Search results for: computational methods
12241 An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli
Authors: A. Khernane, N. Khelil, L. Djerou
Abstract:
The aim of this work is to study the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control, and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.Keywords: boundary control, exact controllability, finite difference methods, functional optimization
Procedia PDF Downloads 35112240 3D Numerical Studies and Design Optimization of a Swallowtail Butterfly with Twin Tail
Authors: Arunkumar Balamurugan, G. Soundharya Lakshmi, V. Thenmozhi, M. Jegannath, V. R. Sanal Kumar
Abstract:
Aerodynamics of insects is of topical interest in aeronautical industries due to its wide applications on various types of Micro Air Vehicles (MAVs). Note that the MAVs are having smaller geometric dimensions operate at significantly lower speeds on the order of 10 m/s and their Reynolds numbers range is approximately 1,50,000 or lower. In this paper, numerical study has been carried out to capture the flow physics of a biological inspired Swallowtail Butterfly with fixed wing having twin tail at a flight speed of 10 m/s. Comprehensive numerical simulations have been carried out on swallow butterfly with twin tail flying at a speed of 10 m/s with uniform upper and lower angles of attack in both lateral and longitudinal position for identifying the best wing orientation with better aerodynamic efficiency. Grid system in the computational domain is selected after a detailed grid refinement exercises. Parametric analytical studies have been carried out with different lateral and longitudinal angles of attack for finding the better aerodynamic efficiency at the same flight speed. The results reveal that lift coefficient significantly increases with marginal changes in the longitudinal angle and vice versa. But in the case of drag coefficient the conventional changes have been noticed, viz., drag increases at high longitudinal angles. We observed that the change of twin tail section has a significant impact on the formation of vortices and aerodynamic efficiency of the MAV’s. We concluded that for every lateral angle there is an exact longitudinal orientation for the existence of an aerodynamically efficient flying condition of any MAV. This numerical study is a pointer towards for the design optimization of Twin tail MAVs with flapping wings.Keywords: aerodynamics of insects, MAV, swallowtail butterfly, twin tail MAV design
Procedia PDF Downloads 39712239 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam
Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir
Abstract:
Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory
Procedia PDF Downloads 32412238 Development of Immuno-Modulators: Application of Molecular Dynamics Simulation
Authors: Ruqaiya Khalil, Saman Usmani, Zaheer Ul-Haq
Abstract:
The accurate characterization of ligand binding affinity is indispensable for designing molecules with optimized binding affinity. Computational tools help in many directions to predict quantitative correlations between protein-ligand structure and their binding affinities. Molecular dynamics (MD) simulation is a modern state-of-the-art technique to evaluate the underlying basis of ligand-protein interactions by characterizing dynamic and energetic properties during the event. Autoimmune diseases arise from an abnormal immune response of the body against own tissues. The current regimen for the described condition is limited to immune-modulators having compromised pharmacodynamics and pharmacokinetics profiles. One of the key player mediating immunity and tolerance, thus invoking autoimmunity is Interleukin-2; a cytokine influencing the growth of T cells. Molecular dynamics simulation techniques are applied to seek insight into the inhibitory mechanisms of newly synthesized compounds that manifested immunosuppressant potentials during in silico pipeline. In addition to estimation of free energies associated with ligand binding, MD simulation yielded us a great deal of information about ligand-macromolecule interactions to evaluate the pattern of interactions and the molecular basis of inhibition. The present study is a continuum of our efforts to identify interleukin-2 inhibitors of both natural and synthetic origin. Herein, we report molecular dynamics simulation studies of Interluekin-2 complexed with different antagonists previously reported by our group. The study of protein-ligand dynamics enabled us to gain a better understanding of the contribution of different active site residues in ligand binding. The results of the study will be used as the guide to rationalize the fragment based synthesis of drug-like interleukin-2 inhibitors as immune-modulators.Keywords: immuno-modulators, MD simulation, protein-ligand interaction, structure-based drug design
Procedia PDF Downloads 26512237 Information Extraction Based on Search Engine Results
