Search results for: net-zero energy schools
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10039

Search results for: net-zero energy schools

4999 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision

Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason

Abstract:

Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.

Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics

Procedia PDF Downloads 221
4998 Understanding Knowledge Sharing and Its Effect on Creative Performance from a Dyadic Relationship Perspective

Authors: Fan Wei, Tang Yipeng

Abstract:

Knowledge sharing is of great value to organizational performance and innovation ability. However, the mainstream research has focused largely on the impact of knowledge sharing at the team level on individuals and teams. There is a lack of empirical studies on how employees interact in the exchange of knowledge and its effect on employees’ own creative performance. Based on communication accommodation theory and social exchange theory, this article explores the construction of an employee knowledge interaction mechanism under the moderating of social status and introduces the leader's creativity expectation as a moderating variable to explore its cross-level moderating effect on employee knowledge sharing and their own creative performance. An empirical test was conducted on 36 teaching and research teams in the two primary schools, and the results showed that: (1) Explicit/tacit knowledge of employees is positively correlated with acquisition of explicit/tacit knowledge; (2) Colleagues’ evaluations of employees’ social status play a moderating role between the employees’ explicit/tacit knowledge and the acquisition of explicit/tacit knowledge. (3) The leadership creativity expectation positively regulates the relationship between the employees' explicit knowledge acquisition and creative performance. This research helps to open the "black box" of the interpersonal interaction mechanism of knowledge sharing and also provides an important theoretical basis and practical guidance for organizational managers to effectively stimulate employee knowledge sharing and creative performance.

Keywords: knowledge sharing, knowledge interaction, social status, leadership creativity expectations, creative performance

Procedia PDF Downloads 109
4997 Heat Transfer Phenomena Identification of a Non-Active Floor in a Stack-Ventilated Building in Summertime: Empirical Study

Authors: Miguel Chen Austin, Denis Bruneau, Alain Sempey, Laurent Mora, Alain Sommier

Abstract:

An experimental study in a Plus Energy House (PEH) prototype was conducted in August 2016. It aimed to highlight the energy charge and discharge of a concrete-slab floor submitted to the day-night-cycles heat exchanges in the southwestern part of France and to identify the heat transfer phenomena that take place in both processes: charge and discharge. The main features of this PEH, significant to this study, are the following: (i) a non-active slab covering the major part of the entire floor surface of the house, which include a concrete layer 68 mm thick as upper layer; (ii) solar window shades located on the north and south facades along with a large eave facing south, (iii) large double-glazed windows covering the majority of the south facade, (iv) a natural ventilation system (NVS) composed by ten automatized openings with different dimensions: four are located on the south facade, four on the north facade and two on the shed roof (north-oriented). To highlight the energy charge and discharge processes of the non-active slab, heat flux and temperature measurement techniques were implemented, along with airspeed measurements. Ten “measurement-poles” (MP) were distributed all over the concrete-floor surface. Each MP represented a zone of measurement, where air and surface temperatures, and convection and radiation heat fluxes, were intended to be measured. The airspeed was measured only at two points over the slab surface, near the south facade. To identify the heat transfer phenomena that take part in the charge and discharge process, some relevant dimensionless parameters were used, along with statistical analysis; heat transfer phenomena were identified based on this analysis. Experimental data, after processing, had shown that two periods could be identified at a glance: charge (heat gain, positive values) and discharge (heat losses, negative values). During the charge period, on the floor surface, radiation heat exchanges were significantly higher compared with convection. On the other hand, convection heat exchanges were significantly higher than radiation, in the discharge period. Spatially, both, convection and radiation heat exchanges are higher near the natural ventilation openings and smaller far from them, as expected. Experimental correlations have been determined using a linear regression model, showing the relation between the Nusselt number with relevant parameters: Peclet, Rayleigh, and Richardson numbers. This has led to the determination of the convective heat transfer coefficient and its comparison with the convective heat coefficient resulting from measurements. Results have shown that forced and natural convection coexists during the discharge period; more accurate correlations with the Peclet number than with the Rayleigh number, have been found. This may suggest that forced convection is stronger than natural convection. Yet, airspeed levels encountered suggest that it is natural convection that should take place rather than forced convection. Despite this, Richardson number values encountered indicate otherwise. During the charge period, air-velocity levels might indicate that none air motion occurs, which might lead to heat transfer by diffusion instead of convection.

Keywords: heat flux measurement, natural ventilation, non-active concrete slab, plus energy house

Procedia PDF Downloads 403
4996 Design of an Innovative Geothermal Heat Pump with a PCM Thermal Storage

Authors: Emanuele Bonamente, Andrea Aquino

Abstract:

This study presents an innovative design for geothermal heat pumps with the goal of maximizing the system efficiency (COP - Coefficient of Performance), reducing the soil use (e.g. length/depth of geothermal boreholes) and initial investment costs. Based on experimental data obtained from a two-year monitoring of a working prototype implemented for a commercial building in the city of Perugia, Italy, an upgrade of the system is proposed and the performance is evaluated via CFD simulations. The prototype was designed to include a thermal heat storage (i.e. water), positioned between the boreholes and the heat pump, acting as a flywheel. Results from the monitoring campaign show that the system is still capable of providing the required heating and cooling energy with a reduced geothermal installation (approx. 30% of the standard length). In this paper, an optimization of the system is proposed, re-designing the heat storage to include phase change materials (PCMs). Two stacks of PCMs, characterized by melting temperatures equal to those needed to maximize the system COP for heating and cooling, are disposed within the storage. During the working cycle, the latent heat of the PCMs is used to heat (cool) the water used by the heat pump while the boreholes independently cool (heat) the storage. The new storage is approximately 10 times smaller and can be easily placed close to the heat pump in the technical room. First, a validation of the CFD simulation of the storage is performed against experimental data. The simulation is then used to test possible alternatives of the original design and it is finally exploited to evaluate the PCM-storage performance for two different configurations (i.e. single- and double-loop systems).

