples from infected mice of the different tested groups. Mol 1 showed better effect than Mol 2, but it did not completely inhibit the parasite proliferation. The intensity of amplification products increased when the treatment started late after infection. These findings suggest continuous parasite replication despite the treatment. In conclusion, our results showed a promising treatment effect of the tested molecules and suggest that in vitro, the Mol 1, and Mol 2 have a dose-dependent effect and a high cytotoxicity on the studied cells. The present study revealed that concentration and duration of tested molecules treatment are major factors that influence the course of Toxoplasma infection in infected mice.

Keywords: cytotoxicity, PCR, sulfonamide, Toxoplasma gondii

Procedia PDF Downloads 484
506 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode

Authors: He Zhang, Jianxin Yi

Abstract:

As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.

Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite

Procedia PDF Downloads 166
505 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine

Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa

Abstract:

Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.

Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid

Procedia PDF Downloads 160
504 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 265
503 Beneficial Effects of Curcumin against Stress Oxidative and Mitochondrial Dysfunction Induced by Trinitrobenzene Sulphonic Acid in Colon

Authors: Souad Mouzaoui, Bahia Djerdjouri

Abstract:

Oxidative stress is one of the main factors involved in the onset and chronicity of inflammatory bowel disease (IBD). In this study, we investigated the beneficial effects of a potent natural antioxidant, curcumin (Cur) on colitis and mitochondrial dysfunction in trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Rectal instillation of the chemical irritant TNBS (30 mg kg-1) induced the disruption of distal colonic architecture and a massive inflammatory cells influx to the mucosa and submucosa layers. Under these conditions, daily administration of Cur (25 mg kg-1) efficiently decreased colitis scores in the inflamed distal colon by reducing leukocyte infiltrate as attested by reduced myeloperoxidase (MPO) activity. Moreover, the levels of nitrite, an end product of inducible NO synthase activity (iNOS) and malonyl dialdehyde (MDA), a marker of lipid peroxidation increased in a time depending manner in response to TNBS challenge. Conversely, the markers of the antioxidant pool, reduced glutathione (GSH) and catalase activity (CAT) were drastically reduced. Cur attenuated oxidative stress markers and partially restored CAT and GSH levels. Moreover, our results expanded the effect of Cur on TNBS-induced colonic mitochondrial dysfunction. In fact, TNBS induced mitochondrial swelling and lipids peroxidation. These events reflected in the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. TNBS inhibited also mitochondrial respiratory activity, caused overproduction of mitochondrial superoxide anion (O2-.) and reduced level of mitochondrial GSH. Nevertheless, Cur reduced the extent of mitochondrial oxidative stress induced by TNBS and restored colonic mitochondrial function. In conclusion, our results showed the critical role of oxidative stress in TNBS-induced colitis. They highlight the role of colonic mitochondrial dysfunction induced by TNBS, as a potential source of oxidative damages. Due to its potent antioxidant properties, Cur opens a promising therapeutic approach against oxidative inflammation in IBD.

Keywords: colitis, curcumin, mitochondria, oxidative stress, TNBS

Procedia PDF Downloads 227
502 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell

Authors: Abidullah, Basharat Hussain, Jong Seok Kim

Abstract:

Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.

Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs

Procedia PDF Downloads 109
501 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation

Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda

Abstract:

A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.

Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation

Procedia PDF Downloads 410
500 Correlation between Calpain 1 Expression and Proliferating/Apoptotic Index and Prognostic Factors in Triple Negative Breast Cancer

Authors: Shadia Al-Bahlani, Ruqaya Al-Rashdi, Shadia Al-Sinawi, Maya Al-Bahri

Abstract:

Background: Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and Human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. The role of clapins in pathogenesis and tumor progression has been studied in certain cancer types; however, its definite role is not yet established in breast cancer especially in the TNBC subtype. Objectives: This study aims to measure calpain-1 expression and correlate this measurement with the proliferating/apoptotic index as well with the prognostic factors in TNBC patients’ tissue. Materials and Methods: Thirty nine paraffin blocks from patients diagnosed with TNBC were used to measure the expression of calpain-1 and Ki-67 (proliferating marker) proteins using immunohistochemistry. Apoptosis was assessed morphological and biochemically using conventional Haematoxylin and Eosin (H&E) staining method and terminal deoxynucleotidyl transferase-mediate dUTP nick and labeling (TUNEL) assay respectively. Data was statistically analyzed using Pearson X2 test of association. Results: Calpain-1 content was visualized in the nucleus of the TNBC cells and its expression varied from low to high among the patients tissue. Calpain expression showed no significant correlation with the proliferating/apoptotic index as well with the clinicopathological variables. Apoptotic counts quantified by H&E staining showed significant association with the apoptotic TUNEL assay, validating both approaches. Conclusion: Although calpain-1 expression showed no significant association with the clinical outcome, its variable level of expression might indicate a hidden role in breast cancer tissue. Larger number of samples and different mode of assessments are needed to fully investigate such role. Exploring the involvement of calpain-1 in cancer progression might help in considering it as a biomarker of breast cancer.