Authors: Mohammed R. Elkobaisi, Abdelsalam Maatuk
Abstract:
The search engines are the large scale information retrieval tools from the Web that are currently freely available to all. This paper explains how to convert the raw resulted number of search engines into useful information. This represents a new method for data gathering comparing with traditional methods. When a query is submitted for a multiple numbers of keywords, this take a long time and effort, hence we develop a user interface program to automatic search by taking multi-keywords at the same time and leave this program to collect wanted data automatically. The collected raw data is processed using mathematical and statistical theories to eliminate unwanted data and converting it to usable data.Keywords: search engines, information extraction, agent system
Procedia PDF Downloads 43312236 Isotherm Study of Modified Zeolite in Sorption of Naphthalene from Water Sample
Authors: Homayon Ahmad Panahi, Amir Hesam Hassani, Akram Torki, Elham Moniri
Abstract:
A new sorbent was synthesized through chemical modification of clinoptilolite zeolite using 2-naphtol, and characterized with fourier transform infrared spectroscopy and elemental analysis methods and applied for the removal and elimination of trace naphthalene from water samples. The optimum pH value for sorption of the naphthalene by modified zeolite was in acidic pH. The sorption capacity of modified zeolite was 142 mg. g−1. Isotherm models, Langmuir, Frendlich and Temkin were employed to analyze the adsorption capacity of modified zeolite, which revealed that naphthalene adsorption by this zeolite follows Langmuir model.Keywords: zeolite, clinoptilolite, modification, naphthalene
Procedia PDF Downloads 49312235 Horizontal Circular Curve Computations Using a Developed Calculator
Authors: Adil Hassabo
Abstract:
In this paper, a horizontal circular curve computations calculator is developed in Microsoft Windows. The developed calculator can be used for determining the necessary information required for setting out horizontal curves. Three methods are applied in the developed program namely: incremental chord method, total chord method, and the coordinates method. Computations of horizontal curves by the developed calculator is faster, easier, accurate, and less subject to errors comparable to the traditional method of calculations. Finally, the results obtained by the traditional method and by the developed calculator are presented for checking the behavior of the developed calculator.Keywords: calculator, circular, computations, curve
Procedia PDF Downloads 16612234 Analysis of Advancements in Process Modeling and Reengineering at Fars Regional Electric Company, Iran
Authors: Mohammad Arabi
Abstract:
Business Process Reengineering (BPR) is a systematic approach to fundamentally redesign organizational processes to achieve significant improvements in organizational performance. At Fars Regional Electric Company, implementing BPR is deemed essential to increase productivity, reduce costs, and improve service quality. This article examines how BPR can help enhance the performance of Fars Regional Electric Company. The objective of this research is to evaluate and analyze the advancements in process modeling and reengineering at Fars Regional Electric Company and to provide solutions for improving the productivity and efficiency of organizational processes. This study aims to demonstrate how BPR can be used to improve organizational processes and enhance the overall performance of the company. This research employs both qualitative and quantitative research methods and includes interviews with senior managers and experts at Fars Regional Electric Company. The analytical tools include process modeling software such as Bizagi and ARIS, and statistical analysis software such as SPSS and Minitab. Data analysis was conducted using advanced statistical methods. The results indicate that the use of BPR techniques can lead to a significant reduction in process execution time and overall improvement in quality. Implementing BPR at Fars Regional Electric Company has led to increased productivity, reduced costs, and improved overall performance of the company. This study shows that with proper implementation of BPR and the use of modeling tools, the company can achieve significant improvements in its processes. Recommendations: (1) Continuous Training for Staff: Invest in continuous training of staff to enhance their skills and knowledge in BPR. (2) Use of Advanced Technologies: Utilize modeling and analysis software to improve processes. (3) Implementation of Effective Management Systems: Employ knowledge and information management systems to enhance organizational performance. (4) Continuous Monitoring and Review of Processes: Regularly review and revise processes to ensure ongoing improvements. This article highlights the importance of improving organizational processes at Fars Regional Electric Company and recommends that managers and decision-makers at the company seriously consider reengineering processes and utilizing modeling technologies to achieve developmental goals and continuous improvement.Keywords: business process reengineering, electric company, Fars province, process modeling advancements