Keywords: geothermal heat pump, phase change materials (PCM), energy storage, renewable energies

Procedia PDF Downloads 296
4995 The Culture of Journal Writing among Manobo Senior High School Students

Authors: Jessevel Montes

Abstract:

This study explored on the culture of journal writing among the Senior High School Manobo students. The purpose of this qualitative morpho-semantic and syntactic study was to discover the morphological, semantic, and syntactic features of the written output through morphological, semantic, and syntactic categories present in their journal writings. Also, beliefs and practices embedded in the norms, values, and ideologies were identified. The study was conducted among the Manobo students in the Senior High Schools of Central Mindanao, particularly in the Division of North Cotabato. Findings revealed that morphologically, the features that flourished are the following: subject-verb concordance, tenses, pronouns, prepositions, articles, and the use of adjectives. Semantically, the features are the following: word choice, idiomatic expression, borrowing, and vernacular. Syntactically, the features are the types of sentences according to structure and function; and the dominance of code switching and run-on sentences. Lastly, as to the beliefs and practices embedded in the norms, values, and ideologies of their journal writing, the major themes are: valuing education, family, and friends as treasure, preservation of culture, and emancipation from the bondage of poverty. This study has shed light on the writing capabilities and weaknesses of the Manobo students when it comes to English language. Further, such an insight into language learning problems is useful to teachers because it provides information on common trouble-spots in language learning, which can be used in the preparation of effective teaching materials.

Keywords: applied linguistics, culture, morpho-semantic and syntactic analysis, Manobo Senior High School, Philippines

Procedia PDF Downloads 107
4994 Behavior, Temperament and Food Intake of Urban Indian Adolescents

Authors: Preeti Khanna, Bani T. Aeri

Abstract:

Background: Recent studies have indicated challenges that hamper health and wellbeing of a vast majority of adolescents in developing countries. Many modifiable factors like behavior and temperament related to food intake among adolescents have not been adequately explored. The aim of the proposed research is to study the impact of behavior and temperament on food intake and diet quality of adolescents. Objectives: In the present study data on dietary behavior and anthropometry of adolescent boys & girls (aged 13-16 years) studying in public schools of Delhi will be gathered to ascertain the quality of diet among adolescent boys and girls and to study the effect of behavior and temperament on diet quality of adolescents. Methods: In total, 400 adolescents will participate in this cross-sectional study. Weight and height of adolescents will be measured and BMI will be calculated. Information will be obtained on their socio-demographic profile and various factors influencing their Food Choices and diet quality such as body image perception, Behavior, temperament, locus of control and parental influence. Expected results: Several direct effects of adolescent traits and behavior on food intake will be observed. Maturational patterns and gender differences in behavior traits will be assessed. By profiling of the behavior and temperament traits, we will have a better understanding of impact of these factors on weight and eating behaviors in overweight/obese or even underweight adolescents. Conclusions: The proposed study will highlight the association of behavioral factors with nutritional status of adolescents. It will also serve as a strategic approach for the obesity prevention and health management policies designed for adolescents.

Keywords: behaviour, temperament, food intake, adolescents

Procedia PDF Downloads 230
4993 Oscillating Water Column Wave Energy Converter with Deep Water Reactance

Authors: William C. Alexander

Abstract:

The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters.

Keywords: oscillating water column, wave energy converter, spar bouy, stabilizer

Procedia PDF Downloads 95
4992 Empirical Analyses of Students’ Self-Concepts and Their Mathematics Achievements

Authors: Adetunji Abiola Olaoye

Abstract:

The study examined the students’ self-concepts and mathematics achievement viz-a-viz the existing three theoretical models: Humanist self-concept (M1), Contemporary self-concept (M2) and Skills development self-concept (M3). As a qualitative research study, it comprised of one research question, which was transformed into hypothesis viz-a-viz the existing theoretical models. Sample to the study comprised of twelve public secondary schools from which twenty-five mathematics teachers, twelve counselling officers and one thousand students of Upper Basic II were selected based on intact class as school administrations and system did not allow for randomization. Two instruments namely 10 items ‘Achievement test in Mathematics’ (r1=0.81) and 10 items Student’s self-concept questionnaire (r2=0.75) were adapted, validated and used for the study. Data were analysed through descriptive, one way ANOVA, t-test and correlation statistics at 5% level of significance. Finding revealed mean and standard deviation of pre-achievement test scores of (51.322, 16.10), (54.461, 17.85) and (56.451, 18.22) for the Humanist Self-Concept, Contemporary Self-Concept and Skill Development Self-Concept respectively. Apart from that study showed that there was significant different in the academic performance of students along the existing models (F-cal>F-value, df = (2,997); P<0.05). Furthermore, study revealed students’ achievement in mathematics and self-concept questionnaire with the mean and standard deviation of (57.4, 11.35) and (81.6, 16.49) respectively. Result confirmed an affirmative relationship with the Contemporary Self-Concept model that expressed an individual subject and specific self-concept as the primary determinants of higher academic achievement in the subject as there is a statistical correlation between students’ self-concept and mathematics achievement viz-a-viz the existing three theoretical models of Contemporary (M2) with -Z_cal<-Z_val, df=998: P<0.05*. The implication of the study was discussed with recommendations and suggestion for further studies proffered.