Keywords: breast cancer, calpain, apoptosis, prognosis

Procedia PDF Downloads 425
499 Anticancer Effect of Doxorubicin Using Injectable Hydrogel

Authors: Prasamsha Panta, Da Yeon Kim, Ja Yong Jang, Min Jae Kim, Jae Ho Kim, Moon Suk Kim

Abstract:

Introduction: Among the many anticancer drugs used clinically, doxorubicin (Dox), was one of widely used drugs to treat many types of solid tumors such as liver, colon, breast, or lung. Intratumoral injection of chemotherapeutic agents is a potentially more effective alternative to systemic administration because direct delivery of the anticancer drug to the target may improve both the stability and efficacy of anticancer drugs. Injectable in situ-forming gels have attracted considerable attention because they can achieve site specific drug delivery, long term action periods, and improved patient compliance. Objective: Objective of present study is to confirm clinical benefit of intratumoral chemotherapy using injectable in situ-forming poly(ethylene glycol)-b-polycaprolactone diblock copolymer (MP) and Dox with increase in efficacy and reducing the toxicity in patients with cancer diseases. Methods and methodology: We prepared biodegradable MP hydrogel and measured viscosity for the evaluation of thermo-sensitive property. In vivo antitumor activity was performed with normal saline, MP only, single free Dox, repeat free Dox, and Dox-loaded MP gel. The remaining amount of Dox drug was measured using HPLC after the mouse was sacrified. For cytotoxicity studies WST-1 assay was performed. Histological analysis was done with H&E and TUNEL processes respectively. Results: The works in this experiment showed that Dox-loaded MP have biodegradable drug depot property. Dox-loaded MP gels showed remarkable in vitro cytotoxicity activities against cancer cells. Finally, this work indicates that injection of Dox-loaded MP allowed Dox to act effectively in the tumor and induced long-lasting supression of tumor growth. Conclusion: This work has examined the potential clinical utility of intratumorally injected Dox-loaded MP gel, which shows significant effect of higher local Dox retention compared with systemically administered Dox.

Keywords: injectable in-situ forming hydrogel, anticancer, doxorubicin, intratumoral injection

Procedia PDF Downloads 383
498 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 103
497 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries

Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani

Abstract:

Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation

Procedia PDF Downloads 502
496 Multi-Agent System Based Solution for Operating Agile and Customizable Micro Manufacturing Systems

Authors: Dylan Santos De Pinho, Arnaud Gay De Combes, Matthieu Steuhlet, Claude Jeannerat, Nabil Ouerhani

Abstract:

The Industry 4.0 initiative has been launched to address huge challenges related to ever-smaller batch sizes. The end-user need for highly customized products requires highly adaptive production systems in order to keep the same efficiency of shop floors. Most of the classical Software solutions that operate the manufacturing processes in a shop floor are based on rigid Manufacturing Execution Systems (MES), which are not capable to adapt the production order on the fly depending on changing demands and or conditions. In this paper, we present a highly modular and flexible solution to orchestrate a set of production systems composed of a micro-milling machine-tool, a polishing station, a cleaning station, a part inspection station, and a rough material store. The different stations are installed according to a novel matrix configuration of a 3x3 vertical shelf. The different cells of the shelf are connected through horizontal and vertical rails on which a set of shuttles circulate to transport the machined parts from a station to another. Our software solution for orchestrating the tasks of each station is based on a Multi-Agent System. Each station and each shuttle is operated by an autonomous agent. All agents communicate with a central agent that holds all the information about the manufacturing order. The core innovation of this paper lies in the path planning of the different shuttles with two major objectives: 1) reduce the waiting time of stations and thus reduce the cycle time of the entire part, and 2) reduce the disturbances like vibration generated by the shuttles, which highly impacts the manufacturing process and thus the quality of the final part. Simulation results show that the cycle time of the parts is reduced by up to 50% compared with MES operated linear production lines while the disturbance is systematically avoided for the critical stations like the milling machine-tool.