Procedia PDF Downloads 5312233 A Radiofrequency Based Navigation Method for Cooperative Robotic Communities in Surface Exploration Missions
Authors: Francisco J. García-de-Quirós, Gianmarco Radice
Abstract:
When considering small robots working in a cooperative community for Moon surface exploration, navigation and inter-nodes communication aspects become a critical issue for the mission success. For this approach to succeed, it is necessary however to deploy the required infrastructure for the robotic community to achieve efficient self-localization as well as relative positioning and communications between nodes. In this paper, an exploration mission concept in which two cooperative robotic systems co-exist is presented. This paradigm hinges on a community of reference agents that provide support in terms of communication and navigation to a second agent community tasked with exploration goals. The work focuses on the role of the agent community in charge of the overall support and, more specifically, will focus on the positioning and navigation methods implemented in RF microwave bands, which are combined with the communication services. An analysis of the different methods for range and position calculation are presented, as well as the main limiting factors for precision and resolution, such as phase and frequency noise in RF reference carriers and drift mechanisms such as thermal drift and random walk. The effects of carrier frequency instability due to phase noise are categorized in different contributing bands, and the impact of these spectrum regions are considered both in terms of the absolute position and the relative speed. A mission scenario is finally proposed, and key metrics in terms of mass and power consumption for the required payload hardware are also assessed. For this purpose, an application case involving an RF communication network in UHF Band is described, in coexistence with a communications network used for the single agents to communicate within the both the exploring agents as well as the community and with the mission support agents. The proposed approach implements a substantial improvement in planetary navigation since it provides self-localization capabilities for robotic agents characterized by very low mass, volume and power budgets, thus enabling precise navigation capabilities to agents of reduced dimensions. Furthermore, a common and shared localization radiofrequency infrastructure enables new interaction mechanisms such as spatial arrangement of agents over the area of interest for distributed sensing.Keywords: cooperative robotics, localization, robot navigation, surface exploration
Procedia PDF Downloads 29612232 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid
Authors: Min Wang, Sergey Utev
Abstract:
The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial
Procedia PDF Downloads 14312231 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins
Authors: Manju Kanu, Subrata Sinha, Surabhi Johari
Abstract:
Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.Keywords: epitope, b cell, immunogenicity, ebola
Procedia PDF Downloads 31912230 Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods
Authors: Y. Galerkin, L. Marenina
Abstract:
Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration.Keywords: vane diffuser, return channel, crossover, efficiency, loss coefficient, inlet flow angle
Procedia PDF Downloads 43112229 A Low Power Consumption Routing Protocol Based on a Meta-Heuristics
Authors: Kaddi Mohammed, Benahmed Khelifa D. Benatiallah
Abstract:
A sensor network consists of a large number of sensors deployed in areas to monitor and communicate with each other through a wireless medium. The collected routing data in the network consumes most of the energy of the sensor nodes. For this purpose, multiple routing approaches have been proposed to conserve energy resource at the sensors and to overcome the challenges of its limitation. In this work, we propose a new low energy consumption routing protocol for wireless sensor networks based on a meta-heuristic methods. Our protocol is to operate more fairly energy when routing captured data to the base station.Keywords: WSN, routing, energy, heuristic
Procedia PDF Downloads 34712228 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading
Authors: Reza E. Sedgh, Rajesh P. Dhakal
Abstract:
Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.Keywords: analytical model, nonlinear shell element, structural wall, shear behavior
Procedia PDF Downloads 40912227 Airliner-UAV Flight Formation in Climb Regime
Authors: Pavel Zikmund, Robert Popela
Abstract:
Extreme formation is a theoretical concept of self-sustain flight when a big Airliner is followed by a small UAV glider flying in airliner’s wake vortex. The paper presents results of climb analysis with a goal to lift the gliding UAV to airliner’s cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Then, flight performance of the UAV in the wake vortex is evaluated by analytical methods. Time history of optimal distance between the airliner and the UAV during the climb is determined. The results are encouraging, therefore available UAV drag margin for electricity generation is figured out for different vortex models.Keywords: flight in formation, self-sustained flight, UAV, wake vortex
Procedia PDF Downloads 44612226 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem
Authors: Dávid Csercsik, Péter Kádár
Abstract:
In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.Keywords: optimization, MATLAB, quadratic programming, economic dispatch
Procedia PDF Downloads 55212225 Recommendations for Teaching Word Formation for Students of Linguistics Using Computer Terminology as an Example
Authors: Svetlana Kostrubina, Anastasia Prokopeva
Abstract:
This research presents a comprehensive study of the word formation processes in computer terminology within English and Russian languages and provides listeners with a system of exercises for training these skills. The originality is that this study focuses on a comparative approach, which shows both general patterns and specific features of English and Russian computer terms word formation. The key point is the system of exercises development for training computer terminology based on Bloom’s taxonomy. Data contain 486 units (228 English terms from the Glossary of Computer Terms and 258 Russian terms from the Terminological Dictionary-Reference Book). The objective is to identify the main affixation models in the English and Russian computer terms formation and to develop exercises. To achieve this goal, the authors employed Bloom’s Taxonomy as a methodological framework to create a systematic exercise program aimed at enhancing students’ cognitive skills in analyzing, applying, and evaluating computer terms. The exercises are appropriate for various levels of learning, from basic recall of definitions to higher-order thinking skills, such as synthesizing new terms and critically assessing their usage in different contexts. Methodology also includes: a method of scientific and theoretical analysis for systematization of linguistic concepts and clarification of the conceptual and terminological apparatus; a method of nominative and derivative analysis for identifying word-formation types; a method of word-formation analysis for organizing linguistic units; a classification method for determining structural types of abbreviations applicable to the field of computer communication; a quantitative analysis technique for determining the productivity of methods for forming abbreviations of computer vocabulary based on the English and Russian computer terms, as well as a technique of tabular data processing for a visual presentation of the results obtained. a technique of interlingua comparison for identifying common and different features of abbreviations of computer terms in the Russian and English languages. The research shows that affixation retains its productivity in the English and Russian computer terms formation. Bloom’s taxonomy allows us to plan a training program and predict the effectiveness of the compiled program based on the assessment of the teaching methods used.Keywords: word formation, affixation, computer terms, Bloom's taxonomy
Procedia PDF Downloads 2612224 Modeling and Simulation of Turbulence Induced in Nozzle Cavitation and Its Effects on Internal Flow in a High Torque Low Speed Diesel Engine
Authors: Ali Javaid, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
To control combustion inside a direct injection diesel engine, fuel atomization is the best tool. Controlling combustion helps in reducing emissions and improves efficiency. Cavitation is one of the most important factors that significantly affect the nature of spray before it injects into combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limits the study of internal nozzle behavior especially in case of diesel engine. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development. There is a parametric variation between high speed and high torque low speed diesel engines. The objective of this study is to simulate internal spray characteristics for a low speed high torque diesel engine. In-nozzle cavitation has strong effects on the parameters e.g. mass flow rate, fuel velocity, and momentum flux of fuel that is to be injected into the combustion chamber. The external spray dynamics and subsequently the air – fuel mixing depends on a lot of the parameters of fuel injecting the nozzle. The approach used to model turbulence induced in – nozzle cavitation for high-torque low-speed diesel engine, is homogeneous equilibrium model. The governing equations were modeled using Matlab. Complete Model in question was extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver and implemented in CFD (Computational Fluid Dynamics). Results thus obtained will be analyzed for better evaporation in the near-nozzle region. The proposed analyses will further help in better engine efficiency, low emission, and improved fuel economy.Keywords: cavitation, HEM model, nozzle flow, open foam, turbulence