Keywords: contemporary, humanists, self-concepts, skill development

Procedia PDF Downloads 221
4991 Adsorption of NO and NH3 in MFI and H-ZSM5: Monte Carlo Simulation

Authors: Z. Jamalzadeh, A. Niaei, H. Erfannia

Abstract:

Due to developing industries, the emission of pollutants such as NOx, SOx, and CO2 are rapidly increased. Generally, NOx is attributed to the mono nitrogen oxides of NO and NO2 that is one of the most important atmospheric contaminants. Hence, controlling the emission of nitrogen oxides is environmentally urgent. Selective catalytic reduction of NOx is one of the most common techniques for NOx removal in which zeolites have wide application due to their high performance. In zeolitic processes, the catalytic reaction occurs mostly in the pores. Therefore, investigation of the adsorption phenomena of the molecules in order to gain an insight and understand the catalytic cycle is of important. Hence, in current study, benefiting from molecular simulations, the adsorption phenomena in the nanocatalysts of SCR of NOx process was investigated in order to get a good insight of the catalysts’ behavior. The effect of cation addition to the support in the catalysts’ behavior through adsorption step was explored by Mont Carlo (MC) using Materials Studio Package. Simulation time of 1 Ns accompanying 1 fs time step, COMPASS27 Force Field and the cut off radios of 12.5 Ȧ was applied for performed runs. It was observed that the adsorption capacity increases in the presence of cations. The sorption isotherms demonstrated the behavior of type I isotherm categories and sorption capacity diminished with increase in temperature whereas an increase was observed at high pressures. Besides, NO sorption showed higher sorption capacity than NH3 in H–ZSM5. In this respect, the energy distributions signified that the molecules could adsorb in just one sorption site at the catalyst and the sorption energy of NO was stronger than the NH3 in H-ZSM5. Furthermore, the isosteric heat of sorption data showed nearly same values for the molecules; however, it indicated stronger interactions of NO molecules with H-ZSM5 zeolite compared to the isosteric heat of NH3 which was low in value.

Keywords: Monte Carlo simulation, adsorption, NOx, ZSM5

Procedia PDF Downloads 339
4990 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 135
4989 An Ethnographic View of Elementary School English Language Policy Implementation

Authors: Peter Ferguson

Abstract:

In 2018, Japan’s Ministry of Education revised the public elementary school curriculum. As part of widespread reforms, the recent Course of Study established English as an academic subject in Grades 5 and 6 plus lowered the starting age of 'foreign language activities' to Grade 3. These changes were implemented in April 2020. This presentation will examine the process and effects that policy implementation had on schools and teachers. A critical analysis of the 2018 Course of Study policy documents revealed several discourses were expressed concerning not only English education and foreign language acquisition, but that larger political and socioeconomic ideological beliefs on globalization, language, nation, culture, and identity were also articulated. Using excerpts from document analysis, the presenter will demonstrate how competing discourses were expressed in policy texts. Data from interviews with national policymakers also exposed several challenges policymakers faced as they tried to balance competing discourses and articulate important pedagogical concepts while having their voices heard. Findings show that some stakeholders were marginalized during the processes of policy creation, transmission, and implementation. This presentation is part of a larger multiple case study that utilized ethnography of language policy and critical analysis of discourse to examine how English education language policy was implemented into the national elementary school curriculum in Japan, and how stakeholders at the various educational levels contended with the creation, interpretation, and appropriation of the language policy.

Keywords: ethnography of language policy, elementary school EFL, language ideologies, discourse analysis

Procedia PDF Downloads 99
4988 Synthesis and Physiochemical Properties of 3-Propanenitrile Imidazolium - Based Dual Functionalized Ionic Liquids Incorporating Dioctyl Sulfosuccinate Anion

Authors: Abobakr Khidir Ziyada, Cecilia Devi Wilfred

Abstract:

In the present work, a new series of 3-propanenitrile imidazolium-based Room Temperature Ionic Liquids (RTILs), incorporating dioctyl sulfosuccinate (DOSS) were prepared by reacting imidazole with acrylonitrile and then reacting the product with allyl chloride, 2-chloroethanol, and benzyl chloride. After the reaction had been completed, metathesis reaction was carried out using sodium dioctyl sulfosuccinate. The densities and viscosities of the present RTILs were measured at atmospheric pressure at T=293.15 to 353.15 K, the refractive index was measured at T=293.15 to 333.15 K, whereas, the start and decomposition temperatures were determined at heating rate 10°C. min^-1. The thermal expansion coefficient, densities at a range of temperatures and pressures, molecular volume, molar refraction, standard entropy and the lattice energy of these RTILs were also estimated. The present RTILs showed higher densities, similar refractive indices, and higher viscosities compared to the other 1-alkyl-3-propanenitrile imidazolium-based RTILs. The densities of the present synthesized RTILs are lower compared to the other nitrile-functionalized ILs. These present RTILs showed a weak temperature dependence on the thermal expansion coefficients, αp=5.0 × 10^−4 to 7.50 × 10−4 K^-1. Empirical correlations were proposed to represent the present data on the physical properties. The lattice energy for the present RTILs was similar to other nitrile–based imidazolium RTILs. The present RTILs showed very high molar refraction when compared similar RTILs incorporating other anions.

