Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16233

Search results for: finite difference methods

16233 New High Order Group Iterative Schemes in the Solution of Poisson Equation

Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali

Abstract:

We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.

Keywords: explicit group iterative method, finite difference, fourth order compact, Poisson equation

Procedia PDF Downloads 352
16232 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method

Authors: N. Fusun Oyman Serteller

Abstract:

In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples.  Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.

Keywords: finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations

Procedia PDF Downloads 66
16231 Fractional Euler Method and Finite Difference Formula Using Conformable Fractional Derivative

Authors: Ramzi B. Albadarneh

Abstract:

In this paper, we use the new definition of fractional derivative called conformable fractional derivative to derive some finite difference formulas and its error terms which are used to solve fractional differential equations and fractional partial differential equations, also to derive fractional Euler method and its error terms which can be applied to solve fractional differential equations. To provide the contribution of our work some applications on finite difference formulas and Euler Method are given.

Keywords: conformable fractional derivative, finite difference formula, fractional derivative, finite difference formula

Procedia PDF Downloads 329
16230 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions

Authors: Khaled Moaddy

Abstract:

In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.

Keywords: standard finite difference schemes, non-standard schemes, Laplace equation, Dirichlet boundary conditions

Procedia PDF Downloads 59
16229 Fast and Accurate Finite-Difference Method Solving Multicomponent Smoluchowski Coagulation Equation

Authors: Alexander P. Smirnov, Sergey A. Matveev, Dmitry A. Zheltkov, Eugene E. Tyrtyshnikov

Abstract:

We propose a new computational technique for multidimensional (multicomponent) Smoluchowski coagulation equation. Using low-rank approximations in Tensor Train format of both the solution and the coagulation kernel, we accelerate the classical finite-difference Runge-Kutta scheme keeping its level of accuracy. The complexity of the taken finite-difference scheme is reduced from O(N^2d) to O(d^2 N log N ), where N is the number of grid nodes and d is a dimensionality of the problem. The efficiency and the accuracy of the new method are demonstrated on concrete problem with known analytical solution.

Keywords: tensor train decomposition, multicomponent Smoluchowski equation, runge-kutta scheme, convolution

Procedia PDF Downloads 332
16228 Modelling and Analysis of Shear Banding in Flow of Complex Fluids

Authors: T. Chinyoka

Abstract:

We present the Johnson-Segalman constitutive model to capture certain fluid flow phenomena that has been experimentally observed in the flow of complex polymeric fluids. In particular, experimentally observed phenomena such as shear banding, spurt and slip are explored and/or explained in terms of the non-monotonic shear-stress versus shear-rate relationships. We also explore the effects of the inclusion of physical flow aspects such as wall porosity on shear banding. We similarly also explore the effects of the inclusion of mathematical modelling aspects such as stress diffusion into the stress constitutive models in order to predict shear-stress (or shear-rate) paths. We employ semi-implicit finite difference methods for all the computational solution procedures.

Keywords: Johnson-Segalman model, diffusive Johnson-Segalman model, shear banding, finite difference methods, complex fluid flow

Procedia PDF Downloads 283
16227 Analytical Study Of Holographic Polymer Dispersed Liquid Crystals Using Finite Difference Time Domain Method

Authors: N. R. Mohamad, H. Ono, H. Haroon, A. Salleh, N. M. Z. Hashim

Abstract:

In this research, we have studied and analyzed the modulation of light and liquid crystal in HPDLCs using Finite Domain Time Difference (FDTD) method. HPDLCs are modeled as a mixture of polymer and liquid crystals (LCs) that categorized as an anisotropic medium. FDTD method is directly solves Maxwell’s equation with less approximation, so this method can analyze more flexible and general approach for the arbitrary anisotropic media. As the results from FDTD simulation, the highest diffraction efficiency occurred at ±19 degrees (Bragg angle) using p polarization incident beam to Bragg grating, Q > 10 when the pitch is 1µm. Therefore, the liquid crystal is assumed to be aligned parallel to the grating constant vector during these parameters.

Keywords: birefringence, diffraction efficiency, finite domain time difference, nematic liquid crystals

Procedia PDF Downloads 382
16226 A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation

Authors: Norhashidah Hj. Mohd Ali, Teng Wai Ping

Abstract:

In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation. The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported.

Keywords: explicit group method, finite difference, helmholtz equation, rotated grid, standard grid

Procedia PDF Downloads 384
16225 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results

Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif

Abstract:

This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.

Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence

Procedia PDF Downloads 333
16224 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations

Authors: K. P. Mredula, D. C. Vakaskar

Abstract:

The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.

Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods

Procedia PDF Downloads 203
16223 An Implicit High Order Difference Scheme for the Solution of 1D Pennes Bio-Heat Transfer Model

Authors: Swarn Singh, Suruchi Singh

Abstract:

In this paper, we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme. In this paper we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme.

Keywords: convergence, finite difference scheme, Pennes bio-heat equation, stability

Procedia PDF Downloads 400
16222 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 126
16221 A Comparative Study between FEM and Meshless Methods

Authors: Jay N. Vyas, Sachin Daxini

Abstract:

Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.

Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods

Procedia PDF Downloads 313
16220 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order

Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao

Abstract:

In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.

Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution

Procedia PDF Downloads 59
16219 Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method

Authors: Prawal Sinha, Peeyush Singh, Pravir Dutt

Abstract:

Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software.

Keywords: elastohydrodynamic, lubrication, discontinuous finite volume method, GMRES technique

Procedia PDF Downloads 182
16218 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations

Authors: K. Noah, F.-S. Lien

Abstract:

In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.