Procedia PDF Downloads 29312223 Increasing Access to Upper Limb Reconstruction in Cervical Spinal Cord Injury
Authors: Michelle Jennett, Jana Dengler, Maytal Perlman
Abstract:
Background: Cervical spinal cord injury (SCI) is a devastating event that results in upper limb paralysis, loss of independence, and disability. People living with cervical SCI have identified improvement of upper limb function as a top priority. Nerve and tendon transfer surgery has successfully restored upper limb function in cervical SCI but is not universally used or available to all eligible individuals. This exploratory mixed-methods study used an implementation science approach to better understand these factors that influence access to upper limb reconstruction in the Canadian context and design an intervention to increase access to care. Methods: Data from the Canadian Institute for Health Information’s Discharge Abstracts Database (CIHI-DAD) and the National Ambulatory Care Reporting System (NACRS) were used to determine the annual rate of nerve transfer and tendon transfer surgeries performed in cervical SCI in Canada over the last 15 years. Semi-structured interviews informed by the consolidated framework for implementation research (CFIR) were used to explore Ontario healthcare provider knowledge and practices around upper limb reconstruction. An inductive, iterative constant comparative process involving descriptive and interpretive analyses was used to identify themes that emerged from the data. Results: Healthcare providers (n = 10 upper extremity surgeons, n = 10 SCI physiatrists, n = 12 physical and occupational therapists working with individuals with SCI) were interviewed about their knowledge and perceptions of upper limb reconstruction and their current practices and discussions around upper limb reconstruction. Data analysis is currently underway and will be presented. Regional variation in rates of upper limb reconstruction and trends over time are also currently being analyzed. Conclusions: Utilization of nerve and tendon transfer surgery to improve upper limb reconstruction in Canada remains low. There are a complex array of interrelated individual-, provider- and system-level barriers that prevent individuals with cervical SCI from accessing upper limb reconstruction. In order to offer equitable access to care, a multi-modal approach addressing current barriers is required.Keywords: cervical spinal cord injury, nerve and tendon transfer surgery, spinal cord injury, upper extremity reconstruction
Procedia PDF Downloads 10112222 Free Energy Computation of A G-Quadruplex-Ligand Structure: A Classical Molecular Dynamics and Metadynamics Simulation Study
Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria
Abstract:
The DNA G-quadruplex is a four-stranded DNA structure formed by stacked planes of four base paired guanines (G-quartet). Guanine rich DNA sequences appear in many sites of genomic DNA and can potential form G-quadruplexes, such as those occurring at 3'-terminus of the human telomeric DNA. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to down regulate oncogene expression making G-quadruplex an attractive target for anticancer therapy. Many G-quadruplex ligands have been proposed with a planar core to facilitate the pi–pi stacking and electrostatic interactions with the G-quartets. However, many drug candidates are impossibilitated to discriminate a G-quadruplex from a double helix DNA structure. In this context, it is important to investigate the site topology for the interaction of a G-quadruplex with a ligand. In this work, we determine the free energy surface of a G-quadruplex-ligand to study the binding modes of the G-quadruplex (TG4T) with the daunomycin (DM) drug. The complex TG4T-DM is studied using classical molecular dynamics in combination with metadynamics simulations. The metadynamics simulations permit an enhanced sampling of the conformational space with a modest computational cost and obtain free energy surfaces in terms of the collective variables (CV). The free energy surfaces of TG4T-DM exhibit other local minima, indicating the presence of additional binding modes of daunomycin that are not observed in short MD simulations without the metadynamics approach. The results are compared with similar calculations on a different structure (the mutated mu-G4T-DM where the 5' thymines on TG4T-DM have been deleted). The results should be of help to design new G-quadruplex drugs, and understand the differences in the recognition topology sites of the duplex and quadruplex DNA structures in their interaction with ligands.Keywords: g-quadruplex, cancer, molecular dynamics, metadynamics