Keywords: multi-agent systems, micro-manufacturing, flexible manufacturing, transfer systems

Procedia PDF Downloads 115
495 Chemical Characterization, Crystallography and Acute Toxicity Evaluation of Two Boronic-Carbohydrate Adducts

Authors: Héctor González Espinosa, Ricardo Ivan Cordova Chávez, Alejandra Contreras Ramos, Itzia Irene Padilla Martínez, José Guadalupe Trujillo Ferrara, Marvin Antonio Soriano Ursúa

Abstract:

Boronic acids are able to create diester bonds with carbohydrates because of their hydroxyl groups; in nature, there are some organoborates with these characteristics, such as the calcium fructoborate, formed by the union of two fructose molecules and a boron atom, synthesized by plants. In addition, it has been observed that, in animal cells only the compounds with cis-diol functional groups are capable of linking to boric or boronic acids. The formation of these organoboron compounds could impair the physical and chemical properties of the precursors, even their acute toxicity. In this project, two carbohydrate-derived boron-containing compounds from D-fructose and D-arabinose and phenylboronic acid are analyzed by different spectroscopy techniques such as Raman, Infrared with Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and X-ray diffraction crystallography to describe their chemical characteristics. Also, an acute toxicity test was performed to determine their LD50 using the Lorke’s method. It was confirmed by multiple spectra the formation of the adducts by the generation of the diester bonds with a β-D-pyranose of fructose and arabinose. The most prominent findings were the presence of signals corresponding to the formation of new bonds, like the stretching of B-O bonds, or the absence of signals of functional groups like the hydroxyls presented in the reagents used for the synthesis of the adducts. The NMR spectra yielded information about the stereoselectivity in the synthesis reaction, observed by the interaction of the protons and their vicinal atoms in the anomeric and second position carbons; but also, the absence of a racemic mix by the finding of just one signal in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests by the Lorke’s method showed that the LD50 value for both compounds is 1265 mg/kg. Those results let us to propose these adducts as highly safe agents for further biological evaluation with medical purposes.

Keywords: acute toxicity, adduct, boron, carbohydrate, diester bond

Procedia PDF Downloads 33
494 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 49
493 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.

Keywords: computer vision, drone control, keypoint detection, openpose

Procedia PDF Downloads 163
492 Periplasmic Expression of Anti-RoxP Antibody Fragments in Escherichia Coli.

Authors: Caspar S. Carson, Gabriel W. Prather, Nicholas E. Wong, Jeffery R. Anton, William H. McCoy

Abstract:

Cutibacterium acnes is a commensal bacterium found on human skin that has been linked to acne. C. acnes can also be an opportunistic pathogen when it infiltrates the body during surgery. This pathogen can cause dangerous infections of medical implants, such as shoulder replacements, leading to life-threatening blood infections. Compounding this issue, C. acnes resistance to many antibiotics has become an increasing problem worldwide, creating a need for special forms of treatment. C. acnes expresses the protein RoxP, and it requires this protein to colonize human skin. Though this protein is required for C. acnes skin colonization, its function is not yet understood. Inhibition of RoxP function might be an effective treatment for C. acnes infections. To develop such reagents, the McCoy Laboratory generated four unique anti-RoxP antibodies. Preliminary studies in the McCoy Lab have established that each antibody binds a distinct site on RoxP. To assess the potential of these antibodies as therapeutics, it is necessary to specifically characterize these antibody epitopes and evaluate them in assays that assess their ability to inhibit RoxP-dependent C. acnes growth. To provide material for these studies, an antibody expression construct, Fv-clasp(v2), was adapted to encode anti-RoxP antibody sequences. The author hypothesizes that this expression strategy can produce sufficient amounts of >95% pure antibody fragments for further characterization of these antibodies. Four anti-RoxP Fv-clasp(v2) expression constructs (pET vector-based) were transformed into E. coli BL21-Gold(DE3) cells and a small-scale expression and purification trial was performed for each construct to evaluate anti-RoxP Fv-clasp(v2) yield and purity. Successful expression and purification of these antibody constructs will allow for their use in structural studies, such as protein crystallography and cryogenic electron microscopy. Such studies would help to define the antibody binding sites on RoxP, which could then be leveraged in the development of certain methods to treat C. acnes infection through RoxP inhibition.

Keywords: structural biology, protein expression, infectious disease, antibody, therapeutics, E. coli

Procedia PDF Downloads 41
491 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike

Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.

Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability

Procedia PDF Downloads 57
490 Ability of Bentonite-lactobacillus Rhamnosus GAF06 Mixture to Mitigate Aflatoxin M1 Damages in Balb/C Mice

Authors: Amina Aloui, Jalila Ben Salah-Abbès, Abdellah Zinedine, Amar Riba, Noel Durand, Catherine Brabet, Didier Montet, Samir Abbès

Abstract:

Mycotoxin contamination of food and feed-isa globaconcern, both economically and for public health. Aflatoxin M1 (AFM1) is the principal hydroxylated metabolite of aflatoxin B1. It is frequently found in milk and other dairy products. It is responsible for the development of hepatocellular carcinoma and immunotoxic in humans and animals. The reduction of its bioavailabilitybecomesa great demand in order to protect human and animal health. The use of probiotic bacteria and clay are demonstrated to be able to bind AFM1 in vitro. This study aimed to investigate, in vivo, the activity of two-component mixture: L. rhamnosusGAF06 (LR) and bentonite for reducing the oxidative stress and the histological alterationsinduced by AFM1 in the liver andkidneys. For the experiment, male mice were divided into 7 groups (6 mice/group) and treated, orally, by AFM1, alone or in combination with LR and/or bentonite, for 10 days as follows: group 1 control, group 2 treated with LR alone (2.108 CFU/ml), group 3 treated with bentonite alone (1g/kg), group 4 treated with AFM1 alone (100μg/kg), group 5 co-treated with LR+AFM1, group 6 co-treated with bentonite+AFM1, group 7 co-treated with bentonite+LR+AFM1. At the end of the treatment, the mice were sacrificed, and the livers and kidneys were collected for histological assays. Intracellular antioxidant activities and lipid peroxidation were also studied. The results showed that AFM1causeddamage in liver and kidney tissues, being evidence of hepatotoxicity and nephrotoxicity marked by necrotic cells. It increased the MDA level and decreased the antioxidant enzyme activities (SOD) in both organs. In contrast, the co-treatment with AFM1 plus LR and/or bentonitesignificantly improved the hepatic and renal tissues, regulated kidney, and liver antioxidant enzyme activities. This improvement was more remarkable with the administration of LR-bentonite mixture with AFM1.LR and bentonite alone showed to be safe during the treatment. This mixture can be a promising candidate for future applications in biotechnological processes that aimed to detoxify AFM1in food and feed.

Keywords: aflatoxin M1, bentonite, L. rhamnosus GAF06, oxidative stress, prevention

Procedia PDF Downloads 162
489 Hepatoprotective and Immunostimulative Properties of Medicinal Plants against Tuberculosis

Authors: Anna-Mari Kok, Carel B. Oosthuizen, Namrita Lall

Abstract:

Tuberculosis (TB) is a disease caused by the bacterial pathogen Mycobacterium tuberculosis. It is associated with high mortality rates in both developing and developed countries. Many higher plants are found that are medicinally associated with tuberculosis infection. Plants belonging to thirteen families were selected, based on their traditional usage for tuberculosis and its associated symptoms. Eight plants showed the best antimycobacterial activities (MIC-value ≤ 500.0 µg/ml) against M. tuberculosis H37Rv. LS was found to have a minimum inhibitory concentration (MIC) of 125 µg/ml whereas, Tulbaghia violacea, Heteromorpha arborescens, Sutherlandia frutescens, Eucalyptus deglupta, and Plectranthus neochilus were found to have a MIC value of 250 µg/ml against M. tuberculosis H37Rv. Cytotoxicity values on U937 and HepG2 cells were obtained and the IC50 values ranged between 40 ±4.30 and > 400 µg/ml for the U937 cell line and 72.4 ±1.50 and > 400 µg/ml for the HepG2 cell line. Heteromorpha arborescens had the lowest IC50 value in both cell lines and therefore showed moderate levels of toxicity. Of the 19 samples that underwent the 2, 2- diphenyl- 1- picrylhydrazyl (DPPH) antioxidant assay, Eucalyptus deglupta and Melianthus major showed significant free radical scavenging activities with concentrations of 1.33 and 1.32 µg/ml respectively for the inhibition of DPPH. Hepatotoxicity induced by acetaminophen identified Searsia lancea with hepatoprotective activity of 59.37% at a ¼ IC50 concentration. Out of the 7 samples that were investigated for their immunomodulatory capabilities, Eucalyptus deglupta produced the most IL-12 with Sutherlandia frutescens also showing positive results for IL-12 production. In the present study, Eucalyptus deglupta showed the most promising results with good activity against M. tuberculosis with an MIC-value of 250 µg/ml. It also has potent antioxidant activity with an IC50 value of 1.33 µg/ml. This sample also stimulated high production of the cytokine, IL-12. Searsia lancea showed moderate antimycobacterial acticvity with an MIC-value of 500 µg/ml. The antioxidant potential also showed promising results with an IC50 value of 4.50 µg/ml. The hepatoprotective capability of Searsia lancea was 59.34% at a ¼ IC50 concentration. Another sample Sutherlandia frutescens showed effective antimycobacterial activity with an MIC-value of 250 µg/ml. It also stimulated production of IL-12 with 13.43 pg/ml produced. These three samples can be considered for further studies for the consideration as adjuvants for current tuberculosis treatment.