Keywords: compressible lattice Boltzmann method, multiple relaxation times, large eddy simulation, turbulent jet flows

Procedia PDF Downloads 145
16217 [Keynote Talk]: Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Crank-Nicolson scheme, Lax-Richtmyer theorem, stability, consistency, Peclet number, Greschgorin circle

Procedia PDF Downloads 152
16216 Noncommutative Differential Structure on Finite Groups

Authors: Ibtisam Masmali, Edwin Beggs

Abstract:

In this paper, we take example of differential calculi, on the finite group A4. Then, we apply methods of non-commutative of non-commutative differential geometry to this example, and see how similar the results are to those of classical differential geometry.

Keywords: differential calculi, finite group A4, Christoffel symbols, covariant derivative, torsion compatible

Procedia PDF Downloads 146
16215 Numerical Methods versus Bjerksund and Stensland Approximations for American Options Pricing

Authors: Marasovic Branka, Aljinovic Zdravka, Poklepovic Tea

Abstract:

Numerical methods like binomial and trinomial trees and finite difference methods can be used to price a wide range of options contracts for which there are no known analytical solutions. American options are the most famous of that kind of options. Besides numerical methods, American options can be valued with the approximation formulas, like Bjerksund-Stensland formulas from 1993 and 2002. When the value of American option is approximated by Bjerksund-Stensland formulas, the computer time spent to carry out that calculation is very short. The computer time spent using numerical methods can vary from less than one second to several minutes or even hours. However to be able to conduct a comparative analysis of numerical methods and Bjerksund-Stensland formulas, we will limit computer calculation time of numerical method to less than one second. Therefore, we ask the question: Which method will be most accurate at nearly the same computer calculation time?

Keywords: Bjerksund and Stensland approximations, computational analysis, finance, options pricing, numerical methods

Procedia PDF Downloads 369
16214 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method

Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya

Abstract:

This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.

Keywords: particle size reduction, micromixer, FDM modelling, wet etching

Procedia PDF Downloads 360
16213 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.

Keywords: cable ampacity, finite element method, underground cable, thermal rating

Procedia PDF Downloads 228
16212 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: asymptotics, continuous spectrum, difference equations, eigenvalues, jost functions, spectral singularities

Procedia PDF Downloads 369
16211 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman

Abstract:

The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations

Procedia PDF Downloads 417
16210 Conduction Transfer Functions for the Calculation of Heat Demands in Heavyweight Facade Systems

Authors: Mergim Gasia, Bojan Milovanovica, Sanjin Gumbarevic

Abstract:

Better energy performance of the building envelope is one of the most important aspects of energy savings if the goals set by the European Union are to be achieved in the future. Dynamic heat transfer simulations are being used for the calculation of building energy consumption because they give more realistic energy demands compared to the stationary calculations that do not take the building’s thermal mass into account. Software used for these dynamic simulation use methods that are based on the analytical models since numerical models are insufficient for longer periods. The analytical models used in this research fall in the category of the conduction transfer functions (CTFs). Two methods for calculating the CTFs covered by this research are the Laplace method and the State-Space method. The literature review showed that the main disadvantage of these methods is that they are inadequate for heavyweight façade elements and shorter time periods used for the calculation. The algorithms for both the Laplace and State-Space methods are implemented in Mathematica, and the results are compared to the results from EnergyPlus and TRNSYS since these software use similar algorithms for the calculation of the building’s energy demand. This research aims to check the efficiency of the Laplace and the State-Space method for calculating the building’s energy demand for heavyweight building elements and shorter sampling time, and it also gives the means for the improvement of the algorithms used by these methods. As the reference point for the boundary heat flux density, the finite difference method (FDM) is used. Even though the dynamic heat transfer simulations are superior to the calculation based on the stationary boundary conditions, they have their limitations and will give unsatisfactory results if not properly used.

Keywords: Laplace method, state-space method, conduction transfer functions, finite difference method

Procedia PDF Downloads 56
16209 Spectrophotometric Methods for Simultaneous Determination of Binary Mixture of Amlodipine Besylate and Atenolol Based on Dual Wavelength

Authors: Nesrine T. Lamie

Abstract:

Four, accurate, precise, and sensitive spectrophotometric methods are developed for the simultaneous determination of a binary mixture containing amlodipine besylate (AM) and atenolol (AT) where AM is determined at its λmax 360 nm (0D), while atenolol can be determined by different methods. Method (A) is absorpotion factor (AFM). Method (B) is the new Ratio Difference method(RD) which measures the difference in amplitudes between 210 and 226 nm of ratio spectrum., Method (C) is novel constant center spectrophotometric method (CC) Method (D) is mean centering of the ratio spectra (MCR) at 284 nm. The calibration curve is linear over the concentration range of 10–80 and 4–40 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the cited drugs and they are applied to their commercial pharmaceutical preparation. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision.

Keywords: amlodipine, atenolol, absorption factor, constant center, mean centering, ratio difference

Procedia PDF Downloads 233
16208 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions

Authors: George Adomako Kumi

Abstract:

The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.

Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method

Procedia PDF Downloads 82
16207 Finite Difference Method of the Seismic Analysis of Earth Dam

Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali

Abstract:

Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.

Keywords: Earthquake, Numerical Analysis, FLAC2D, Displacement, Embankment Dam, Pore Water Pressure

Procedia PDF Downloads 289
16206 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.

Keywords: curved stretching sheet, finite difference method, MHD, variable thermal conductivity

Procedia PDF Downloads 126
16205 Numerical Evolution Methods of Rational Form for Diffusion Equations

Authors: Said Algarni

Abstract:

The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.

Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs

Procedia PDF Downloads 235
16204 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation

Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping

Abstract:

In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.

Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula

Procedia PDF Downloads 422