Search results for: precytokinesis cell cycle arrest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5543

Search results for: precytokinesis cell cycle arrest

533 Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

Authors: Vinko Lešić, Mario Vašak, Anita Martinčević, Marko Gulin, Antonio Starčić, Hrvoje Novak

Abstract:

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Keywords: price-optimal building climate control, Microgrid power flow optimisation, hierarchical model predictive control, energy efficient buildings, energy market participation

Procedia PDF Downloads 447
532 Silver-Curcumin Nanoparticle Eradicate Enterococcus faecalis in Human ex vivo Dentine Model

Authors: M. Gowri, E. K. Girija, V. Ganesh

Abstract:

Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate E. faecalis. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against E. faecalis. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on E. faecalis was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against E. faecalis. silver-curcumin nanoparticle exerted time kill effect. Further, SEM images of E. faecalis showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of E. faecalis and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Further, silver-curcumin nanoparticle was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non-mutagenic. Conclusion: The results of this study can pave the way for developing new antibacterial agents with well deciphered mechanisms of action and can be a promising antibacterial agent or medicament against root canal infection.

Keywords: ex vivo dentine model, inhibition of biofilm formation, root canal infection, silver-curcumin nanoparticle

Procedia PDF Downloads 171
531 Urban Open Source: Synthesis of a Citizen-Centric Framework to Design Densifying Cities

Authors: Shaurya Chauhan, Sagar Gupta

Abstract:

Prominent urbanizing centres across the globe like Delhi, Dhaka, or Manila have exhibited that development often faces a challenge in bridging the gap among the top-down collective requirements of the city and the bottom-up individual aspirations of the ever-diversifying population. When this exclusion is intertwined with rapid urbanization and diversifying urban demography: unplanned sprawl, poor planning, and low-density development emerge as automated responses. In parallel, new ideas and methods of densification and public participation are being widely adopted as sustainable alternatives for the future of urban development. This research advocates a collaborative design method for future development: one that allows rapid application with its prototypical nature and an inclusive approach with mediation between the 'user' and the 'urban', purely with the use of empirical tools. Building upon the concepts and principles of 'open-sourcing' in design, the research establishes a design framework that serves the current user requirements while allowing for future citizen-driven modifications. This is synthesized as a 3-tiered model: user needs – design ideology – adaptive details. The research culminates into a context-responsive 'open source project development framework' (hereinafter, referred to as OSPDF) that can be used for on-ground field applications. To bring forward specifics, the research looks at a 300-acre redevelopment in the core of a rapidly urbanizing city as a case encompassing extreme physical, demographic, and economic diversity. The suggestive measures also integrate the region’s cultural identity and social character with the diverse citizen aspirations, using architecture and urban design tools, and references from recognized literature. This framework, based on a vision – feedback – execution loop, is used for hypothetical development at the five prevalent scales in design: master planning, urban design, architecture, tectonics, and modularity, in a chronological manner. At each of these scales, the possible approaches and avenues for open- sourcing are identified and validated, through hit-and-trial, and subsequently recorded. The research attempts to re-calibrate the architectural design process and make it more responsive and people-centric. Analytical tools such as Space, Event, and Movement by Bernard Tschumi and Five-Point Mental Map by Kevin Lynch, among others, are deep rooted in the research process. Over the five-part OSPDF, a two-part subsidiary process is also suggested after each cycle of application, for a continued appraisal and refinement of the framework and urban fabric with time. The research is an exploration – of the possibilities for an architect – to adopt the new role of a 'mediator' in development of the contemporary urbanity.

Keywords: open source, public participation, urbanization, urban development

Procedia PDF Downloads 131
530 Factors Associated with Death during Tuberculosis Treatment of Patients Co-Infected with HIV at a Tertiary Care Setting in Cameroon: An 8-Year Hospital-Based Retrospective Cohort Study (2006-2013)

Authors: A. A. Agbor, Jean Joel R. Bigna, Serges Clotaire Billong, Mathurin Cyrille Tejiokem, Gabriel L. Ekali, Claudia S. Plottel, Jean Jacques N. Noubiap, Hortence Abessolo, Roselyne Toby, Sinata Koulla-Shiro

Abstract:

Background: Contributors to fatal outcomes in patients undergoing tuberculosis (TB) treatment in the setting of HIV co-infection are poorly characterized, especially in sub-Saharan Africa. Our study’s aim was to assess factors associated with death in TB/HIV co-infected patients during the first 6 months their TB treatment. Methods: We conducted a tertiary-care hospital-based retrospective cohort study from January 2006 to December 2013 at the Yaoundé Central Hospital, Cameroon. We reviewed medical records to identify hospitalized co-infected TB/HIV patients aged 15 years and older. Death was defined as any death occurring during TB treatment, as per the World Health Organization’s recommendations. Logistic regression analysis identified factors associated with death. Magnitudes of associations were expressed by adjusted odds ratio (aOR) with 95% confidence interval. A p value < 0.05 was considered statistically significant. Results: The 337 patients enrolled had a mean age of 39.3 (+/- 10.3) years and more (54.3%) were women. TB treatment outcomes included: treatment success in 60.8% (n=205), death in 29.4% (n=99), not evaluated in 5.3% (n=18), loss to follow-up in 5.3% (n=14), and failure in 0.3% (n=1) . After exclusion of patients lost to follow-up and not evaluated, death in TB/HIV co-infected patients during TB treatment was associated with: a TB diagnosis made before national implementation of guidelines regarding initiation of antiretroviral therapy (aOR = 2.50 [1.31-4.78]; p = 0.006), the presence of other AIDS-defining infections (aOR = 2.73 [1.27-5.86]; p = 0.010), non-AIDS comorbidities (aOR = 3.35 [1.37-8.21]; p = 0.008), not receiving co-trimoxazole prophylaxis (aOR = 3.61 [1.71-7.63]; p = 0.001), not receiving antiretroviral therapy (aOR = 2.45 [1.18-5.08]; p = 0.016), and CD4 cell counts < 50 cells/mm3 (aOR = 16.43 [1.05-258.04]; p = 0.047). Conclusions: The success rate of anti-tuberculosis treatment among hospitalized TB/HIV co-infected patients in our setting is low. Mortality in the first 6 months of treatment was high and strongly associated with specific clinical factors including states of greater immunosuppression, highlighting the urgent need for targeted interventions, including provision of anti-retroviral therapy and co-trimoxazole prophylaxis in order to enhance patient outcomes.