Keywords: dioctyl sulfosuccinate, nitrile ILs, 3-propanenitrile, anion, room temperature ionic liquids, RTIL

Procedia PDF Downloads 319
4987 Computer Simulation of Hydrogen Superfluidity through Binary Mixing

Authors: Sea Hoon Lim

Abstract:

A superfluid is a fluid of bosons that flows without resistance. In order to be a superfluid, a substance’s particles must behave like bosons, yet remain mobile enough to be considered a superfluid. Bosons are low-temperature particles that can be in all energy states at the same time. If bosons were to be cooled down, then the particles will all try to be on the lowest energy state, which is called the Bose Einstein condensation. The temperature when bosons start to matter is when the temperature has reached its critical temperature. For example, when Helium reaches its critical temperature of 2.17K, the liquid density drops and becomes a superfluid with zero viscosity. However, most materials will solidify -and thus not remain fluids- at temperatures well above the temperature at which they would otherwise become a superfluid. Only a few substances currently known to man are capable of at once remaining a fluid and manifesting boson statistics. The most well-known of these is helium and its isotopes. Because hydrogen is lighter than helium, and thus expected to manifest Bose statistics at higher temperatures than helium, one might expect hydrogen to also be a superfluid. As of today, however, no one has yet been able to produce a bulk, hydrogen superfluid. The reason why hydrogen did not form a superfluid in the past is its intermolecular interactions. As a result, hydrogen molecules are much more likely to crystallize than their helium counterparts. The key to creating a hydrogen superfluid is therefore finding a way to reduce the effect of the interactions among hydrogen molecules, postponing the solidification to lower temperature. In this work, we attempt via computer simulation to produce bulk superfluid hydrogen through binary mixing. Binary mixture is a technique of mixing two pure substances in order to avoid crystallization and enhance super fluidity. Our mixture here is KALJ H2. We then sample the partition function using this Path Integral Monte Carlo (PIMC), which is well-suited for the equilibrium properties of low-temperature bosons and captures not only the statistics but also the dynamics of Hydrogen. Via this sampling, we will then produce a time evolution of the substance and see if it exhibits superfluid properties.

Keywords: superfluidity, hydrogen, binary mixture, physics

Procedia PDF Downloads 307
4986 Brazilian Transmission System Efficient Contracting: Regulatory Impact Analysis of Economic Incentives

Authors: Thelma Maria Melo Pinheiro, Guilherme Raposo Diniz Vieira, Sidney Matos da Silva, Leonardo Mendonça de Oliveira Queiroz, Mateus Sousa Pinheiro, Danyllo Wenceslau de Oliveira Lopes

Abstract:

The present article has the objective to describe the regulatory impact analysis (RIA) of the contracting efficiency of the Brazilian transmission system usage. This contracting is made by users connected to the main transmission network and is used to guide necessary investments to supply the electrical energy demand. Therefore, an inefficient contracting of this energy amount distorts the real need for grid capacity, affecting the sector planning accuracy and resources optimization. In order to provide this efficiency, the Brazilian Electricity Regulatory Agency (ANEEL) homologated the Normative Resolution (NR) No. 666, from July 23th of 2015, which consolidated the procedures for the contracting of transmission system usage and the contracting efficiency verification. Aiming for a more efficient and rational transmission system contracting, the resolution established economic incentives denominated as Inefficiency installment for excess (IIE) and inefficiency installment for over-contracting (IIOC). The first one, IIE, is verified when the contracted demand exceeds the established regulatory limit; it is applied to consumer units, generators, and distribution companies. The second one, IIOC, is verified when the distributors over-contract their demand. Thus, the establishment of the inefficiency installments IIE and IIOC intends to avoid the agent contract less energy than necessary or more than it is needed. Knowing that RIA evaluates a regulatory intervention to verify if its goals were achieved, the results from the application of the above-mentioned normative resolution to the Brazilian transmission sector were analyzed through indicators that were created for this RIA to evaluate the contracting efficiency transmission system usage, using real data from before and after the homologation of the normative resolution in 2015. For this, indicators were used as the efficiency contracting indicator (ECI), excess of demand indicator (EDI), and over-contracting of demand indicator (ODI). The results demonstrated, through the ECI analysis, a decrease of the contracting efficiency, a behaviour that was happening even before the normative resolution of 2015. On the other side, the EDI showed a considerable decrease in the amount of excess for the distributors and a small reduction for the generators; moreover, the ODI notable decreased, which optimizes the usage of the transmission installations. Hence, with the complete evaluation from the data and indicators, it was possible to conclude that IIE is a relevant incentive for a more efficient contracting, indicating to the agents that their contracting values are not adequate to keep their service provisions for their users. The IIOC also has its relevance, to the point that it shows to the distributors that their contracting values are overestimated.

Keywords: contracting, electricity regulation, evaluation, regulatory impact analysis, transmission power system

Procedia PDF Downloads 105
4985 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes

Authors: Sofia Lazareva, Artem Smolentsev

Abstract:

Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.

Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state

Procedia PDF Downloads 661
4984 Examining the Impact of Intelligence Quotients on Balance and Coordination in Adolescents with Intellectual Disability

Authors: Bilge B. Calik, Ummuhan B. Aslan, Suat Erel, Sehmus Aslan

Abstract:

Objective: Intellectual disability (ID) is characterized by limitations in both intellectual functioning and adaptive behavior, which covers many everyday social and practical skills. The aim of this study was to evaluate the balance and coordination performance determined between mild and moderate ID adolescents who regularly play sport. Methods: The study comprised a total of 179 participants, of which 135 were male adolescents with mild and moderate-level ID who regularly play sports (16.52 ± 2.17 years) and 44 age-matched male adolescents with typical development without ID who do not do any sports (16.52 ± 0.99 years). The participants with ID were students of Special Education Schools for the mentally disabled and had been diagnosed with ID at a Ministry of Health Hospital. The adolescents with mild and moderate ID had been playing football in their school teams at least 2 days a week, for at least one year. Balance and coordination of adolescents were assessed by Bilateral coordination and balance subtests of Short Form Bruininks-Oseretsky Test of Motor Proficiency (BOT-2 SF). Results: As a result of the evaluations comparing coordination and balance scores significant differences were determined between all three groups in favor of the peers without ID (p<0.05). Conclusions: It was observed that balance and coordination levels of adolescents with mild ID were better than those of adolescents with moderate-level ID but lower than those of peers without ID. These results indicate a relationship between IQ level and motor performance. Further comparative studies are needed on individuals with ID who play and do not play sports in order to examine the impact of participation in sports on the motor skills of individuals with ID.