Procedia PDF Downloads 46312221 Future Research on the Resilience of Tehran’s Urban Areas Against Pandemic Crises Horizon 2050
Authors: Farzaneh Sasanpour, Saeed Amini Varaki
Abstract:
Resilience is an important goal for cities as urban areas face an increasing range of challenges in the 21st century; therefore, according to the characteristics of risks, adopting an approach that responds to sensitive conditions in the risk management process is the resilience of cities. In the meantime, most of the resilience assessments have dealt with natural hazards and less attention has been paid to pandemics.In the covid-19 pandemic, the country of Iran and especially the metropolis of Tehran, was not immune from the crisis caused by its effects and consequences and faced many challenges. One of the methods that can increase the resilience of Tehran's metropolis against possible crises in the future is future studies. This research is practical in terms of type. The general pattern of the research will be descriptive-analytical and from the point of view that it is trying to communicate between the components and provide urban resilience indicators with pandemic crises and explain the scenarios, its future studies method is exploratory. In order to extract and determine the key factors and driving forces effective on the resilience of Tehran's urban areas against pandemic crises (Covid-19), the method of structural analysis of mutual effects and Micmac software was used. Therefore, the primary factors and variables affecting the resilience of Tehran's urban areas were set in 5 main factors, including physical-infrastructural (transportation, spatial and physical organization, streets and roads, multi-purpose development) with 39 variables based on mutual effects analysis. Finally, key factors and variables in five main areas, including managerial-institutional with five variables; Technology (intelligence) with 3 variables; economic with 2 variables; socio-cultural with 3 variables; and physical infrastructure, were categorized with 7 variables. These factors and variables have been used as key factors and effective driving forces on the resilience of Tehran's urban areas against pandemic crises (Covid-19), in explaining and developing scenarios. In order to develop the scenarios for the resilience of Tehran's urban areas against pandemic crises (Covid-19), intuitive logic, scenario planning as one of the future research methods and the Global Business Network (GBN) model were used. Finally, four scenarios have been drawn and selected with a creative method using the metaphor of weather conditions, which is indicative of the general outline of the conditions of the metropolis of Tehran in that situation. Therefore, the scenarios of Tehran metropolis were obtained in the form of four scenarios: 1- solar scenario (optimal governance and management leading in smart technology) 2- cloud scenario (optimal governance and management following in intelligent technology) 3- dark scenario (optimal governance and management Unfavorable leader in intelligence technology) 4- Storm scenario (unfavorable governance and management of follower in intelligence technology). The solar scenario shows the best situation and the stormy scenario shows the worst situation for the Tehran metropolis. According to the findings obtained in this research, city managers can, in order to achieve a better tomorrow for the metropolis of Tehran, in all the factors and components of urban resilience against pandemic crises by using future research methods, a coherent picture with the long-term horizon of 2050, from the path Provide urban resilience movement and platforms for upgrading and increasing the capacity to deal with the crisis. To create the necessary platforms for the realization, development and evolution of the urban areas of Tehran in a way that guarantees long-term balance and stability in all dimensions and levels.Keywords: future research, resilience, crisis, pandemic, covid-19, Tehran
Procedia PDF Downloads 7412220 Legal Analysis of the Meaning of the Rule In dubio pro libertate for the Interpretation of Criminal Law Norms
Authors: Pavel Kotlán
Abstract:
The paper defines the role of the rule in dubio pro libertate in the interpretation of criminal law norms, which is one of the controversial and debated problems of law application. On the basis of the analysis of the law, including comparison with the legal systems of various European countries, and the accepted principles of interpretation of law, it can be concluded that the rule in dubio pro libertate can be used in cases where the linguistic, teleological and systematic methods fail, and at the same time, that interpretation based on this rule should be preferred to subjective historical interpretation. It can be considered that the correct inclusion of the in dubio pro libertate rule in the choice of the interpretative variant can serve in the application of criminal law by the judiciary.Keywords: application of law, criminal law norms, in dubio pro libertate, interpretation