Keywords: adjuvant, hepatoprotection, immunomodulation, tuberculosis

Procedia PDF Downloads 281
488 Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy

Authors: Fuad Abdullah Alatawi

Abstract:

Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans.

Keywords: ficus microcarpa, iron oxide, antibacterial activity, cytotoxicity

Procedia PDF Downloads 97
487 Phenolic Rich Dry Extracts and Their Antioxidant Activity

Authors: R. Raudonis, L. Raudonė, V. Janulis, P. Viškelis

Abstract:

Pharmacological and clinical studies demonstrated that phenolic compounds particularly flavonoids and phenolic acids are responsible for a wide spectrum of therapeutic activities. Flavonoids and phenolic acids are regarded as natural antioxidants that play an important role in protecting cells from oxidative stress. Qualitatively prepared dry extracts possess high stability and concentration of bio active compounds, facility of standardization and quality control. The aim of this work was to determine the phenolic and antioxidant profiles of Hippophaë rhamnoides L., Betula pendula Roth., Tilia cordata Mill., Sorbus aucuparia L. leaves dry extracts and to identify markers of antioxidant activity. Extracts were analyzed using high-performance liquid chromatography (HPLC) with FRAP post-column assay. Dry extracts are versatile forms possessing wide area of applications, final product ensure consistent phytochemical and functional properties. Seven flavonoids: rutin, hyperoside, isorhamnetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, quercetin, kaempferol, isorhamnetin were identified in dry extract of Hippophaë rhamnoides L. leaves. Predominant compounds were flavonol glycosides which were chosen as markers for quantitative control of dry extracts. Chlorogenic acid, hyperoside, rutin, quercetin, isorhamnetin were prevailing compounds in Betula pendula Roth. leaves extract, whereas strongest ferric reducing activity was determined for chlorogenic acid and hyperoside. Notable amounts of protocatechuic acid and flavonol glycosides, rutin, hyperoside, quercitrin, isoquercitrin were identified in the chromatographic profile of Tilia cordata Mill. Neochlorogenic and chlorogenic acids were significantly dominant compounds in antioxidant profile in dry extract of Sorbus aucuparia L. leaves. Predominant compounds of antioxidant profiles could be proposed as functional markers of quality of phenolic rich raw materials. Dry extracts could be further used for manufacturing of pharmaceutical and nutraceuticals.

Keywords: dry extract, FRAP, antioxidant activity, phenolic

Procedia PDF Downloads 475
486 Rapid Detection of the Etiology of Infection as Bacterial or Viral Using Infrared Spectroscopy of White Blood Cells

Authors: Uraib Sharaha, Guy Beck, Joseph Kapelushnik, Adam H. Agbaria, Itshak Lapidot, Shaul Mordechai, Ahmad Salman, Mahmoud Huleihel

Abstract:

Infectious diseases cause a significant burden on the public health and the economic stability of societies all over the world for several centuries. A reliable detection of the causative agent of infection is not possible based on clinical features, since some of these infections have similar symptoms, including fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Moreover, physicians usually encounter difficulties in distinguishing between viral and bacterial infections based on symptoms. Therefore, there is an ongoing need for sensitive, specific, and rapid methods for identification of the etiology of the infection. This intricate issue perplex doctors and researchers since it has serious repercussions. In this study, we evaluated the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. Fourier transform infrared (FTIR) spectroscopy is considered a successful diagnostic method in the biological and medical fields. Many studies confirmed the great potential of the combination of FTIR spectroscopy and machine learning as a powerful diagnostic tool in medicine since it is a very sensitive method, which can detect and monitor the molecular and biochemical changes in biological samples. We believed that this method would play a major role in improving the health situation, raising the level of health in the community, and reducing the economic burdens in the health sector resulting from the indiscriminate use of antibiotics. We collected peripheral blood samples from young 364 patients, of which 93 were controls, 126 had bacterial infections, and 145 had viral infections, with ages lower than18 years old, limited to those who were diagnosed with fever-producing illness. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.

Keywords: infectious diseases, (FTIR) spectroscopy, viral infections, bacterial infections.