Keywords: balance, coordination, intellectual disability, motor skills, sport

Procedia PDF Downloads 321
4983 Electrochemistry and Performance of Bryophylum pinnatum Leaf (BPL) Electrochemical Cell

Authors: M. A. Mamun, M. I. Khan, M. H. Sarker, K. A. Khan, M. Shajahan

Abstract:

The study was carried out to investigate on an innovative invention, Pathor Kuchi Leaf (PKL) cell, which is fueled with PKL sap of widely available plant called Bryophyllum pinnatum as an energy source for use in PKL battery to generate electricity. This battery, a primary source of electricity, has several order of magnitude longer shelf-lives than the traditional Galvanic cell battery, is still under investigation. In this regard, we have conducted some experiments using various instruments including Atomic Absorption Spectrophotometer (AAS), Ultra-Violet Visible spectrophotometer (UV-Vis), pH meter, Ampere-Volt-Ohm Meter (AVO Meter), etc. The AAS, UV-Vis, and pH-metric analysis data provided that the potential and current were produced as the Zn electrode itself acts as reductant while Cu2+ and H+ ions are behaving as the oxidant. The significant influence of secondary salt on current and potential leads to the dissociation of weak organic acids in PKL juice, and subsequent enrichment to the reactant ions by the secondary salt effects. However, the liquid junction potential was not as great as minimized with the opposite transference of organic acid anions and H+ ions as their dissimilar ionic mobilities. Moreover, the large value of the equilibrium constant (K) implies the big change in Gibbs free energy (∆G), the more electromotive force works in electron transfer during the forward electrochemical reaction which coincides with the fast reduction of the weight of zinc plate, revealed the additional electrical work in the presence of PKL sap. This easily fabricated high-performance PKL battery can show an excellent promise during the off-peak across the countryside.

Keywords: Atomic Absorption Spectrophotometer (AAS), Bryophylum Pinnatum Leaf (BPL), electricity, electrochemistry, organic acids

Procedia PDF Downloads 312
4982 Studying the Impact of Farmers Field School on Vegetable Production in Peshawar District of Khyber Pakhtunkhwa Province of Pakistan

Authors: Muhammad Zafarullah Khan, Sumeera Abbasi

Abstract:

The Farmers Field School (FFS) learning approach aims to improve knowledge of the farmers through integrated crop management and provide leadership in their decision making process. The study was conducted to assess the impact of FFS on vegetables production before and after FFS intervention in four villages of district Peshawar in cropping season 2012, by interviewing 80 FFS respondents, twenty from each selected village. It was observed from the study results that all the respondents were satisfied from the impact of FFS and they informed an increased in production in vegetables. It was further observed that after the implementation of FFS the sowing seed rate of tomato and cucumber were decreased from 0.185kg/kanal to 0.100 kg/ kanal and 0.120kg/kanal to 0.010kg/kanal where as the production of tomato and cucumber were increased from 8158.75kgs/kanal to 10302. 5kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively. The cost of agriculture inputs per kanal including seed cost, crop management, Farm Yard Manure, and weedicides in case of tomato were reduced by Rs.28, Rs. 3170, Rs.658and Rs 205 whereas in cucumber reduced by Rs.35, Rs.570, Rs 80 and Rs.430 respectively. Only fertilizers cost was increased by Rs. 2200 in case of tomato and Rs 465 in case of cucumber. Overall the cost was reduced to Rs 545 in tomato and Rs 490 in cucumber production.FFS provided a healthy vegetables and also reduced input cost by adopting integrated crop management. Therefore the promotion of FFS is needed to be planned for farmers to reduce cost of production, so that the more farmers should be benefited.

Keywords: impact, farmer field schools, vegetable production, Peshawar Khyber Pakhtunkhwa

Procedia PDF Downloads 244
4981 Study of Knowledge, Attitudes and Practices of Menstrual Hygiene of Adolescent Girls Aged 12 to 19 Years Old in Secondary School

Authors: Jean Marie Vianney Ininahazwe, Patrick Bitangumutwenzi

Abstract:

Context: The issue of menstrual hygiene is an entry point for demonstrating the gender-specific nature of the needs of women and adolescent girls. Women and girls around the world face many challenges in managing their periods. They may be deprived of certain basic human rights, including those relating to education, work and health. This work describes the Knowledge, Attitudes and Practices of menstrual hygiene among adolescent girls from 12 to 19 years at Lake Tanganyika Secondary School. Method: This is a descriptive cross-sectional study among 384 adolescent girls from Lake Tanganyika secondary school over a period of 2 weeks from September 13 to September 27 and with a purely general objective of describing the Knowledge, Attitudes and Practices of menstrual hygiene in secondary schools. The study was conducted using a non-probability method and the sampling technique was for convenience. The data collection technique used was the survey by questionnaire and the exploitation of the documentary. The data collection tool used was the questionnaire. Microsoft Word 2013, Microsoft Excel 2.13 and EPI INFO7 software were used for this purpose. Results: We noticed that 55.47% of the participants knew that menstruation is a physiological process; 57.55% of the teenage girls surveyed get their information about menstrual hygiene from their mothers; 75.72% use sanitary napkins and 24.02% use fabrics as protective material; 35.16% of respondents have already lacked sanitary napkins since their menarche; 37.29% are absent from classes due to lack of sanitary napkins; 23.82% use soap and other products to wash.