Keywords: TB/HIV co-infection, death, treatment outcomes, factors

Procedia PDF Downloads 430
529 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir

Authors: Worawanna Panyakotkaew, Falan Srisuriyachai

Abstract:

Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.

Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery

Procedia PDF Downloads 445
528 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216B-5p Expression Level

Authors: Ramin Mehdiabadi

Abstract:

Background: Breast cancer remains the most prevalent cancer diagnosis and the leading cause of cancer death among women globally, representing 11.7% of new cases and 6.9% of deaths. While the incidence and mortality of major cancers are declining in developed regions like the United States and Western Europe, underdeveloped and developing countries exhibit an increasing trend, attributed to lifestyle factors such as smoking, physical inactivity, and high-calorie diets. Objective: This study explores the intricate relationship between the mammalian transcription factor forkhead box (FoxM1) and the microRNA miR-216b-5p in various subtypes of breast cancer, aiming to deepen the understanding of their roles in tumorigenesis, metastasis, and drug resistance. Methods: Breast cancer subtypes were categorized based on key biomarkers: estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2. These include luminal A, luminal B, HER2 enriched, triple-negative, and normal-like subtypes. We focused on analyzing the expression levels of FoxM1 and miR-216b-5p, given the known role of FoxM1 in cell proliferation and its implications in cancer pathologies such as lung, gastric, and breast cancers. Concurrently, miR-216b-5p's function as a tumor suppressor was evaluated to ascertain its regulatory effects on FoxM1. Results: Preliminary data indicate a nuanced interplay between FoxM1 and miR-216b-5p, suggesting a potential inverse relationship that varies across breast cancer subtypes. This relationship underscores the dual role of these biomarkers in modulating cancer progression and response to treatments. Conclusion: The findings advocate for the potential of miR-216b-5p to serve as a prognostic biomarker and a therapeutic target, particularly in subtypes where FoxM1 is prominently expressed. Understanding these molecular interactions provides crucial insights into the personalized treatment strategies and could lead to more effective therapeutic interventions in breast cancer management. Implications: The study highlights the importance of molecular profiling in breast cancer treatment and emphasizes the need for targeted therapeutic approaches in managing diverse cancer subtypes, particularly in varying global contexts where lifestyle factors significantly impact cancer dynamics.

Keywords: breast cancer, gene expression, FoxM1, microRNA

Procedia PDF Downloads 28
527 Proteomic Analysis of Cytoplasmic Antigen from Brucella canis to Characterize Immunogenic Proteins Responded with Naturally Infected Dogs

Authors: J. J. Lee, S. R. Sung, E. J. Yum, S. C. Kim, B. H. Hyun, M. Her, H. S. Lee

Abstract:

Canine brucellosis is a critical problem in dogs leading to reproductive diseases which are mainly caused by Brucella canis. There are, nonetheless, not clear symptoms so that it may go unnoticed in most of the cases. Serodiagnosis for canine brucellosis has not been confirmed. Moreover, it has substantial difficulties due to broad cross-reactivity between the rough cell wall antigens of B. canis and heterospecific antibodies present in normal, uninfected dogs. Thus, this study was conducted to characterize the immunogenic proteins in cytoplasmic antigen (CPAg) of B. canis, which defined the antigenic sensitivity of the humoral antibody responses to B. canis-infected dogs. In analysis of B. canis CPAg, first, we extracted and purified the cytoplasmic proteins from cultured B. canis by hot-saline inactivation, ultrafiltration, sonication, and ultracentrifugation step by step according to the sonicated antigen extract method. For characterization of this antigen, we checked the sort and range of each protein on SDS-PAGE and verified the immunogenic proteins leading to reaction with antisera of B. canis-infected dogs. Selected immunodominant proteins were identified using MALDI-MS/MS. As a result, in an immunoproteomic assay, several polypeptides in CPAg on one or two-dimensional electrophoresis (DE) were specifically reacted to antisera from B. canis-infected dogs but not from non-infected dogs. The polypeptides with approximate 150, 80, 60, 52, 33, 26, 17, 15, 13, 11 kDa on 1-DE were dominantly recognized by antisera from B. canis-infected dogs. In the immunoblot profiles on 2-DE, ten immunodominant proteins in CPAg were detected with antisera of infected dogs between pI 3.5-6.5 at approximate 35 to 10 KDa, without any nonspecific reaction with sera in non-infected dogs. Ten immunodominant proteins identified by MALDI-MS/MS were identified as superoxide dismutase, bacteroferritin, amino acid ABC transporter substrate-binding protein, extracellular solute-binding protein family3, transaldolase, 26kDa periplasmic immunogenic protein, Rhizopine-binding protein, enoyl-CoA hydratase, arginase and type1 glyceraldehyde-3-phosphate dehydrogenase. Most of these proteins were determined by their cytoplasmic or periplasmic localization with metabolism and transporter functions. Consequently, this study discovered and identified the prominent immunogenic proteins in B. canis CPAg, highlighting that those antigenic proteins may accomplish a specific serodiagnosis for canine brucellosis. Furthermore, we will evaluate those immunodominant proteins for applying to the advanced diagnostic methods with high specificity and accuracy.