Procedia PDF Downloads 111
485 Effect of a Muscarinic Antagonist Drug on Extracellular Lipase Activityof Pseudomonas aeruginosa

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Pseudomonas aeruginosa is a Gram-negative, rode shape and aerobic bacterium that has shown to be resistance to many antibiotics. This resistance makes the bacterium very harmful in some diseases. It can also generate diseases in any part of the gastrointestinal tract from oropharynx to rectum. P. aeruginosa has become an important cause of infection, especially in patients with compromised host defense mechanisms. One of the most important reasons that make P. aeruginosa an emerging opportunistic pathogen in patients is its ability to use various compounds as carbon sources. Lipase is an enzyme that catalyzes the hydrolysis of lipids. Most lipases act at a specific position on the glycerol backbone of lipid substrate. Some lipases are expressed and secreted by pathogenic organisms during the infection. Muscarinic antagonist used as an antispasmodic and in urinary incontinence. The drug has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. Aim: In this study the inhibitory effect of a muscarinic antagonist on lipase of P. aeruginosa was investigated. Methods: P. aeruginosa was cultured in minimal salt medium with 1% olive oil as carbon source. The cells were harvested and the supernatant, which contained lipase, was used for enzyme assay. Results: Our results showed that the drug can inhibit P. aeruginosa lipase by competitive manner. In the presence of different concentrations of the drug, the Vmax (2 mmol/min/mg protein) of enzyme did not change, while the Km raised by increasing the drug concentration. The Ki (inhibition constant) and IC50 (the half maximal inhibitory concentration) value of drug was estimated to be about 30 uM and 60 uM which determined that the drug binds to enzyme with high affinity. Maximum activity of the enzyme was observed at pH 8 in the absence and presence of muscarinic antagonist, respectively. The maximum activity of lipase was observed at 600C and the enzyme became inactive at 900C. Conclusion: The muscarinic antagonist drug could inhibit lipase of P. aeruginosa and changed the kinetic parameters of the enzyme. The drug binded to enzyme with high affinity and did not chang the optimum pH of the enzyme. Temperature did not affect the binding of drug to musmuscarinic antagonist.

Keywords: Pseudomonas aeruginosa, drug, enzyme, inhibition

Procedia PDF Downloads 413
484 Activity of Resveratrol on the Influence of Aflatoxin B1 on the Testes of Sprague Dawley Rats

Authors: Ali D. Omur, Betul Apaydin Yildirim, Yavuz S. Saglam, Selim Comakli, Mustafa Ozkaraca

Abstract:

Twenty-eight male Sprague Dawley rats (aged 3 months) were used in the study. The animals were given feed and water as ad libitum. Sprague Dawley rats were randomly divided into 4 groups as 7 rats in each group. Aflatoxin B1 (7.5 μg/200 g), resveratrol (60 mg/kg) was administered to rats in groups other than the control group. At the end of the 16th day, blood, semen and tissue specimens were taken by decapitation under ether anesthesia. The effects of aflatoxin B1 and resveratrol on spermatological, pathological and biochemical parameters were determined in rats. When we evaluate the spermatological parameters, it is understood that resveratrol has a statistically significant difference in terms of sperm motility and viability (membrane integrity) compared to the control group and aflatoxin B1 administration groups, indicating a protective effect on spermatological parameters (groups: control, resveratrol, aflatoxin B1 and Afb1 + res; respectively, values of motility: 71,42 ± 0,52b, 72,85 ± 1, 48c , 60,71 ± 1,30a, 57,14 ± 2, 40a; values of viability: 63,85 ± 1,33b, 70,42 ± 2,61c, 55,00 ± 1,54a, 56,57 ± 0,89a. In terms of pathological parameters -histopathological examination- in the control and resveratrol groups, seminiferous tubules were observed to be in normal structure. In the group treated with aflatoxin, the regular structure of the spermatogenic cells deteriorated, and the seminiferous tubules became necrotic and degenerative. In the group treated with Afb1 + res, the decreasing of necrotic and degenerative changes were determined compared with in the group treated with aflatoxin. As immunohistochemical examination, cleaved caspase 3 expression was found to be very low in the control and resveratrol groups. Cleaved caspase 3 expression was severely exacerbated in seminiferous tubules in aflatoxin group but cleaved caspase 3 expression level decreased in Afb1 + res. In the biochemical direction, resveratrol has been shown to inhibit the adverse effects of aflatoxin on antioxidant levels (GSH-mmol/L, CAT-kU/L, GPx-U/mL, SOD-EU/mL) and to show a protective effect. For this purpose, the use of resveratrol with antioxidant activity was investigated in preventing or ameliorating damage to aflatoxin B1. It has been concluded that resveratrol effectively prevents the aflatoxin-induced testicular damage and lipid peroxidation. It has also been shown that resveratrol has protective effects on sperm motility and viability.