Keywords: knowledge, attitudes, practices, menstrual hygiene

Procedia PDF Downloads 54
4980 Effects of the Air Supply Outlets Geometry on Human Comfort inside Living Rooms: CFD vs. ADPI

Authors: Taher M. Abou-deif, Esmail M. El-Bialy, Essam E. Khalil

Abstract:

The paper is devoted to numerically investigating the influence of the air supply outlets geometry on human comfort inside living looms. A computational fluid dynamics model is developed to examine the air flow characteristics of a room with different supply air diffusers. The work focuses on air flow patterns, thermal behavior in the room with few number of occupants. As an input to the full-scale 3-D room model, a 2-D air supply diffuser model that supplies direction and magnitude of air flow into the room is developed. Air distribution effect on thermal comfort parameters was investigated depending on changing the air supply diffusers type, angles and velocity. Air supply diffusers locations and numbers were also investigated. The pre-processor Gambit is used to create the geometric model with parametric features. Commercially available simulation software “Fluent 6.3” is incorporated to solve the differential equations governing the conservation of mass, three momentum and energy in the processing of air flow distribution. Turbulence effects of the flow are represented by the well-developed two equation turbulence model. In this work, the so-called standard k-ε turbulence model, one of the most widespread turbulence models for industrial applications, was utilized. Basic parameters included in this work are air dry bulb temperature, air velocity, relative humidity and turbulence parameters are used for numerical predictions of indoor air distribution and thermal comfort. The thermal comfort predictions through this work were based on ADPI (Air Diffusion Performance Index),the PMV (Predicted Mean Vote) model and the PPD (Percentage People Dissatisfied) model, the PMV and PPD were estimated using Fanger’s model.

Keywords: thermal comfort, Fanger's model, ADPI, energy effeciency

Procedia PDF Downloads 398
4979 Effective Water Purification by Impregnated Carbon Nanotubes

Authors: Raviteja Chintala

Abstract:

Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area.

Keywords: TDS (Total Dissolved Solids), carbon nanotubes, water, candle soot

Procedia PDF Downloads 321
4978 Synthesis of Pyrimidine-Based Polymers Consist of 2-{4-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]-Phenyl}-Thiazolo[5,4-B]Pyridine with Deep HOMO Level for Photovoltaics

Authors: Hyehyeon Lee, Jiwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh

Abstract:

Photovoltaics, which have many advantages in cost, easy processing, and light-weight, have attracted attention. We synthesized pyrimidine-based conjugated polymers with 2-{4-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (pPTP) which have an ability of powerful electron withdrawing and introduced into the PSCs. By Stille polymerization, we designed the conjugated polymers, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI. The HOMO energy levels of four polymers (pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI) were at -5.61 ~ -5.89 eV, their LUMO (Lowest Unoccupied Molecular Orbital) energy levels were at -3.95 ~ -4.09 eV. The device including pPTPBDT-12 and PC71BM (1:2) indicated a V_oc of 0.67 V, a J_sc of 1.33 mA/cm², and a fill factor (FF) of 0.25, giving a power conversion efficiency (PCE) of 0.23%. The device including pPTPBDT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 2.56 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency of 0.56%. The device including pPTPBDTT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 3.61 mA/cm², and a fill factor (FF) of 0.29, giving a power conversion efficiency of 0.74%. The device including pPTPTTI and PC71BM (1:2) indicated a V_oc of 0.83 V, a J_sc of 4.41 mA/cm², and a fill factor (FF) of 0.31, giving a power conversion efficiency of 1.13%. Therefore, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH, and pPTPTTI were synthesized by Stille polymerization. And We find one of the best efficiency for these polymers, called pPTPTTI. Their optical properties were measured and the results show that pyrimidine-based polymers especially like pPTPTTI have a great promise to act as the donor of the active layer.

Keywords: polymer solar cells, pyrimidine-based polymers, photovoltaics, conjugated polymer

Procedia PDF Downloads 183
4977 Knowledge, Attitudes and Practices of Menstrual Hygiene of Adolescent Girls Aged 12 to 19 Years Old at Lake Tanganyika Lycee

Authors: Yvette Nsabimana, Nadine Misago, Minani Methode

Abstract:

Context: the issue of menstrual hygiene is an entry point for demonstrating the gender-specific nature of the needs of women and adolescent girls. Women and girls around the world face many challenges in managing their periods. They may be deprived of certain basic human rights, including those relating to education, work and health. This work describes the Knowledge, Attitudes and Practices of menstrual hygiene among adolescent girls from 12 to 19 years of Lake Tanganyika Secondary School. Method: This is a descriptive cross-sectional study among 384 adolescent girls from Lake Tanganyika secondary school over a period of 2 weeks from September 13 to September 27 and with a purely general objective of describing the Knowledge, Attitudes and Practices of menstrual hygiene in secondary schools. The study was conducted using a non-probability method and the sampling technique was for convenience. The data collection technique used was the survey by questionnaire and the exploitation of the documentary. The data collection tool used was the questionnaire. Microsoft Word 2013, Microsoft Excel 2.13 and EPI INFO7 software were used for this purpose. Results: We noticed that 55.47% of the participants knew that menstruation is a physiological process; 57.55% of the teenage girls surveyed get their information about menstrual hygiene from their mothers; 75.72% use sanitary napkins and 24.02% use fabrics as protective material; 35.16% of respondents have already lacked sanitary napkins since their menarche; 37.29% are absent from classes due to lack of sanitary napkins; 23.82% use soap and other products to wash.