Keywords: Brucella canis, Canine brucellosis, cytoplasmic antigen, immunogenic proteins

Procedia PDF Downloads 128
526 Novel Adomet Analogs as Tools for Nucleic Acids Labeling

Authors: Milda Nainyte, Viktoras Masevicius

Abstract:

Biological methylation is a methyl group transfer from S-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases), which represent more than 3 % of the proteins in the cell. As a general mechanism, the methyl group from AdoMet replaces a hydrogen atom of nucleophilic center producing methylated DNA and S-adenosyl-L-homocysteine (AdoHcy). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. Two types of MTase catalyzed labeling of biopolymers are known, referred as two-step and one-step. During two-step labeling, an alkylating fragment is transferred onto DNA in a sequence-specific manner and then the reporter group, such as biotin, is attached for selective visualization using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at 100 %, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the one-step labeling, AdoMet analog is designed with the reporter group already attached to the functional group. Thus, the one-step labeling method would be more comfortable tool for labeling of biopolymers in order to prevent additional chemical reactions and selection of reaction conditions. Also, time costs would be reduced. However, effective AdoMet analog appropriate for one-step labeling of biopolymers and containing cleavable bond, required for reduction of PCR interferation, is still not known. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of Activated Groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Herein we describe synthetic procedures for the preparation of N-biotinoyl-N’-(pent-4-ynoyl)cystamine starting from the coupling of cystamine with pentynoic acid and finally attaching the biotin as a reporter group. The synthesis of the first AdoMet based cofactor containing a cleavable reporter group and appropriate for one-step labeling was developed.

Keywords: adoMet analogs, DNA alkylation, cofactor, methyltransferases

Procedia PDF Downloads 181
525 A Program of Data Analysis on the Possible State of the Antibiotic Resistance in Bangladesh Environment in 2019

Authors: S. D. Kadir

Abstract:

Background: Antibiotics have always been at the centrum of the revolution of modern microbiology. Micro-organisms and its pathogenicity, resistant organisms, inappropriate or over usage of various types of antibiotic agents are fuelled multidrug-resistant pathogenic organisms. Our present time review report mainly focuses on the therapeutic condition of antibiotic resistance and the possible roots behind the development of antibiotic resistance in Bangladesh in 2019. Methodology: The systemic review has progressed through a series of research analyses on various manuscripts published on Google Scholar, PubMed, Research Gate, and collected relevant information from established popular healthcare and diagnostic center and its subdivisions all over Bangladesh. Our research analysis on the possible assurance of antibiotic resistance been ensured by the selective medical reports and on random assay on the extent of individual antibiotic in 2019. Results: 5 research articles, 50 medical report summary, and around 5 patients have been interviewed while going through the estimation process. We have prioritized research articles where the research analysis been performed by the appropriate use of the Kirby-Bauer method. Kirby-Bauer technique is preferred as it provides greater efficiency, ensures lower performance expenditure, and supplies greater convenience and simplification in the application. In most of the reviews, clinical and laboratory standards institute guidelines were strictly followed. Most of our reports indicate significant resistance shown by the Beta-lactam drugs. Specifically by the derivatives of Penicillin's, Cephalosporin's (rare use of the first generation Cephalosporin and overuse of the second and third generation of Cephalosporin and misuse of the fourth generation of Cephalosporin), which are responsible for almost 67 percent of the bacterial resistance. Moreover, approximately 20 percent of the resistance was due to the fact of drug pumping from the bacterial cell by tetracycline and sulphonamides and their derivatives. Conclusion: 90 percent of the approximate antibiotic resistance is due to the usage of relative and true broad-spectrum antibiotics. The environment has been created by the following circumstances where; the excessive usage of broad-spectrum antibiotics had led to a condition where the disruption of native bacteria and a series of anti-microbial resistance causing a disturbance of the surrounding environments in medium, leading to a state of super-infection.

Keywords: antibiotics, antibiotic resistance, Kirby Bauer method, microbiology

Procedia PDF Downloads 109
524 Multimodal Rhetoric in the Wildlife Documentary, “My Octopus Teacher”

Authors: Visvaganthie Moodley

Abstract:

While rhetoric goes back as far as Aristotle who focalised its meaning as the “art of persuasion”, most scholars have focused on elocutio and dispositio canons, neglecting the rhetorical impact of multimodal texts, such as documentaries. Film documentaries are being increasingly rhetoric, often used by wildlife conservationists for influencing people to become more mindful about humanity’s connection with nature. This paper examines the award-winning film documentary, “My Octopus Teacher”, which depicts naturalist, Craig Foster’s unique discovery and relationship with a female octopus in the southern tip of Africa, the Cape of Storms in South Africa. It is anchored in Leech and Short’s (2007) framework of linguistic and stylistic categories – comprising lexical items, grammatical features, figures of speech and other rhetoric features, and cohesiveness – with particular foci on diction, anthropomorphic language, metaphors and symbolism. It also draws on Kress and van Leeuwen’s (2006) multimodal analysis to show how verbal cues (the narrator’s commentary), visual images in motion, visual images as metaphors and symbolism, and aural sensory images such as music and sound synergise for rhetoric effect. In addition, the analysis of “My Octopus Teacher” is guided by Nichol’s (2010) narrative theory; features of a documentary which foregrounds the credibility of the narrative as a text that represents real events with real people; and its modes of construction, viz., the poetic mode, the expository mode, observational mode and participatory mode, and their integration – forging documentaries as multimodal texts. This paper presents a multimodal rhetoric discussion on the sequence of salient episodes captured in the slow moving one-and-a-half-hour documentary. These are: (i) The prologue: on the brink of something extraordinary; (ii) The day it all started; (iii) The narrator’s turmoil: getting back into the ocean; (iv) The incredible encounter with the octopus; (v) Establishing a relationship; (vi) Outwitting the predatory pyjama shark; (vii) The cycle of life; and (viii) The conclusion: lessons from an octopus. The paper argues that wildlife documentaries, characterized by plausibility and which provide researchers the lens to examine the ideologies about animals and humans, offer an assimilation of the various senses – vocal, visual and audial – for engaging viewers in stylized compelling way; they have the ability to persuade people to think and act in particular ways. As multimodal texts, with its use of lexical items; diction; anthropomorphic language; linguistic, visual and aural metaphors and symbolism; and depictions of anthropocentrism, wildlife documentaries are powerful resources for promoting wildlife conservation and conscientizing people of the need for establishing a harmonious relationship with nature and humans alike.