Keywords: Aflatoxin B1, rat, resveratrol, sperm

Procedia PDF Downloads 338
483 Exploration of Cone Foam Breaker Behavior Using Computational Fluid Dynamic

Authors: G. St-Pierre-Lemieux, E. Askari Mahvelati, D. Groleau, P. Proulx

Abstract:

Mathematical modeling has become an important tool for the study of foam behavior. Computational Fluid Dynamic (CFD) can be used to investigate the behavior of foam around foam breakers to better understand the mechanisms leading to the ‘destruction’ of foam. The focus of this investigation was the simple cone foam breaker, whose performance has been identified in numerous studies. While the optimal pumping angle is known from the literature, the contribution of pressure drop, shearing, and centrifugal forces to the foam syneresis are subject to speculation. This work provides a screening of those factors against changes in the cone angle and foam rheology. The CFD simulation was made with the open source OpenFOAM toolkits on a full three-dimensional model discretized using hexahedral cells. The geometry was generated using a python script then meshed with blockMesh. The OpenFOAM Volume Of Fluid (VOF) method was used (interFOAM) to obtain a detailed description of the interfacial forces, and the model k-omega SST was used to calculate the turbulence fields. The cone configuration allows the use of a rotating wall boundary condition. In each case, a pair of immiscible fluids, foam/air or water/air was used. The foam was modeled as a shear thinning (Herschel-Buckley) fluid. The results were compared to our measurements and to results found in the literature, first by computing the pumping rate of the cone, and second by the liquid break-up at the exit of the cone. A 3D printed version of the cones submerged in foam (shaving cream or soap solution) and water, at speeds varying between 400 RPM and 1500 RPM, was also used to validate the modeling results by calculating the torque exerted on the shaft. While most of the literature is focusing on cone behavior using Newtonian fluids, this works explore its behavior in shear thinning fluid which better reflects foam apparent rheology. Those simulations bring new light on the cone behavior within the foam and allow the computation of shearing, pressure, and velocity of the fluid, enabling to better evaluate the efficiency of the cones as foam breakers. This study contributes to clarify the mechanisms behind foam breaker performances, at least in part, using modern CFD techniques.

Keywords: bioreactor, CFD, foam breaker, foam mitigation, OpenFOAM

Procedia PDF Downloads 186
482 Bioinformatic Design of a Non-toxic Modified Adjuvant from the Native A1 Structure of Cholera Toxin with Membrane Synthetic Peptide of Naegleria fowleri

Authors: Frida Carrillo Morales, Maria Maricela Carrasco Yépez, Saúl Rojas Hernández

Abstract:

Naegleria fowleri is the causative agent of primary amebic meningoencephalitis, this disease is acute and fulminant that affects humans. It has been reported that despite the existence of therapeutic options against this disease, its mortality rate is 97%. Therefore, the need arises to have vaccines that confer protection against this disease and, in addition to developing adjuvants to enhance the immune response. In this regard, in our work group, we obtained a peptide designed from the membrane protein MP2CL5 of Naegleria fowleri called Smp145 that was shown to be immunogenic; however, it would be of great importance to enhance its immunological response, being able to co-administer it with a non-toxic adjuvant. Therefore, the objective of this work was to carry out the bioinformatic design of a peptide of the Naegleria fowleri membrane protein MP2CL5 conjugated with a non-toxic modified adjuvant from the native A1 structure of Cholera Toxin. For which different bioinformatics tools were used to obtain a model with a modification in amino acid 61 of the A1 subunit of the CT (CTA1), to which the Smp145 peptide was added and both molecules were joined with a 13-glycine linker. As for the results obtained, the modification in CTA1 bound to the peptide produces a reduction in the toxicity of the molecule in in silico experiments, likewise, the prediction in the binding of Smp145 to the receptor of B cells suggests that the molecule is directed in specifically to the BCR receptor, decreasing its native enzymatic activity. The stereochemical evaluation showed that the generated model has a high number of adequately predicted residues. In the ERRAT test, the confidence with which it is possible to reject regions that exceed the error values was evaluated, in the generated model, a high score was obtained, which determines that the model has a good structural resolution. Therefore, the design of the conjugated peptide in this work will allow us to proceed with its chemical synthesis and subsequently be able to use it in the mouse meningitis protection model caused by N. fowleri.

Keywords: immunology, vaccines, pathogens, infectious disease

Procedia PDF Downloads 67
481 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception

Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova

Abstract:

The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.