Keywords: knowledge, attitudes, practices, menstrual hygiene

Procedia PDF Downloads 60
4976 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 112
4975 Mitigation of Wind Loads on a Building Using Small Wind Turbines

Authors: Arindam Chowdhury, Andres Tremante, Mohammadtaghi Moravej, Bodhisatta Hajra, Ioannis Zisis, Peter Irwin

Abstract:

Extreme wind events, such as hurricanes, have caused significant damage to buildings, resulting in losses worth millions of dollars. The roof of a building is most vulnerable to wind-induced damage due to the high suctions experienced by the roof in extreme wind conditions. Wind turbines fitted to buildings can help generate energy, but to our knowledge, their application to wind load mitigation is not well known. This paper presents results from an experimental study to assess the effect of small wind turbines (developed and patented by the first and second authors) on the wind loads on a low rise building roof. The tests were carried out for an open terrain at the Wall of Wind (WOW) experimental facility at Florida International University (FIU), Miami, Florida, USA, for three cases – bare roof, roof fitted with wind turbines placed closer to the roof edges, and roof with wind turbines placed away from the roof edges. Results clearly indicate that the presence of the wind turbines reduced the mean and peak pressure coefficients (less suction) on the roof when compared to the bare deck case. Furthermore, the peak pressure coefficients were found to be lower (less suction) when the wind turbines were placed closer to the roof, than away from the roof. Flow visualization studies using smoke and gravel clearly showed that the presence of the turbines disrupted the formation of vortices formed by cornering winds, thereby reducing roof suctions and preventing lift off of roof coverings. This study shows that the wind turbines besides generating wind energy, can be used for mitigating wind induced damage to the building roof. Future research must be directed towards understanding the effect of these wind turbines on other roof geometries (e.g. hip/gable) in different terrain conditions.

Keywords: wall of wind, wind loads, wind turbine, building

Procedia PDF Downloads 235
4974 The Multiaxial Load Proportionality Effect on the Fracture Surface Topography of Forged Magnesium Alloys

Authors: Andrew Gryguć, Seyed Behzad Behravesh, Hamid Jahed, Mary Wells, Wojciech Macek, Bruce Williams

Abstract:

This extended abstract investigates the influence of the multiaxial loading on the fatigue behavior of forged magnesium through quantitative analysis of its fracture surface topography and mesoscopic cracking orientation. Fatigue tests were performed on hollow tubular sample geometries extracted from closed-die forged AZ80 Mg components, with three different multiaxial strain paths (axial/shear), proportional, 45° out of phase, and 90° out of phase. Regardless of the strain path, fatigue cracks are initiated at the outer surface of the specimen where the combined stress state is largest. Depending on the salient mode of deformation, distinctive features in the fracture surface manifested themselves with different topographic amplitudes, surface roughness, and mesoscopic cracking orientation in the vicinity of the initiation site. The dominant crack propagation path was in the circumferential direction of the hollow tubular specimen (i.e., cracking transverse to the sample axis, with little to no branching), which is congruent with previous findings of low to moderate shear strain energy density (SED) multiaxial loading. For proportional loading, the initiation zone surface morphology was largely flat and striated, whereas, at phase angles of 45° and 90°, the initiation surface became more faceted and inclined. Overall, both a qualitative and quantitative link was developed between the fracture surface morphology and the level of non-proportionality in the loading providing useful insight into the fracture mechanics of forged magnesium as a relevant focus for future study.

Keywords: fatigue, fracture, magnesium, forging, fractography, anisotropy, strain energy density, asymmetry, multiaxial fatigue

Procedia PDF Downloads 69
4973 The Role of Education and Indigenous Knowledge in Disaster Preparedness

Authors: Sameen Masood, Muhammad Ali Jibran

Abstract:

The frequent flood history in Pakistan has pronounced the need for disaster risk management. Various policies are formulated and steps are being taken by the government in order to cope with the flood effects. However, a much promising pro-active approach that is globally acknowledged is educating the masses regarding living with risk and uncertainty. Unfortunately, majority of the flood victims in Pakistan are poor and illiterate which also transpires as a significant cause of their distress. An illiterate population is not risk averse or equipped intellectually regarding how to prepare and protect against natural disasters. The current research utilizes a cross-disciplinary approach where the role of education (both formal and informal) and indigenous knowledge is explored with reference to disaster preparedness. The data was collected from the flood prone rural areas of Punjab. In the absence of disaster curriculum taught in formal schools, informal education disseminated by NGOs and relief and rehabilitation agencies was the only education given to the flood victims. However the educational attainment of flood victims highly correlated with their awareness regarding flood management and disaster preparedness. Moreover, lessons learned from past flood experience generated indigenous knowledge on the basis of which flood victims prepared themselves for any uncertainty. If the future policy regarding disaster preparation integrates indigenous knowledge and then delivers education on the basis of that, it is anticipated that the flood devastations can be much reduced. Education can play a vital role in amplifying perception of risk and taking precautionary measures for disaster. The findings of the current research will provide practical strategies where disaster preparedness through education has not yet been applied.