Keywords: documentaries, multimodality, rhetoric, style, wildlife, conservation

Procedia PDF Downloads 74
523 Review of Consecutive Patients Treated with a Combination of Vancomycin and Rifaximin for Diarrhea Predominant Irritable Bowel Syndrome (IBS-D)

Authors: Portia Murphy, Danica Vasic, Anoja W. Gunaratne, Encarnita Sitchon, Teresita Tugonon, Marou Ison, Antoinette Le Busque, Christelle Pagonis, Thomas J. Borody

Abstract:

Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder that affects an estimated 11% of the population globally with the most predominant symptoms being abdominal pain, bloating and altered bowel movements. All age groups suffer from IBS although the prevalence of IBS decreases for age groups over 50 years. Women are more likely to suffer from IBS than men. IBS can be categorized into 3 groups based on the type of altered bowel movement: diarrhea-predominant IBS (IBS-D), constipation-predominant IBS (IBS-C) and IBS with mixed bowel habit (IBS-M). The contribution of the gut microbiome to the etiology of IBS is becoming increasingly recognized with rising use of anti-microbial agents. Previous studies on vancomycin and rifaximin used as monotherapy or in combination have been conducted mainly on IBS-C and showed marked improvements in the symptoms. According to our knowledge, no studies reported using these two combinations of antibiotics for IBS-D. Here, we report a consecutive cohort of 18 patients treated with both vancomycin and rifaximin for IBS-D. These patients’ records were reviewed retrospectively. In this cohort, patients ages were between 24-74 years (mean 44 years) and 9 were female. Baseline all patients had diarrhea, 4 with mucus and one with blood. Patients reported other symptoms were abdominal pain (n=11) bloating (n=9), flatulence (n=7), fatigue (n=4) and nausea (n=3). Patients treatments were personalized according to their symptom severity and tolerability and were treated with combination of rifaximin (500 - 3000mg/d) and vancomycin (500mg - 1500mg/d) for an ongoing period. Follow-ups were conducted between 2-32 weeks’ time. Of all patients, 89% patients reported improvement of the symptoms, 1 reported no change and 1 patient’s symptoms got worse. The mechanism of action for both vancomycin and rifaximin involves the inhibition of bacterial cell wall and protein synthesis respectively. The role of these medications in improving the symptoms of this cohort suggests that IBS-D may be microbiome infection driven. In this cohort, similar patient presentations to Clostridium difficile, as well as symptom improvement with the use of rifaximin and particularly vancomycin, suggest that the infectious agent may be an unidentified Clostridium. These preliminary results offer an alternative etiology for IBS-D not previously considered and open the avenue for new research.

Keywords: clostridium deficile, diarrhea predominant Irritable Bowel Syndrome, microbiome, vancomycin/rifaximin combination

Procedia PDF Downloads 115
522 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry

Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya

Abstract:

This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.

Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry

Procedia PDF Downloads 72
521 Effects of Caprine Arthritis-Encephalitis Virus (CAEV) Infection on the Expression of Cathelicidin Genes in Goat Blood Leukocytes

Authors: Daria Reczynska, Justyna Jarczak, Michal Czopowicz, Danuta Sloniewska, Karina Horbanczuk, Wieslaw Jarmuz, Jaroslaw Kaba, Emilia Bagnicka

Abstract:

Since people, animals and plants are constantly exposed to pathogens they have developed very complex systems of defense. Among ca. 1000 antimicrobial peptides from different families so far identified, approximately 30 belonging to cathelicidin family can be found in mammals. Cathelicidins probably constitute the first line of defense because they can act at a physiological salt concentration which is present in healthy tissues. Moreover, the low salt concentration which is present in infected tissues inhibits their activity. In goat bactenecin 7.5 (BAC7.5), bactenecin 5 (BAC5), myeloid antimicrobial peptide 28 (MAP28), myeloid antimicrobial peptide 34 (MAP34 A and B), goat bactenecin3.4 (ChBac3.4) were identified. Caprine arthritis-encephalitis (CAE) caused by small ruminant lentivirus (SRLV) is economic problem. The main CAE symptoms are weight loss, arthritis, pneumonia and mastitis (significant elevation of the somatic cell count and deterioration of some technological parameters). The study was conducted on 24 dairy goats. The animals were divided into two groups: experimental (SRLV-infected) and control (non-infected). The blood samples were collected five times: on the 1st, 7th, 30th, 90th and 150thday of lactation. The levels of transcripts of BAC7.5, BAC5, MAP28 and MAP34 genes in blood leucocytes were measured using qPCR method. There were no differences in mRNA levels of studied genes between stages of lactation. The differences were observed in expressions of BAC5, MAP28 and MAP34 genes with lower levels in the experimental group. There was no difference in BAC7.5 expression between groups. The decreased levels of transcripts of cathelicidin genes in blood leucocytes of SRLV-infected goats may indicate the disturbances of homeostasis in organisms. It can be concluded that SRLV infection seems to inhibit expression of cathelicidin genes. The study was financed by a grant from the National Scientific Center No. UMO-2013/09/B/NZ/03514.

Keywords: goat, CAEV, cathelicidins, blood leukocytes, gene expression

Procedia PDF Downloads 268
520 Utility of Thromboelastography Derived Maximum Amplitude and R-Time (MA-R) Ratio as a Predictor of Mortality in Trauma Patients

Authors: Arulselvi Subramanian, Albert Venencia, Sanjeev Bhoi

Abstract:

Coagulopathy of trauma is an early endogenous coagulation abnormality that occurs shortly resulting in high mortality. In emergency trauma situations, viscoelastic tests may be better in identifying the various phenotypes of coagulopathy and demonstrate the contribution of platelet function to coagulation. We aimed to determine thrombin generation and clot strength, by estimating a ratio of Maximum amplitude and R-time (MA-R ratio) for identifying trauma coagulopathy and predicting subsequent mortality. Methods: We conducted a prospective cohort analysis of acutely injured trauma patients of the adult age groups (18- 50 years), admitted within 24hrs of injury, for one year at a Level I trauma center and followed up on 3rd day and 5th day of injury. Patients with h/o coagulation abnormalities, liver disease, renal impairment, with h/o intake of drugs were excluded. Thromboelastography was done and a ratio was calculated by dividing the MA by the R-time (MA-R). Patients were further stratified into sub groups based on the calculated MA-R quartiles. First sampling was done within 24 hours of injury; follow up on 3rd and 5thday of injury. Mortality was the primary outcome. Results: 100 acutely injured patients [average, 36.6±14.3 years; 94% male; injury severity score 12.2(9-32)] were included in the study. Median (min-max) on admission MA-R ratio was 15.01(0.4-88.4) which declined 11.7(2.2-61.8) on day three and slightly rose on day 5 13.1(0.06-68). There were no significant differences between sub groups in regard to age, or gender. In the lowest MA-R ratios subgroup; MA-R1 (<8.90; n = 27), injury severity score was significantly elevated. MA-R2 (8.91-15.0; n = 23), MA-R3 (15.01-19.30; n = 24) and MA-R4 (>19.3; n = 26) had no difference between their admission laboratory investigations, however slight decline was observed in hemoglobin, red blood cell count and platelet counts compared to the other subgroups. Also significantly prolonged R time, shortened alpha angle and MA were seen in MA-R1. Elevated incidence of mortality also significantly correlated with on admission low MA-R ratios (p 0.003). Temporal changes in the MA-R ratio did not correlated with mortality. Conclusion: The MA-R ratio provides a snapshot of early clot function, focusing specifically on thrombin burst and clot strength. In our observation, patients with the lowest MA-R time ratio (MA-R1) had significantly increased mortality compared with all other groups (45.5% MA-R1 compared with <25% in MA-R2 to MA-R3, and 9.1% in MA-R4; p < 0.003). Maximum amplitude and R-time may prove highly useful to predict at-risk patients early, when other physiologic indicators are absent.

Keywords: coagulopathy, trauma, thromboelastography, mortality

Procedia PDF Downloads 150
519 The Effects of Ellagic Acid on Rat Lungs Induced Tobacco Smoke

Authors: Nalan Kaya, Gonca Ozan, Elif Erdem, Neriman Colakoglu, Enver Ozan

Abstract:

The toxic effects of tobacco smoke exposure have been detected in numerous studies. Ellagic acid (EA), (2,3,7,8-tetrahydroxy [1]-benzopyranol [5,4,3-cde] benzopyran 5,10-dione), a natural phenolic lactone compound, is found in various plant species including pomegranate, grape, strawberries, blackberries and raspberries. Similar to the other effective antioxidants, EA can safely interact with the free radicals and reduces oxidative stress through the phenolic ring and hydroxyl components in its structure. The aim of the present study was to examine the protective effects of ellagic acid against oxidative damage on lung tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. Equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Lung tissues and blood samples were taken. The lung slides were stained by H&E and Masson’s Trichrome methods. Also, galactin-3 stain was applied. Biochemical analyzes were performed. Vascular congestion and inflammatory cell infiltration in pulmonary interstitium, thickness in interalveolar septum, cytoplasmic vacuolation in some macrophages and galactin-3 positive cells were observed in histological examination of tobacco smoke group. In addition to these findings, hemorrhage in pulmonary interstitium and bronchial lumen was detected in tobacco smoke + corn oil group. Reduced vascular congestion and hemorrhage in pulmoner interstitium and rarely thickness in interalveolar septum were shown in tobacco smoke + EA group. Compared to group-I, group-II GSH level was decreased and MDA level was increased significantly. Nevertheless group-IV GSH level was higher and MDA level was lower than group-II. The results indicate that ellagic acid could protect the lung tissue from the tobacco smoke harmful effects.

Keywords: ellagic acid, lung, rat, tobacco smoke

Procedia PDF Downloads 197
518 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices

Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das

Abstract:

The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.

Keywords: terahertz, detector, responsivity, topological-semimetals

Procedia PDF Downloads 146
517 Tunable Crystallinity of Zinc Gallogermanate Nanoparticles via Organic Ligand-Assisted Biphasic Hydrothermal Synthesis

Authors: Sarai Guerrero, Lijia Liu

Abstract:

Zinc gallogermanate (ZGGO) is a persistent phosphor that can emit in the near infrared (NIR) range once dopped with Cr³⁺ enabling its use for in-vivo deep-tissue bio-imaging. Such a property also allows for its application in cancer diagnosis and therapy. Given this, work into developing a synthetic procedure that can be done using common laboratory instruments and equipment as well as understanding ZGGO overall, is in demand. However, the ZGGO nanoparticles must have a size compatible for cell intake to occur while still maintaining sufficient photoluminescence. The nanoparticle must also be made biocompatible by functionalizing the surface for hydrophilic solubility and for high particle uniformity in the final product. Additionally, most research is completed on doped ZGGO, leaving a gap in understanding the base form of ZGGO. It also leaves a gap in understanding how doping affects the synthesis of ZGGO. In this work, the first step of optimizing the particle size via the crystalline size of ZGGO was done with undoped ZGGO using the organic acid, oleic acid (OA) for organic ligand-assisted biphasic hydrothermal synthesis. The effects of this synthesis procedure on ZGGO’s crystallinity were evaluated using Powder X-Ray Diffraction (PXRD). OA was selected as the capping ligand as experiments have shown it beneficial in synthesizing sub-10 nm zinc gallate (ZGO) nanoparticles as well as palladium nanocrystals and magnetite (Fe₃O₄) nanoparticles. Later it is possible to substitute OA with a different ligand allowing for hydrophilic solubility. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) was used to investigate the surface of the nanoparticle to investigate and verify that OA had capped the nanoparticle. PXRD results showed that using this procedure led to improved crystallinity, comparable to the high-purity reagents used on the ZGGO nanoparticles. There was also a change in the crystalline size of the ZGGO nanoparticles. ATR-FTIR showed that once capped ZGGO cannot be annealed as doing so will affect the OA. These results point to this new procedure positively affecting the crystallinity of ZGGO nanoparticles. There are also repeatable implying the procedure is a reliable source of highly crystalline ZGGO nanoparticles. With this completed, the next step will be working on substituting the OA with a hydrophilic ligand. As these ligands effect the solubility of the nanoparticle as well as the pH that the nanoparticles can dissolve in, further research is needed to verify which ligand is best suited for preparing ZGGO for bio-imaging.