Procedia PDF Downloads 1812219 The Influence of Production Hygiene Training on Farming Practices Employed by Rural Small-Scale Organic Farmers - South Africa
Authors: Mdluli Fezile, Schmidt Stefan, Thamaga-Chitja Joyce
Abstract:
In view of the frequently reported foodborne disease outbreaks caused by contaminated fresh produce, consumers have a preference for foods that meet requisite hygiene standards to reduce the risk of foodborne illnesses. Producing good quality fresh produce then becomes critical in improving market access and food security, especially for small-scale farmers. Questions of hygiene and subsequent microbiological quality in the rural small-scale farming sector of South Africa are even more crucial, given the policy drive to develop small-scale farming as a measure for reinforcement of household food security and reduction of poverty. Farming practices and methods, throughout the fresh produce value chain, influence the quality of the final product, which in turn determines its success in the market. This study’s aim was to therefore determine the extent to which training on organic farming methods, including modules such as Importance of Production Hygiene, influenced the hygienic farming practices employed by eTholeni small-scale organic farmers in uMbumbulu, KwaZulu-Natal- South Africa. Questionnaires were administered to 73 uncertified organic farmers and analysis showed that a total of 33 farmers were trained and supplied the local Agri-Hub while 40 had not received training. The questionnaire probed respondents’ attitudes, knowledge of hygiene and composting practices. Data analysis included descriptive statistics such as the Chi-square test and a logistic regression model. Descriptive analysis indicated that a majority of the farmers (60%) were female, most of which (73%) were above the age of 40. The logistic regression indicated that factors such as farmer training and prior experience in the farming sector had a significant influence on hygiene practices both at 5% significance levels. These results emphasize the importance of training, education and farming experience in implementing good hygiene practices in small-scale farming. It is therefore recommended that South African policies should advocate for small-scale farmer training, not only for subsistence purposes, but also with an aim of supplying produce markets with high fresh produce.Keywords: small-scale farmers, leafy salad vegetables, organic produce, food safety, hygienic practices, food security
Procedia PDF Downloads 42812218 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 8512217 FlameCens: Visualization of Expressive Deviations in Music Performance
Authors: Y. Trantafyllou, C. Alexandraki
Abstract:
Music interpretation accounts to the way musicians shape their performance by deliberately deviating from composers’ intentions, which are commonly communicated via some form of music transcription, such as a music score. For transcribed and non-improvised music, music expression is manifested by introducing subtle deviations in tempo, dynamics and articulation during the evolution of performance. This paper presents an application, named FlameCens, which, given two recordings of the same piece of music, presumably performed by different musicians, allow visualising deviations in tempo and dynamics during playback. The application may also compare a certain performance to the music score of that piece (i.e. MIDI file), which may be thought of as an expression-neutral representation of that piece, hence depicting the expressive queues employed by certain performers. FlameCens uses the Dynamic Time Warping algorithm to compare two audio sequences, based on CENS (Chroma Energy distribution Normalized Statistics) audio features. Expressive deviations are illustrated in a moving flame, which is generated by an animation of particles. The length of the flame is mapped to deviations in dynamics, while the slope of the flame is mapped to tempo deviations so that faster tempo changes the slope to the right and slower tempo changes the slope to the left. Constant slope signifies no tempo deviation. The detected deviations in tempo and dynamics can be additionally recorded in a text file, which allows for offline investigation. Moreover, in the case of monophonic music, the color of particles is used to convey the pitch of the notes during performance. FlameCens has been implemented in Python and it is openly available via GitHub. The application has been experimentally validated for different music genres including classical, contemporary, jazz and popular music. These experiments revealed that FlameCens can be a valuable tool for music specialists (i.e. musicians or musicologists) to investigate the expressive performance strategies employed by different musicians, as well as for music audience to enhance their listening experience.Keywords: audio synchronization, computational music analysis, expressive music performance, information visualization