Keywords: bistability, brain, noise, perception, stochastic processes

Procedia PDF Downloads 427
480 Fam111b Gene Dysregulation Contributes to the Malignancy in Fibrosarcoma, Poor Clinical Outcomes in Poiktmp and a Low-cost Method for Its Mutation Screening

Authors: Cenza Rhoda, Falone Sunda, Elvis Kidzeru, Nonhlanhla P. Khumalo, Afolake Arowolo

Abstract:

Introduction: The human FAM111B gene mutations are associated with POIKTMP, a rare multi-organ fibrosing disease. Recent studies also reported the overexpression of FAM111B in specific cancers. However, the role of FAM111B in these pathologies, particularly fibrosarcoma, remains unknown. Materials and Methods: FAM111B RNA expression in some cancer cell lines was assessed in silico and validated in vitro in these cell lines and skin fibroblasts derived from the South African family member affected by POIKTMP with the heterozygous FAM111B gene mutation: NM_198947.4: c.1861T>G (p. Tyr621Asp or Y621D) by qPCR and western blot. The cellular function of FAM111B was also studied in HT1080 using various cell-based functional assays and a simple and cost-effective PCR-RFLP method for genotyping/screening FAM111B gene mutations described. Results: Expression studies showed upregulated FAM111B mRNA and protein in the cancer cells. High FAM111B expression with robust nuclear localization occurred in HT1080. Additionally, expression data and cell-based assays indicated that FAM111B led to the upregulation of cell migration and decreased cell apoptosis and cell proliferation modulation. FAM111B Y621D mutation showed similar effects on cell migration but minimal impact on cell apoptosis. FAM111B mRNA and protein expression were markedly downregulated (p ≤ 0.05) in the patient's skin-derived fibroblasts. Lastly, the PCR-RFLP method successfully genotyped FAM111B Y621D gene mutation. Discussion: FAM111B is a cancer-associated nuclear protein: Its modulation by mutations may enhance cell migration and proliferation and decrease apoptosis, as seen in cancers and POIKTMP/fibrosis, thus representing a viable therapeutic target in these disorders. Furthermore, the PCR-RFLP method could prove a valuable tool for FAM111B mutation validation or screening in resource-constrained laboratories.

Keywords: FAM111B, POIKTMP, cancer, fibrosis, PCR-RFLP

Procedia PDF Downloads 101
479 Intrathecal: Not Intravenous Administration of Evans Blue Reduces Pain Behavior in Neuropathic Rats

Authors: Kun Hua O., Dong Woon Kim, Won Hyung Lee

Abstract:

Introduction: Neuropathic pain induced by spinal or peripheral nerve injury is highly resistant to common painkillers, nerve blocks, and other pain management approaches. Recently, several new therapeutic drug candidates have been developed to control neuropathic pain. In this study, we used the spinal nerve L5 ligation (SNL) model to investigate the ability of intrathecal or intravenous Evans blue to decrease pain behavior and to study the relationship between Evans blue and the neural structure of pain transmission. Method: Neuropathic pain (allodynia) of the left hind paw was induced by unilateral SNL in Sprague-Dawley rats(n=10) in each group. Evans blue (5, 15, 50μg/10μl) or phosphate buffer saline(PBS,10μl) was injected intrathecally at 3days post-ligation or intravenously(1mg/200 μl) 3days and 5days post-ligation . Mechanical sensitivity was assessed using Von Frey filaments at 3 days post-ligation and at 2 hours, days 1, 2, 3, 5,7 after intrathecal Evans blue injection, and on days 2, 4, 7, and 11 at 14 days after intravenous injection. In the intrathecal group, microglia and glutaminergic neurons in the dorsal horn and VNUT(vesicular nucleotide transporter) in the dorsal root ganglia were tested to evaluate co-staining with Evans blue. The experimental procedures were performed in accordance with the animal care guideline of the Korean Academy of Medical Science(Animal ethic committee of Chungnam National University Hospital: CNUH-014-A0005-1). Results: Tight ligation of the L5 spinal nerve induced allodynia in the left hind paw 3 days post-ligation. Intrathecal Evans blue most significantly(P<0.001) alleviated allodynia at 2 days after intrathecal, but not an intravenous injection. Glutaminergic neurons in the dorsal horn and VNUT in the dorsal root ganglia were co-stained with Evans blue. On the other hand, microglia in the dorsal horn were partially co-stained with Evans blue. Conclusion: We confirmed that Evans blue might have an analgesic effect through the central nervous system, not another system in neuropathic pain of the SNL animal model. These results suggest Evans blue may be a potential new drug for the treatment of chronic pain. This research was supported by the National Research Foundation of Korea (NRF-2020R1A2C100757512), funded by the Ministry of Education.

Keywords: neuropathic pain, Evas blue, intrathecal, intravenous

Procedia PDF Downloads 78