Keywords: biphasic hydrothermal synthesis, crystallinity, oleic acid, zinc gallogermanate

Procedia PDF Downloads 117
516 Palladium/Platinum Complexes of Tridentate 4-Acylpyrazolone Thiosemicarbazone with Antioxidant Properties

Authors: Omoruyi G. Idemudia, Alexander P. Sadimenko

Abstract:

The need for the development of new sustainable bioactive compounds with unique properties that can become potential replacement for commonly used medicinal drugs has continued to gain tremendous research concerns because of the problems of disease resistant to these medicinal drugs and their toxicity effects. NOS-donor heterocycles are particularly of interest as they have showed good pharmacological activities in the midst of their interesting chelating properties towards metal ions, an important characteristic for transition metal based drugs design. These new compounds have also gained application as dye sensitizers in solar cell panels for the generation of renewable solar energy, as greener water purification polymer for supply and management of clean water and as catalysts which are used to reduce the amount of pollutants from industrial reaction processes amongst others, because of their versatile properties. Di-ketone acylpyrazolones and their azomethine schiff bases have been employed as pharmaceuticals as well as analytical reagents, and their application as transition metal complexes have being well established. In this research work, a new 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one-thiosemicarbazone was synthesized from the reaction of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one and thiosemicarbazide in methanol. The pure isolate of the thiosemicarbazone was further reacted with aqueous solutions of palladium and platinum salts to obtain their metal complexes, in an effort towards the discovery of transition metal based synthetic drugs. These compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group according to x-ray crystallography. The tridentate NOS ligand formed a tetrahedral geometry on coordinating with metal ions. Reported compounds showed varying antioxidant free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 100, 200, 300, 400 and 500 µg/ml concentrations. The platinum complex have shown a very good antioxidant property against DPPH with an IC50 of 76.03 µg/ml compared with standard ascorbic acid (IC50 of 74.66 µg/ml) and as such have been identified as a potential anticancer candidate.

Keywords: acylpyrazolone, free radical scavenging activities, tridentate ligand, x-ray crystallography

Procedia PDF Downloads 167
515 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials

Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó

Abstract:

Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.

Keywords: morphology, PE, roughness, titanium

Procedia PDF Downloads 111
514 Fire Safe Medical Oxygen Delivery for Aerospace Environments

Authors: M. A. Rahman, A. T. Ohta, H. V. Trinh, J. Hyvl

Abstract:

Atmospheric pressure and oxygen (O2) concentration are critical life support parameters for human-occupied aerospace vehicles and habitats. Various medical conditions may require medical O2; for example, the American Medical Association has determined that commercial air travel exposes passengers to altitude-related hypoxia and gas expansion. It may cause some passengers to experience significant symptoms and medical complications during the flight, requiring supplemental medical-grade O2 to maintain adequate tissue oxygenation and prevent hypoxemic complications. Although supplemental medical grade O2 is a successful lifesaver for respiratory and cardiac failure, O2-enriched exhaled air can contain more than 95 % O2, increasing the likelihood of a fire. In an aerospace environment, a localized high concentration O2 bubble forms around a patient being treated for hypoxia, increasing the cabin O2 beyond the safe limit. To address this problem, this work describes a medical O2 delivery system that can reduce the O2 concentration from patient-exhaled O2-rich air to safe levels while maintaining the prescribed O2 administration to the patient. The O2 delivery system is designed to be a part of the medical O2 kit. The system uses cationic multimetallic cobalt complexes to reversibly, selectively, and stoichiometrically chemisorb O2 from the exhaled air. An air-release sub-system monitors the exhaled air, and as soon the O2 percentage falls below 21%, the air is released to the room air. The O2-enriched exhaled air is channeled through a layer of porous, thin-film heaters coated with the cobalt complex. The complex absorbs O2, and when saturated, the complex is heated to 100°C using the thin-film heater. Upon heating, the complex desorbs O2 and is once again ready to absorb or remove the excess O2 from exhaled air. The O2 absorption is a sub-second process, and desorption is a multi-second process. While heating at 0.685 °C/sec, the complex desorbs ~90% O2 in 110 sec. These fast reaction times mean that a simultaneous absorb/desorb process in the O2 delivery system will create a continuous absorption of O2. Moreover, the complex can concentrate O2 by a factor of 160 times that in air and desorb over 90% of the O2 at 100°C. Over 12 cycles of thermogravimetry measurement, less than 0.1% decrease in reversibility in O2 uptake was observed. The 1 kg complex can desorb over 20L of O2, so simultaneous O2 desorption by 0.5 kg of complex and absorption by 0.5 kg of complex can potentially continuously remove 9L/min O2 (~90% desorbed at 100°C) from exhaled air. The complex is synthesized and characterized for reversible O2 absorption and efficacy. The complex changes its color from dark brown to light gray after O2 desorption. In addition to thermogravimetric analysis, the O2 absorption/desorption cycle is characterized using optical imaging, showing stable color changes over ten cycles. The complex was also tested at room temperature in a low O2 environment in its O2 desorbed state, and observed to hold the deoxygenated state under these conditions. The results show the feasibility of using the complex for reversible O2 absorption in the proposed fire safe medical O2 delivery system.