Procedia PDF Downloads 13412216 Involving Participants at the Methodological Design Stage: The Group Repertory Grid Approach
Authors: Art Tsang
Abstract:
In educational research, the scope of investigations has almost always been determined by researchers. As learners are at the forefront of education, it is essential to balance researchers’ and learners’ voices in educational studies. In this paper, a data collection method that helps partly address the dearth of learners’ voices in research design is introduced. Inspired by the repertory grid approach (RGA), the group RGA approach, created by the author and his doctoral student, was successfully piloted with learners in Hong Kong. This method will very likely be of interest and use to many researchers, teachers, and postgraduate students in the field of education and beyond.Keywords: education, learners, repertory grids, research methods
Procedia PDF Downloads 6412215 Extraction of Squalene from Lebanese Olive Oil
Authors: Henri El Zakhem, Christina Romanos, Charlie Bakhos, Hassan Chahal, Jessica Koura
Abstract:
Squalene is a valuable component of the oil composed of 30 carbon atoms and is mainly used for cosmetic materials. The main concern of this article is to study the Squalene composition in the Lebanese olive oil and to compare it with foreign oil results. To our knowledge, extraction of Squalene from the Lebanese olive oil has not been conducted before. Three different techniques were studied and experiments were performed on three brands of olive oil, Al Wadi Al Akhdar, Virgo Bio and Boulos. The techniques performed are the Fractional Crystallization, the Soxhlet and the Esterification. By comparing the results, it is found that the Lebanese oil contains squalene and Soxhlet method is the most effective between the three methods extracting about 6.5E-04 grams of Squalene per grams of olive oil.Keywords: squalene, extraction, crystallization, Soxhlet
Procedia PDF Downloads 52412214 Critical Analysis of Different Actuation Techniques for a Micro Cantilever
Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri
Abstract:
The objective of this work is to carry out a critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a microcantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, they help in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation are done by considering the microcantilever of same dimensions as an actuator using all the above-mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in the micro domain.Keywords: actuation techniques, microswitch, micro actuator, microsystems
Procedia PDF Downloads 41312213 Modulation of the Europay, MasterCard, and VisaCard Authentications by Using Avispa Tool
Authors: Ossama Al-Maliki
Abstract:
The Europay, MasterCard, and Visa (EMV) is the transaction protocol for most of the world and especially in Europe and the UK. EMV protocol consists of three main stages which are: card authentication, cardholder verification methods, and transaction authorization. This paper details in full the EMV card authentications. We have used AVISPA and SPAN tools to do our modulization for the EMV card authentications. The code for each type of the card authentication was written by using CAS+ language. The results showed that our modulations were successfully addressed all the steps of the EMV card authentications and the entire process of the EMV card authentication are secured. Also, our modulations were successfully addressed all the main goals behind the EMV card authentications according to the EMV specifications.Keywords: EMV, card authentication, contactless card, SDA, DDA, CDA AVISPA
Procedia PDF Downloads 18312212 Therapeutic Touch from Primary Care to Tertiary Care in Health Services
Authors: Ayşegül Bilge, Hacer Demirkol, Merve Uğuryol
Abstract:
Therapeutic touch is one of the most important methods of complementary and alternative treatments. Therapeutic touch requires the sharing of universal energy. Therapeutic touch (TT) provides the interaction between the patient and the nurse. In addition, nurses can be aware of physical and mental symptoms of patients through therapeutic touch. Therapeutic touch (TT) is short-term provides the advantage for the nurse. For this reason, nurses have to be aware of the importance of therapeutic touch and they can use it from the primary care to tertiary care in nursing practices at in health field.Keywords: health care services, complementary treatment, nursing, therapeutic touch
Procedia PDF Downloads 352