Keywords: education, disaster preparedness, illiterate population, risk management

Procedia PDF Downloads 461
4972 Improved Performance of Mn Substituted Ceria Nanospheres for Water Gas Shift Reaction: Influence of Preparation Conditions

Authors: Bhairi Lakshminarayana, Surajit Sarker, Ch. Subrahmanyam

Abstract:

The present study reports the development of noble metal free nano catalysts for low-temperature CO oxidation and water gas shift reaction. Mn-substituted CeO2 solid solution catalysts were synthesized by co-precipitation, combustion and hydrothermal methods. The formation of solid solution was confirmed by XRD with Rietveld refinement and the percentage of carbon and nitrogen doping was ensured by CHNS analyzer. Raman spectroscopic confirmed the oxygen vacancies. The surface area, pore volume and pore size distribution confirmed by N2 physisorption analysis, whereas, UV-visible diffuse reflectance spectroscopy and XPS data confirmed the oxidation state of the Mn ion. The particle size and morphology (spherical shape) of the material was confirmed using FESEM and HRTEM analysis. Ce0.8Mn0.2O2-δ was calcined at 400 °C, 600 °C and 800 °C. Raman spectroscopy confirmed that the catalyst calcined at 400 °C has the best redox properties. The activity of the designed catalysts for CO oxidation (0.2 vol%), carried out with GHSV of 21,000 h-1 and it has been observed that co-precipitation favored the best active catalyst towards CO oxidation and water gas shift reaction, due to the high surface area, improved reducibility, oxygen mobility and highest quantity of surface oxygen species. The activation energy of low temperature CO oxidation on Ce0.8Mn0.2O2- δ (combustion) was 5.5 kcal.K-1.mole-1. The designed catalysts were tested for water gas shift reaction. The present study demonstrates that Mn ion substituted ceria at 400 °C calcination temperature prepared by co-precipitation method promise to revive a green sustainable energy production approach.

Keywords: Ce0.8Mn0.2O2-ð, CO oxidation, physicochemical characterization, water gas shift reaction (WGS)

Procedia PDF Downloads 219
4971 Ionic Liquid and Chemical Denaturants Effects on the Fluorescence Properties of the Laccase

Authors: Othman Saoudi

Abstract:

In this work, we have interested in the investigation of the chemical denaturants and synthesized ionic liquids effects on the fluorescence properties of the laccase from Trametes versicolor. The fluorescence properties of the laccase result from the presence of Tryptophan, which has an aromatic core responsible for the absorption in ultra violet domain and the emission of the photons of fluorescence. The effect Pyrrolidinuim Formate ([pyrr][F]) and Morpholinium Formate ([morph][F]) ionic liquids on the laccase behavior for various volumetric fractions are studied. We have shown that the fluorescence spectrum relative to the [pyrr][F] presents a single band with a maximum around 340 nm and a secondary peak at 361 nm for a volumetric fraction of 20% v/v. For concentration superiors to 40%, the fluorescence intensity decreases and a displacement of the peaks toward higher wavelengths has occurred. For the [morph][F], the fluorescence spectrum showed a single band around 340 nm. The intensity of the principal peak decreases for concentration superiors to 20% v/v. From the plot representing the variation of the λₘₐₓ versus the volumetric concentration, we have determined the concentration of the half-transitions C1/2. These concentrations are equal to 42.62% and 40.91% v/v in the presence of [pyrr][F] and [morph][F] respectively. For the chemical denaturation, we have shown that the fluorescence intensity decreases with increasing denaturant concentrations where the maximum of the wavelength of emission shifts toward the higher wavelengths. We have also determined from the spectrum relative to the urea and GdmCl, the unfolding energy, ∆GD. The results show that the variation of the unfolding energy as a function of the denaturant concentrations varies according to the linear regression model. We have demonstrated also that the half-transitions C1/2 have occurred for urea and GdmCl denaturants concentrations around 3.06 and 3.17 M respectively.

Keywords: laccase, fluorescence, ionic liquids, chemical denaturants

Procedia PDF Downloads 490
4970 Health Professions Students' Knowledge of and Attitude toward Complementary and Alternative Medicine

Authors: Peter R. Reuter

Abstract:

Health professionals play important roles in helping patients use Complementary and Alternative Medicine (CAM) practices safely and accurately. Consequently, it is important for future health professionals to learn about CAM practices during their time in undergraduate and graduate programs. To satisfy this need for education, teaching CAM in nursing and medical schools and other health professions programs is becoming more prevalent. Our study was the first to look specifically at the knowledge of, and attitude toward CAM of undergraduate health professions students at a university in the U.S. Students were invited to participate in one of two anonymous online surveys depending on whether they were pre-health professions students or graduating health professions seniors. Of the 763 responses analyzed, 71.7% were from pre-health professions students, and 28.3% came from graduating seniors. The overall attitude of participants toward and interest in learning about CAM practices was generally fairly positive with graduating seniors being more positive than pre-health professions students. Yoga, meditation, massage therapy, aromatherapy, and chiropractic care were the practices most respondents had personal experience with. Massage therapy, yoga, chiropractic care, meditation, music therapy, and diet-based therapy received the highest ratings from respondents. Three-quarters of respondents planned on including aspects of holistic medicine in their future career as a health professional. The top five practices named were yoga, meditation, massage therapy, diet-based therapy, and music therapy. The study confirms the need to educate health professions students about CAM practices to give them the background information they need to select or recommend the best practices for their patients' needs.

Keywords: CAM education, health professions, health professions students, pre-health professions students

Procedia PDF Downloads 131