Keywords: fire risk, medical oxygen, oxygen removal, reversible absorption

Procedia PDF Downloads 89
513 The Lonely Entrepreneur: Antecedents and Effects of Social Isolation on Entrepreneurial Intention and Output

Authors: Susie Pryor, Palak Sadhwani

Abstract:

The purpose of this research is to provide the foundations for a broad research agenda examining the role loneliness plays in entrepreneurship. While qualitative research in entrepreneurship incidentally captures the existence of loneliness as a part of the lived reality of entrepreneurs, to the authors’ knowledge, no academic work has to date explored this construct in this context. Moreover, many individuals reporting high levels of loneliness (women, ethnic minorities, immigrants, low income, low education) reflect those who are currently driving small business growth in the United States. Loneliness is a persistent state of emotional distress which results from feelings of estrangement and rejection or develops in the absence of social relationships and interactions. Empirical work finds links between loneliness and depression, suicide and suicide ideation, anxiety, hostility and passiveness, lack of communication and adaptability, shyness, poor social skills and unrealistic social perceptions, self-doubts, fear of rejection, and negative self-evaluation. Lonely individuals have been found to exhibit lower levels of self-esteem, higher levels of introversion, lower affiliative tendencies, less assertiveness, higher sensitivity to rejection, a heightened external locus of control, intensified feelings of regret and guilt over past events and rigid and overly idealistic goals concerning the future. These characteristics are likely to impact entrepreneurs and their work. Research identifies some key dangers of loneliness. Loneliness damages human love and intimacy, can disturb and distract individuals from channeling creative and effective energies in a meaningful way, may result in the formation of premature, poorly thought out and at times even irresponsible decisions, and produce hard and desensitized individuals, with compromised health and quality of life concerns. The current study utilizes meta-analysis and text analytics to distinguish loneliness from other related constructs (e.g., social isolation) and categorize antecedents and effects of loneliness across subpopulations. This work has the potential to materially contribute to the field of entrepreneurship by cleanly defining constructs and providing foundational background for future research. It offers a richer understanding of the evolution of loneliness and related constructs over the life cycle of entrepreneurial start-up and development. Further, it suggests preliminary avenues for exploration and methods of discovery that will result in knowledge useful to the field of entrepreneurship. It is useful to both entrepreneurs and those work with them as well as academics interested in the topics of loneliness and entrepreneurship. It adopts a grounded theory approach.

Keywords: entrepreneurship, grounded theory, loneliness, meta-analysis

Procedia PDF Downloads 99
512 Cognitive Behaviour Hypnotherapy as an Effective Intervention for Nonsuicidal Self Injury Disorder

Authors: Halima Sadia Qureshi, Urooj Sadiq, Noshi Eram Zaman

Abstract:

The goal of this study was to see how cognitive behavior hypnotherapy affected nonsuicidal self-injury. DSM 5 invites the researchers to explore the newly added condition under the chapter of conditions under further study named Nonsuicidal self-injury disorder. To date, no empirical sound intervention has been proven effective for NSSI as given in DSM 5. Nonsuicidal self-injury is defined by DSM 5 as harming one's self physically, without suicidal intention. Around 7.6% of teenagers are expected to fulfill the NSSI disorder criteria. 3 Adolescents, particularly university students, account for around 87 percent of self-harm studies. Furthermore, one of the risks associated with NSSI is an increased chance of suicide attempts, and in most cases, the cycle repeats again. 6 The emotional and psychological components of the illness might lead to suicide, either intentionally or unintentionally. 7 According to a research done at a Pakistani military hospital, over 80% of participants had no intention of committing suicide. Furthermore, it has been determined that improvements in NSSI prevention and intervention are necessary as a stand-alone strategy. The quasi-experimental study took place in Islamabad and Rawalpindi, Pakistan, from May 2019 to April 2020 and included students aged 18 to 25 years old from several institutions and colleges in the twin cities. According to the Diagnostic and Statistical Manual of Mental Disorders 5th edition, the individuals were assessed for >2 episodes without suicidal intent using the intentional self-harm questionnaire. The Clinician Administered Nonsuicidal Self-Injury Disorder Index (CANDI) was used to assess the individual for NSSI condition. Symptom checklist-90 (SCL-90) was used to screen the participants for differential diagnosis. Mclean Screening Instrument for Borderline Personality Disorder (MSI-BPD) was used to rule out the BPD cases. The selected participants, n=106 from the screening sample of 600, were selected. They were further screened to meet the inclusion and exclusion criteria, and the total of n=71 were split into two groups: intervention and control. The intervention group received cognitive behavior hypnotherapy for the next three months, whereas the control group received no treatment. After the period of three months, both the groups went through the post assessment, and after the three months’ period, follow-up assessment was conducted. The groups were evaluated, and SPSS 25 was used to analyse the data. The results showed that each of the two groups had 30 (50 percent) of the 60 participants. There were 41 males (68 percent) and 19 girls (32 percent) in all. The bulk of the participants were between the ages of 21 and 23. (48 percent). Self-harm events were reported by 48 (80 percent) of the pupils, and suicide ideation was found in 6 (ten percent). In terms of pre- and post-intervention values (d=4.90), post-intervention and follow-up assessment values (d=0.32), and pre-intervention and follow-up values (d=5.42), the study's effect size was good. The comparison of treatment and no-treatment groups revealed that treatment was more successful than no-treatment, F (1, 58) = 53.16, p.001. The results reveal that the treatment manual of CBH is effective for Nonsuicidal self-injury disorder.

Keywords: NSSI, nonsuicidal self injury disorder, self-harm, self-injury, Cognitive behaviour hypnotherapy, CBH

Procedia PDF Downloads 166
511 SME Internationalisation and Its Financing: An Exploratory Study That Analyses Government Support and Funding Mechanisms for Irish and Scottish International SMEs

Authors: L. Spencer, S. O’ Donohoe

Abstract:

Much of the research to date on internationalisation relates to large firms with much less known about how small and medium-sized enterprises (SMEs) engage in internationalisation. Given the crucial role of SMEs in contributing to economic growth, there is now an emphasis on the need for SMEs internationalise. Yet little is known about how SMEs undertake and finance such expansion and whether or not internationalisation actually hinders or helps them in securing finance. The purpose of this research is to explore the internationalisation process for SMEs, the sources of funding used in financing this expansion and support received from the state agencies in assisting their overseas expansion. A conceptual framework has been devised which marries the two strands of literature together (internationalisation and financing the firm). The exploratory nature of this research dictates that the most appropriate methodology was to use semi-structured interviews with SME owners; bank representatives and support agencies. In essence, a triangulated approach to the research problem facilitates assessment of the perceptions and experiences from firms, the state and the financial institutions. Our sample is drawn from SMEs operating in Ireland and Scotland, two small but very open economies where SMEs are the dominant form of organisation. The sample includes a range of industry sectors. Key findings to date suggest some SMEs are born global; others are born again global whilst a significant cohort can be classed as traditional internationalisers. Unsurprisingly there is a strong industry effect with firms in the high tech sector more likely to be faster internationalisers in contrast to those in the traditional manufacturing sectors. Owner manager’s own funds are deemed key to financing initial internationalisation lending support for the financial growth life cycle model albeit more important for the faster internationalisers in contrast to the slower cohort who are more likely to deploy external sources especially bank finance. Retained earnings remain the predominant source of on-going financing for internationalising firms but trade credit is often used and invoice discounting is utilised quite frequently. In terms of lending, asset based lending backed by personal guarantees appears paramount for securing bank finance. Whilst the lack of diversified sources of funding for internationalising SMEs was found in both jurisdictions there appears no evidence to suggest that internationalisation impedes firms in securing finance. Finally state supports were cited as important to the internationalisation process, in particular those provided by Enterprise Ireland were deemed very valuable. Considering the paucity of studies to date on SME internationalisation and in particular the funding mechanisms deployed by them; this study seeks to contribute to the body of knowledge in both the international business and finance disciplines.

Keywords: funding, government support, international pathways, modes of entry

Procedia PDF Downloads 227
510 Optimization of Maintenance of PV Module Arrays Based on Asset Management Strategies: Case of Study

Authors: L. Alejandro Cárdenas, Fernando Herrera, David Nova, Juan Ballesteros

Abstract:

This paper presents a methodology to optimize the maintenance of grid-connected photovoltaic systems, considering the cleaning and module replacement periods based on an asset management strategy. The methodology is based on the analysis of the energy production of the PV plant, the energy feed-in tariff, and the cost of cleaning and replacement of the PV modules, with the overall revenue received being the optimization variable. The methodology is evaluated as a case study of a 5.6 kWp solar PV plant located on the Bogotá campus of the Universidad Nacional de Colombia. The asset management strategy implemented consists of assessing the PV modules through visual inspection, energy performance analysis, pollution, and degradation. Within the visual inspection of the plant, the general condition of the modules and the structure is assessed, identifying dust deposition, visible fractures, and water accumulation on the bottom. The energy performance analysis is performed with the energy production reported by the monitoring systems and compared with the values estimated in the simulation. The pollution analysis is performed using the soiling rate due to dust accumulation, which can be modelled by a black box with an exponential function dependent on historical pollution values. The pollution rate is calculated with data collected from the energy generated during two years in a photovoltaic plant on the campus of the National University of Colombia. Additionally, the alternative of assessing the temperature degradation of the PV modules is evaluated by estimating the cell temperature with parameters such as ambient temperature and wind speed. The medium-term energy decrease of the PV modules is assessed with the asset management strategy by calculating the health index to determine the replacement period of the modules due to degradation. This study proposes a tool for decision making related to the maintenance of photovoltaic systems. The above, projecting the increase in the installation of solar photovoltaic systems in power systems associated with the commitments made in the Paris Agreement for the reduction of CO2 emissions. In the Colombian context, it is estimated that by 2030, 12% of the installed power capacity will be solar PV.

Keywords: asset management, PV module, optimization, maintenance

Procedia PDF Downloads 21
509 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing

Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila

Abstract:

Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.

Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing

Procedia PDF Downloads 165
508 A Unified Approach for Digital Forensics Analysis

Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles

Abstract:

Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.

Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool

Procedia PDF Downloads 176
507 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces

Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur

Abstract:

In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.

Keywords: aerodynamic, bi-dimensional, vegetation, synergistic

Procedia PDF Downloads 255
506 Microalgae Hydrothermal Liquefaction Process Optimization and Comprehension to Produce High Quality Biofuel

Authors: Lucie Matricon, Anne Roubaud, Geert Haarlemmer, Christophe Geantet

Abstract:

Introduction: This case discusses the management of two floor of mouth (FOM) Squamous Cell Carcinomas (SCC) not identified upon initial biopsy. Case Report: A 51 year-old male presented with right FOM erythroleukoplakia. Relevant medical history included alcoholic dependence syndrome and alcoholic liver disease. Relevant drug therapy encompassed acamprosate, folic acid, hydroxocobalamin and thiamine. The patient had a 55.5 pack-year smoking history and alcohol dependence from age 14, drinking 16 units/day. FOM incisional biopsy and histopathological analysis diagnosed Carcinoma in situ. Treatment involved wide local excision. Specimen analysis revealed two separate foci of pT1 moderately differentiated SCCs. Carcinoma staging scans revealed no pathological lymphadenopathy, no local invasion or metastasis. SCCs had been excised in completion with narrow margins. MDT discussion concluded that in view of the field changes it would be difficult to identify specific areas needing further excision, although techniques such as Lugol’s Iodine were considered. Further surgical resection, surgical neck management and sentinel lymph node biopsy was offered. The patient declined intervention, primary management involved close monitoring alongside alcohol and smoking cessation referral. Discussion: Narrow excisional margins can increase carcinoma recurrence risk. Biopsy failed to identify SCCs, despite sampling an area of clinical concern. For gross field change multiple incisional biopsies should be considered to increase chance of accurate diagnosis and appropriate treatment. Coupling of tobacco and alcohol has a synergistic effect, exponentially increasing the relative risk of oral carcinoma development. Tobacco and alcoholic control is fundamental in reducing treatment‑related side effects, recurrence risk, and second primary cancer development.

Keywords: microalgae, biofuels, hydrothermal liquefaction, biomass

Procedia PDF Downloads 115
505 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries

Procedia PDF Downloads 597
504 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 45